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The incretin hormone Glucagon-Like Peptide-1 (GLP-1) is best known for its “incretin

effect” in restoring glucose homeostasis in diabetics, however, it is now apparent that it

has a broader range of physiological effects in the body. Both in vitro and in vivo studies

have demonstrated that GLP-1 mimetics alleviate endoplasmic reticulum stress, regulate

autophagy, promote metabolic reprogramming, stimulate anti-inflammatory signaling,

alter gene expression, and influence neuroprotective pathways. A substantial body of

evidence has accumulated with respect to how GLP-1 and its analogs act to restore and

maintain normal cellular functions. These findings have prompted several clinical trials

which have reported GLP-1 analogs improve cardiac function, restore lung function and

reduce mortality in patients with obstructive lung disease, influence blood pressure and

lipid storage, and even prevent synaptic loss and neurodegeneration. Mechanistically,

GLP-1 elicits its effects via acute elevation in cAMP levels, and subsequent protein

kinase(s) activation, pathways well-defined in pancreatic β-cells which stimulate insulin

secretion in conjunction with elevated Ca2+ and ATP. More recently, new studies have

shed light on additional downstream pathways stimulated by chronic GLP-1 exposure,

findings which have direct relevance to our understanding of the potential therapeutic

effects of longer lasting analogs recently developed for clinical use. In this review, we

provide a comprehensive description of the diverse roles for GLP-1 across multiple

tissues, describe downstream pathways stimulated by acute and chronic exposure,

and discuss novel pleiotropic applications of GLP-1 mimetics in the treatment of human

disease.
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INTRODUCTION

While its gene was first cloned in 1983, and protein product approved as a therapeutic agent for
Type 2 diabetes mellitus (T2D) in 2005, themammalian glucagon-like peptide-1 (GLP-1), its modes
of action, and various analogs, have been and are still widely studied. As it is a highly attractive T2D
therapy, the major known functions of the incretin peptide GLP-1 and analogs are based on studies
delineating its role in the endocrine pancreas. GLP-1 acts through binding to its receptor (GLP-1R),
triggering a downstream signaling cascade able to induce a potent stimulation of glucose stimulated
insulin secretion (GSIS) in β-cells, as well as inhibition of α-cell glucagon release. GLP-1 analogs,
such as Liraglutide and Exendin-4, unlike endogenously produced GLP-1, are not rapidly degraded
by Dipeptidyl peptidase-4 (DPP-4) and, therefore, can induce sustained therapeutic actions, that
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otherwise would not be possible due to the exceedingly short
half-life of endogenous GLP-1 in circulation. GLP-1R is a B
class G-protein-coupled receptor abundantly expressed in the
pancreas and central nervous system, but also detected in lower
levels in the gut, kidneys, lungs, liver, heart, muscle, peripheral
nervous system, and other tissues (1). Upon binding to the
receptor, GLP-1 and its analogs also initiate a variety of additional
anti-diabetic effects, including, but not limited to, reduction
in gastric emptying, increase in satiety and inhibition of food
motivated behavior, replenishment of insulin stores, as well
as cytoprotective and anti-inflammatory actions on β-cells (2–
9). To initiate these beneficial effects, however, GLP-1 must
first be secreted from either the enteroendrocine L-cells, the
preproglucagon (PPG) neurons located in the nucleus of the
solitary tract of the brain stem, or, as reported recently, the α-cells
in the pancreas (10–14). Upon ligand binding, GLP-1R initiates
a cascade that involves activation of membrane bound Adenyl
Cyclase (AC) and consequent production of cyclic adenosine
monophosphate (cAMP). Downstream of cAMP formation,
several signal transduction pathways can be initiated, which
generally require activation of either one or both of the cellular
cAMP effectors, Protein kinase A (PKA) and exchange protein
directly activated by cAMP (EPAC) [reviewed in (15, 16)].

GLP-1R mediated effects arise as a consequence of the
immediate signaling cascade, which can impact insulin secretion
and calcium flux in a rapid post translational modifications
based manner (4, 17), and/or, the late stage or chronic effects,
which can operate through modulation of gene expression
and cellular metabolism (18–21). To date, the vast majority of
studies have tended to focus on the acute impact of GLP-1R
activation. More recently, research has begun elucidating the
consequences of chronic GLP-1R stimulation (19, 22–25). Long-
lasting GLP-1 analog treatments are now in regular clinical use,
and their impact, safety and efficacy are well-established and
extensively reviewed (25–31). However, a succinctly summarized
and current understanding of the signaling mechanisms and
metabolic impact of chronic GLP-1R agonist activity on β-cells,
and more broadly, across other tissues is both essential and
lacking. To this end, our review outlines the current knowledge
in regards to GLP-1R activation, subsequent signaling events,
and discuss recent findings, firstly with respect to the well-
characterized pancreatic β-cell, followed by effects on other cell
and tissue types.

ACUTE EFFECTS OF GLP-1 IN β-CELLS

Glucose enters the pancreatic β-cells via the transporter, Glucose
transporter 2 (GLUT2), moving down a concentration gradient
from the capillaries. In the cytosol glucose is phosphorylated
by the enzymes glucokinase/hexokinase (glucokinase is the
predominant isoform in the β-cell), after which it enters the
glycolytic pathway. Rapid catabolism of glucose via glycolysis and
mitochondrial TCA cycle activity generates ATP (32, 33). The
subsequent increase in ATP/ADP ratio leads to a closure of ATP-
sensitive K+ channels, intracellular accumulation of K+ ions and
subsequent membrane depolarization, causing an influx of Ca2+

via voltage dependent Ca2+ channels (VDCC). This Ca2+ influx,
along with elevated ATP, results in exocytosis of the plasma
membrane docked immediate release pool (IRP) of insulin
granules, a sub-pool of the readily releasable pool (RRP) which
contains∼1–5% of available insulin granules (16, 34). This is the
main driver behind β-cell 1st phase stimulus-secretion coupling,
since it is the products of glucose catabolism that ultimately drive
insulin exocytosis. This release is rapid, and is known to peak
at around 10min from the initial glucose challenge, whilst the
second phase of insulin release, which is sustained, consists in the
release of granules from the larger Reserve pool (RP), containing
∼95–99% of insulin granules, and lasts until glucose stimulation
ends (30–60min under normal physiologic conditions) (16, 35).
Before the trafficking and release of the RP granules occur,
granule competency must be achieved, and this is believed to
occur through granule acidification resultant from an increase
of H+ and Cl− ions and processing of pro-insulin into mature,
releasable, insulin (36).

In pancreatic β-cells, GLP-1R stimulated pathways act
promptly (seconds to minutes) to potentiate glucose-dependent
insulin release. This is achieved by a rapid increase in
cAMP, which is accompanied by direct activation of PKA
and EPAC. These two effectors of cAMP signaling modify
several targets within the secretory machinery, with the net
effect to synergistically enhance the amount of insulin secreted
in response to glucose stimulation (15, 16). Indeed, several
independent mechanisms are also reported to act in concert in
order to result in enhanced insulin secretion, as discussed below
(Figure 1).

Activation of PKA by cAMP results in release of its two
catalytic subunits from the two anchoring regulatory subunits
from specific cellular locations and anchoring proteins. Activated
PKA can directly phosphorylate the sulphonylurea receptor
(SUR1 as well as a regulatory subunit of K+ATP channels,
thereby reducing SUR1 affinity to ADP, and increasing activity
of Kir6.2, respectively (37). This, in turn, leads to channel closure
and increased accumulation of intracellular K+ ions (9), influx of
Ca2+ and promotion of insulin secretion in response to GLP-1
stimulation.

Another cAMP effector, EPAC, is implicated in K+ATP
channel regulation. Kang, et al. demonstrated that activation of
EPAC reduces the concentration of ATP required to achieve
closure of K+ ATP channels (38). This indicates that in
the presence of active EPAC, lower concentrations of ATP
promote membrane depolarization and subsequent insulin
granule exocytosis. Indeed, acute exposure to EPAC can stimulate
insulin granule exocytosis and maturation, through sensitization
of the ryanodine receptors and activation of the calcium sensing
complex (16, 39, 40). EPAC aids insulin priming and release via
facilitating formation of a Rim2/Rab3a complex via Rim2/EPAC
interaction (3, 41–43). Rim2/Rab3a complex interacts with the
Ca2+ sensor Piccolo-CAZ (cytoskeletal matrix protein that
associates with the active zone) to facilitate vesicle exocytosis
at the cytoplasmic surface of the insulin granule (3, 41, 42,
44). However, enhanced vesicle mobilization, priming, and
subsequent exocytosis is not only regulated by the EPACpathway,
but also directly by PKA. PKA can facilitate insulin secretion
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FIGURE 1 | Commonly accepted GLP-1 signaling in the pancreatic tissue. Summary of the most commonly known signaling cascades activated by GLP-1 in the

three different endocrine cell types α, β, δ, and their overall impact on diverse cellular processes.

through regulation of Ca2+ secretion, whereby PKA sensitizes
the inositol triphosphate receptor leading to release of Ca2+

from intracellular stores (16, 45–47). PKA has also been reported
to accelerate the competency and mobilization of vesicles from
the reserve pool of insulin to the readily releasable pool and,
thus, enhance Ca2+-dependent exocytosis in mouse pancreatic
islets (16, 34, 48, 49). Indeed, a recent report described that
PKA activity is required for glutamate uptake into the insulin
granules, with glutamate uptake potentiating insulin release
(50). Cytoplasmic glutamate can be derived via the malate-
aspartate shuttle following pyruvate mitochondrial metabolism.
Since glucose metabolism is absolutely required for GLP-1-
induced stimulation of insulin secretion, the latter mechanism
represents a clear link between glucose metabolism and GLP-1
action via PKA to amplify insulin secretion.

CHRONIC EFFECTS OF GLP-1 IN β-CELLS

It is perhaps unsurprising that GLP-1 therapeutics show greater
efficacy compared with traditional diabetic medicines, due to
their potential to address not only acute stimulation of insulin
secretion in response to a rise in blood glucose, but also
slow the progressive loss of β-cell function and tissue mass in
T2D. The beneficial effects of GLP-1 are resultant from cAMP
mediated signaling, and ultimately activation of pro-survival
cAMP responsive element binding (CREB) signaling, as well as
the non-receptor tyrosine kinase/c-Src, transactivation of EGFR
(5, 40, 51). CREB and EGFR pathways induce pro-survival and
anti-apoptotic responses (52–57), including increased expression
of anti-apoptotic genes (58), attenuation of ER stress (59),
prevention of oxidative stress and fatty acid mediated toxicity

(60). cAMP binds to PKA regulatory subunits, releasing and
activating PKA catalytic subunits that cause phosphorylation
of CREB at Ser133, promoting its activation and subsequent
binding to genes containing palindromic CRE repeat sequences.
Activated CREB regulates the expression of several genes
essential for normal β-cell function, including the insulin gene
(61). Additionally, EPAC can also exert late stage effects through
the Rap1 protein, a small GTPase that regulates B-Raf/Raf-
1 activation via a combination of residue phosphorylation
(Ser338) and dephosphorylation (Ser259), which enables Raf
to phosphorylate the mitogen-activated protein kinase (MEK).
MEK, in turn, phosphorylates the threonine and tyrosine residues
of the extracellular-signal regulated kinases (ERK) 1 and 2,
which regulate gene expression, growth and differentiation (62,
63). In addition to protection against apoptosis, it has been
proposed that GLP-1 induces β-cell proliferation in rodent
cell lines and in isolated rodent islet cells (54, 55, 64).
However, these findings have varying results in human cells,
with a recent study identifying an age-dependent Exendin-
4 induced signaling mechanism regulating β-cell proliferation
(65). This study revealed that unlike adult human islets,
juvenile human islets transplanted into an immunocompromised
strain of mice suitable for xenograft studies retained their
insulin secreting properties, and possessed a mitogenic response
to a pharmacologically relevant infusion of Exendin-4. The
mitogenic effect of chronic exposure of Exendin-4 in these
transplanted mice was observed to arise from stimulation of the
calcineurin/nuclear factor of activated T cells (NFAT) signaling
pathway, leading to a variety of target genes essential for
proliferation (65). Furthermore, this ability to enhance β-cell
mass has been recently challenged in a study conducted in
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normoglycaemic mice where β-cell mass was decreased following
6 weeks of treatment with Liraglutide (66, 67). Therefore, GLP-
1 analogs can have contrasting effects on β-cell proliferation
depending on physiological context.

A physiological consequence of T2DM, due to peripheral
insulin resistance, is high demand for enhanced insulin protein
synthesis in the β-cell. It has been observed that sustained
exposure to high insulin synthesis requirement results in ER
stress due to protein overload and misfolding (68–72). The
unfolded protein response (UPR) is the biochemical program
initiated within the cell to counteract the accumulation of
unfolded proteins in the ER lumen resulting in destabilization
of ER homeostasis (73). The UPR initiates signaling cascades
involving the luminal domains of three major ER resident
proteins; Inositol requiring enzyme 1 (IRE1), protein kinase
R (PKR)-like endoplasmic reticulum kinase (PERK), and
activating transcription factor 6 (ATF6) (71, 74). The pathways
so activated via signaling hubs attempt to re-establish ER
homeostasis through transcriptional activation of genes involved
in protein folding and protein degradation, as well as temporary
attenuation of mRNA translation (75–77). This is achieved
through downstream signaling events as, phosphorylation of
eukaryotic translation initiation factor 2 alpha (eIF2α), resulting
in global protein synthesis blockade, and alternative splicing of
X-box binding protein 1 (XBP-1), a transcription factor involved
in misfolded protein retrotranslocation and degradation (78–
80). Failure to alleviate ER stress, and consequent prolonged
UPR activation, leads to apoptotic cell death primarily through
upregulation of the pro-apoptotic transcriptional factor C/EBP
homologous protein (CHOP) (71, 81, 82). Several physiological
and environmental insults associated with T2DM have been
shown to induce ER stress in β-cells, these include hyperglycemia,
dyslipidemia, inflammation and oxidative stress (83).

GLP-1 has been reported to alleviate glucotoxicity,
lipotoxicity, excess nitric oxide (NO), Ca2+ depletion, oxidative
stress, and cytokine-induced ER stress in both primary β-cells
and cell lines through several downstream signaling mechanisms
(59, 74, 84–86). For example, Yusta, B et al., demonstrated
that GLP-1R signaling facilitates the shift from translational
repression to translational recovery phase in a PKA-dependent
manner (74). The recovery phase is concomitant with enhanced
activation of ATF-4, CHOP and over-stimulation of Gadd34
gene signaling cascade, which leads to eIF2α dephosphorylation.
Furthermore, GLP-1 treatment leads to upregulation of spliced
XBP-1 (sXBP-1), which is involved, along with ATF6, in
enhancing ER function through activation of genes encoding
molecular chaperones and ER-associated protein degradation
(60–70, 74). In addition, GLP-1 protection from lipotoxic stress
has been demonstrated to occur downstream from induction
of the ER chaperone Binding immunoglobulin Protein (BiP)
and anti-apoptotic protein JunB (86). Animal studies have
recapitulated these findings, whereby diabetic mice treated with
GLP-1 analogs displayed a significant reduction in biochemical
markers of ER stress, increased expression of antioxidant genes
and improved metabolic parameters (60, 74).

Most recently, GLP-1 has also been implicated in the
regulation of autophagy in β-cells (87, 88). Autophagy, a

mechanism that can promote cell survival during nutrient
depletion, may also occur under basal and excessive nutrient
conditions. This cellular process is characterized by the formation
of autophagosomes, which can capture cytosolic components and
fuse with lysosomes to promote the recycling and/or degradation
of its contents. The process can be separated into four
stages, initiation, nucleation, elongation, and fusion/degradation
[reviewed in (89)]. Initiation is controlled by the mammalian
Target of rapamycin (mTOR)/ AMP-activated protein kinase
(AMPK)/ Uncoordinated (Unc)-51-like kinase 1 or 2 (ULK-
1/2) axis, a crucial regulatory step leading to the activation of
class III phosphatidylinositol 3-kinase complex, formation of
the phagophore (a double membrane vesicle that encloses and
isolates the cytoplasmic components during autophagy), and
ultimately, recruitment of key proteins involved in the nucleation
phase (90). Once the phagophore is formed, the elongation phase
is undertaken where the phagophore captures the desired cargo
for degradation. This is regulated by two ubiquitin-like reactions
that act in concert to mediate the localization of key proteins to
the developing autophagosome, and expansion of its membrane
(91–93). Finally the autophagosome fuses with lysosomes, after
which lysosomal enzymes initiate content degradation and
nutrient and metabolite recycling (92). Autophagy provides
essential components for energy production and biosynthesis
during nutrient depletion. However, it also acts in a similar
fashion by recycling of damaged organelles, unwanted proteins
and foreign matter when adequate nutrients are available (88).
In an environment with excessive nutrients, however, autophagy
acts to remove unfolded proteins and toxic aggregates, thus
facilitating ER homeostasis. GLP-1 can facilitate autophagy
under chronic exposure to excess nutrients, whereby it
prevents autophagosomal-lysosomal fusion impairment (87,
88). Similarly, Exendin-4 was reported to enhance lysosomal
function, consequently leading to improved autophagosome
clearance in a rat model of tacrolimus-induced diabetes whereby
autophagosome accumulation causes islet injury (94). In the
latter study, in vivo Exendin-4 treatment decreased tacrolimus-
induced hyperglycemia, oxidative stress, and apoptosis. In
parallel, it was demonstrated that β-cells from treated animals
presented with reduced autophagosome numbers and decreased
autophagy related protein expression. Thus, GLP-1R signaling
could be interpreted as inhibiting autophagy, however, it most
likely depicts its positive effects on autophagosomal-lysosomal
fusion and, therefore, as a positive mediator of autophagic flux. It
should be noted, however, that GLP-1 induced changes can vary
depending on the underling mechanism of stress. For example,
while usually promoting autophagy, treatment with GLP-1
analogs in a high fructose fed rat model resulted in apparent
inhibition of β-cell autophagy, and increase in β-cell mass and
function (95). The underlying mechanisms and downstream
molecular mediators through which GLP-1 influences autophagy
remain to be better characterized.

Recently, several studies have significantly improved our
understanding of the regulation of β-cell energy metabolism by
chronic GLP-1R activation. Notably, acute vs. chronic effects
of receptor activation and downstream cAMP signaling leads
to two distinct waves of gene expression regulation in primary
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islet cells. The initial wave of gene expression occurs as rapidly
as 2 h after cAMP elevation upon acute receptor activation,
and is mediated by CREB. Sixteen hours from the initial
stimulation, a second wave of gene expression regulation takes
place, and is orchestrated by Hypoxia-inducible factor 1 (HIF-
1), a transcriptional factor that targets genes involved with
glucose uptake and glycolysis (21). Van de Velde et al. reported
that chronic GLP-1R activation led to metabolic reprogramming
marked by increased ATP production and upregulation of
glycolytic enzymes, occurring as a result of late activation of
subunit alpha of HIF-1 (HIF-1α) downstream of mTOR. This
finding is consistent with a recent study demonstrating that
depletion of HIF-1α or inhibition of mTOR impaired the effects
of GLP-1R signaling on glycolysis (18). Whilst it is known
that the Phosphoinositide 3-kinase (PI3K) /AKT (Protein kinase
B) /mTOR axis is intimately linked to metabolic functions
such as protein synthesis, glucose uptake, ATP production,
nutrient transport, autophagy and cellular growth (96, 97), recent
publications have identified novel effects of chronic GLP-1R
stimulation which impact these pathways. For instance, GLP-
1R agonists have been reported to promote secretion of insulin
like growth factor-2 (IGF-2), and induced expression of its
receptor (IGF1-R), which once stimulated activate downstream
cascades including the PI3K/AKT as well as the cellular growth
and proliferative mitogen-activated protein kinase (MAPK)
pathway (19, 20, 98). The biosynthesis, secretion and subsequent
activation of the IGF-2/IGF-1R autocrine loop is significantly
enhanced by the presence of glutamine, and has been reported
to protect β-cells against apoptosis, and increases β-cell glucose
competence (20, 98, 99). However, whilst this autocrine loop
stimulates PI3K/AKT activity and contribute to some of the pro-
survival abilities of GLP-1 in β-cells, it does not seem to mediate
the enhanced metabolic phenotype induced by chronic exposure
to GLP-1R agonism. Rowlands et al. demonstrated that neither
functional inactivation of IGF-2 nor silencing of its receptor
by siRNA could mitigate the observed metabolic adaptations
enacted by prolonged exposure to Exendin-4 (19). Thus, as the
mitochondria and ER form structural and functional networks,
the ability of GLP-1 to enhance metabolism may reduce ER
stress by enhancing mitochondrial derived ATP and Ca2+ for
utilization in the maintenance of ER homeostasis (46, 100, 101).
Through elevation of cytosolic and intra-mitochondrial Ca2+,
and mobilization of intracellular Ca2+, GLP-1 may mitigate
the required Ca2+ transfer from ER to mitochondria, thereby
sustaining mechanisms which facilitate protein folding (102–
104). Therefore, we hypothesize that metabolic reprogramming
in β-cells underlies the protective effects of GLP-1 under
various stress conditions. In this scenario, enhanced metabolism
can provide additional energy required to facilitate stress
response and pro-survival mechanisms utilized by β-cells during
challenging physiological conditions.

Although primarily studied in the pancreatic β-cell, the
beneficial effects of GLP-1 and its analogs have recently been
shown to be advantageous to a variety of tissues in several disease
pathologies, such as the heart, liver, lung, muscle, and brain, as
detailed below in the following sections. It remains to be clarified,
however, as to whether the metabolic and pro-survival responses

arising from chronic GLP-1R mediated signaling cascades are
relevant to extra-pancreatic tissues as well.

GLP-1 ACTION IN OTHER TISSUES

Skeletal Muscle
Beneficial actions of GLP-1 differ between, skeletal, smooth and
cardiac muscle, and again between the two subsets of smooth
muscle, single and multi-unit cells (gastrointestinal/urogenital
and vasculature cells, respectively) (105). Due to its ability to
act on numerous pathways that can regulate glycaemia, weight,
lipidmetabolism, and blood pressure (Figure 2) (1, 29), as further
outlined below, GLP-1R agonists, have been implicated and
implemented as a potential therapy to address the increasingly
prevalent pathologies associated with metabolic syndrome.

Studies assessing GLP-1’s extra-pancreatic effects, such as its
insulin-like actions, revealed that exposure of skeletal muscle to
GLP-1R agonists enhanced glycogen synthesis, glycogen synthase
α (GSα) activity, glucose metabolism and inhibited glycogen
phosphorylase α activity in diabetic and non-diabetic rodent
models, and human tissue (106–109). Interestingly, compelling
evidence suggests that such muscle effects are independent
of cAMP signaling. This was observed in rat and human
muscle cells, but also in studies conducted in hepatocytes and
adipocytes, potentially utilizing inositol phosphoglycans (IPGs)
as the intracellular second messenger (108, 110, 111). While
the amino acid sequence, same as that of the pancreatic GLP-
1R, has been identified in multiple tissues (112), these studies
identified that GLP-1 acted through a unique receptor distinct
from that of the β-cell, which allowed this deviation from the
canonical signaling of GLP-1. Whether this deviation from the
non-canonical effects of the GLP-1R inmuscle tissue are resultant
from alternative splicing, the widespread hetero dimerization of
B-family GPCRs, variations in ligand-receptor interactions or
GLP-1 degradation products still requires further investigation
(113–115).

To date, understanding of GLP-1 effects in skeletal muscle
has mostly stemmed from the laboratory of Villanuevea-
Penacarillo, who have revealed that GLP-1R agonists can induce
PI3K/PKB (Akt), P44/P42 MAPK, p70S6K, and Protein kinase
C (PKC) signaling pathways in skeletal muscle cells (116–119).
Corroborating this findings, similar results were obtained in
L6 myotubes and 3T3-adipocytes, that Exendin-4 promoted a
PI3K dependent increase in insulin-stimulated glucose uptake
(120). Other lines of evidence suggest that GLP-1R activation
promotes skeletal muscle glucose transport independent of
insulin through the AMPK signaling pathway and downstream
activation of TBC1D1, a paralog of the phosphorylated Akt
substrate AS160, thereby leading to translocation of GLUT4 to
the plasma membrane (121–124). Akt is the canonical mediator
of insulin-induced GLUT4 translocation. Although, it should be
noted that the difference in signaling pathways from these latest
studies may result from the extended duration of exposure to
the GLP-1R agonist (122, 123). Interestingly, two of the above
mentioned papers reported a rise in cAMP measured in muscle
cells, as well as an increase in PKA contributing to a favorable
metabolic phenotype in the studied muscle cells (121, 123). One

Frontiers in Endocrinology | www.frontiersin.org 5 November 2018 | Volume 9 | Article 672

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Rowlands et al. Pleiotropic Effects of GLP-1

FIGURE 2 | GLP-1 signaling across different muscle types. Multiple signal transduction pathways and their net impact arising from GLP-1R stimulation in skeletal,

cardiac, and both multi and single unit smooth muscle.

possible explanation for these findings may be that, as in neurons
and sperm, increases in cAMP could be a result of enhanced
Ca2+ or even calcium/calmodulin-dependent protein kinase II
activity which in turn can activate AC (125–128). While the
ability for GLP-1 to impact skeletal muscle in regards to glucose
catabolism and glycogen synthesis has been analyzed in depth,
further mechanistic studies are required to fully elucidate the role
for incretin hormones in regard to this tissue type.

Smooth Muscle and Vascular Tissue
Recent studies have described receptor dependent and
independent effects of GLP-1 in smooth muscle, whereby
exposure to physiological concentrations of acutely infused
GLP-1 can relax conduit arteries in healthy humans, and recruit
skeletal and cardiac muscle microvasculature. Dilatation of
microvessels can facilitate insulin and nutrient delivery, tissue
oxygenation, and glucose utilization (129, 130). This dilatory
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effect is believed to occur as a result of GLP-1 binding to the
abundantly expressed, endothelial cell GLP-1R, triggering a
downstream signaling cascade resulting in microvasculature
recruitment via a NO-dependent mechanism (129, 131, 132).
Additionally, the effect of the GLP-1 analog Liraglutide on
endothelial cells has been evaluated in cultured human umbilical
vein endothelial cells (HUVECS) to evaluate its impact on ER
stress and apoptosis induced following overnight exposure to
high glucose (133). The authors found that such treatment
reduced apoptosis and ER stress through a mechanism which
likely involves stimulation of the nuclear-encoded mitochondrial
protein optic atrophy protein 1 (OPA1). It appears that the
ability for GLP-1 to modulate mitochondrial metabolism is
not limited to the β-cells. Indeed Morales et al. (134) reported
that GLP-1 treatment stimulates mitochondrial activity in A7r6
vascular smooth muscle cells through recruitment of the ER to
the mitochondria via the tethering protein Mitofusin-2 (Mfn-2).
Enhanced Mfn-2 promotes ER-mitochondria co-localization
and increases Ca2+ transfer from ER to the mitochondria, thus
facilitating high demand for oxygen consumption and ATP
production.

Studies conducted in rodent models have shown that
stimulation of the GLP-1R led to changes in blood pressure (BP),
depending on experimental model (29, 135, 136). In humans, one
study reported an increase in BP over 2 h from healthy subjects
following a single administration of GLP-1 (136), while another
reported that chronic administration of GLP-1 analogs to patients
with metabolic syndrome led to a reduction in BP [reviewed in
(29, 137, 138)]. Such conflicting results may result from complex
actions of GLP-1 on vascular smooth muscle and cardiac tissues
in combination with its effects in the autonomic nervous system.
Altogether GLP-1’s multi-tissue actions can mediate alterations
in BP, vasodilation and constriction, body weight, and heart rate
(120). Nevertheless, the short- and long-term effects of GLP-1
on vascular smooth muscle are not completely understood and
thus require further examination to ensure GLP-1 therapies can
be utilized to their utmost potential.

Another mechanism by which GLP-1 therapies have been
utilized to attenuate or partially attenuate metabolic syndrome is
through their impact on diet and satiety (29, 130, 133, 139, 140).
Notably, GLP-1’s action on gastric emptying has been indicated to
be enacted by reduced contraction in human intestinal muscles,
and it occurs as a direct result of activation GLP-1R in the
gastrointestinal (GI) tract (140), rather than for its ability to
mitigate food motivated behavior through receptor activation
in the hypothalamus or the hindbrain (141). However, the
effects on gastric emptying appear to be short acting, since
clinical studies and animal models of chronic administration
of GLP-1R activators altogether suggest a negligible effect on
long-term gastric emptying. Instead, evidence suggests that
reduced weight gain occurs through direct actions on the
pancreas, as well as through reduction of appetite mediated
by central nervous system responses (141–143). Reducing the
rate of gastric emptying, however, does not just impact satiety,
but also delays the rate of entry of nutrients into the small
intestine and their subsequent absorption, which therefore
influence postprandial glucose metabolism, hormonal responses,

and ultimately enhances GLP-1’s anti-diabetogenic effects (144,
145). Slowing of small bowel motility was reported to occur in a
GLP-1R and nitric oxide (NO) dependentmanner, independently
of both somatostatin and insulin, in fasting but not fed rats (146).
Such effects have been reported in healthy (147), obese (148),
diabetic (149), and critically ill human subjects (150). While
gastric relaxation and postprandial gastric accommodation were
reported to be mediated by vagal cholinergic pathways (151–
153). Work by Amato et al. (154) validated these findings by
demonstrating that acute administration of GLP-1 activated the
GLP-1R in human colon cells and resulted in an inhibitory effect
on large intestine motility through release of neural NO.

Kidneys
A broad array of renoprotective properties have been reported
from GLP-1 therapies. Positive effects in the renal tissue were
observed both in diabetic and non-diabetic models of chronic
kidney disease (CKD), as well as acute kidney injury (AKI) (155–
160). Although not often considered as part of the metabolic
syndrome, accumulating evidence has begun unearthing a
link between the increasing morbidity and mortality rate in
patients with kidney disease and metabolic syndrome (156, 159,
161, 162). This entwinement of kidney disease and metabolic
syndrome complicates investigations with GLP-1 therapies due
to the indirect benefits GLP-1R agonist therapies have on other
tissues including but not limited to alterations in BP, glucose
homeostasis, weight loss and insulin levels [reviewed in (155,
156, 161, 163)]. Adding to this scenario is the lack of agreement
regarding the exact locality of GLP-1R expression in the kidney
(1, 164), although it is generally accepted that in humans
and rodents the GLP-1R is expressed in the renal vasculature
and afferent arterioles, with some studies reporting receptor
expression in the proximal tube and glomerular capillary, but
not in the distal tubules (155, 165–168). It is evident from
both clinical and animal studies that GLP-1 based therapies
are beneficial to kidney function through increases in renal
blood flow (RBF), urinary flow rate, prevention of rises in
plasma creatinine, reduced tubular necrosis, an increase in renal
interstitial fluids and glomerular filtration rate (GFR), as well as
cytoprotective and anti-inflammatory actions (160, 161, 164, 166,
169, 170).

GLP-1R agonists are believed to cause these effects in the
kidney through both direct kidney based GLP-1R activation,
and indirect receptor actions, potentially through interactions
with the nervous system (170), the renin angiotensin system
(RAS) (155, 171–173), and regulation of atrial natriuretic
peptide (ANP), a blood pressure and electrolyte regulator (173).
Regardless of this lack of consensus in terms of indirect kidney
responses to GLP-1 therapies, the direct actions of GLP-1R
activation in the renal tissue are consistent. Acute exposure
increases the diuretic and natriuretic excretion rate, which is
in part dependent on inhibition of NaHCO3 reabsorption via
a cAMP/PKA modulation of NHE3 (renal cortical Na+/H+

exchanger isotope 3) (166, 169). Furthering this, GLP-1’s
renal hemodynamic actions have been observed to alter GFR,
potentially to regulate the filtered electrolyte load and volume
(159, 174). In this sense, Exenatide acutely increased GFR
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and suppressed proximal tubular reabsorption in Wistar rats,
resulting in approximate doubled early distal flow rate (175).
Altogether these finding imply that Exenatide works as a diuretic
at the kidney level. Similar results have been recently reported in
humans (176).

Activation of the GLP-1R/cAMP/PKA pathway is also crucial
in renal protection, with studies in a range of rodent models
reporting a reduction in renal inflammation, renal fibrosis,
and decrease in renal oxidative stress arising from the toxic
milieu induced in metabolic syndrome (158, 161, 166, 177, 178).
These pro-survival abilities are believed to arise from enhanced
GLP-1 signaling leading to a reduced expression of the pro
apoptotic markers caspase-3, and Bax/Bcl-2 (158), as well as
reducing oxidative stress through increased expression of the
oxidative defense gene heme oxygenease-1 (HO-1) (160, 178),
and inhibition of NAD(P)H oxidase in a cAMP/PKA dependent
manner (166). Activation of the GLP-1R signaling pathway
has also been reported to reduce macrophage infiltration,
potentially alleviating the associated increase in ROS and
inflammation, as well as attenuating the progression of renal
fibrosis through downregulation of ERK1/2 and its upstream
activator transforming growth factor-beta 1 (TGF-β1) (160,
177). Despite these results, further studies are still required
to fully elucidate the molecular mechanisms that mediate the
reported attenuation in apoptotic and inflammatory pathways,
particularly as accumulating clinical evidence highlights the
potential of GLP-1R agonist therapies in DKD, ultimately urging
for deeper understanding of cellular actions of these analogs in
the renal tissue [reviewed in (156, 157, 159, 162, 179)].

Adipose Tissue
Although GLP-1 based therapies primarily aid weight loss
through satiety, their usefulness is further extended by
multiple studies implicating GLP-1R agonists as regulators of
adipogenesis. Studies have indicated that GLP-1 based therapies
can potentially influence whole body energy metabolism through
their regulation of adipocyte development, acceleration of
plasma clearance of glucose and triacylglycerol derived fatty
acids, improvement of insulin signaling and stimulation of
brown adipose tissue (BAT) thermogenesis (31, 142, 180–
184). The GLP-1R in adipocytes was reported to activate the
AC/cAMP signaling pathway, regulating apoptosis and pre-
adipocyte proliferation through various cell signaling cascades
including ERK, PKC and AKT, as well-altering the expression
of peroxisome proliferator-activated receptor gamma (PPARγ)
and its target genes (142, 185). GLP-1 may also act through a
brain-adipocyte axis to modulate lipid metabolism in BAT, as
well as white adipose tissue (WAT). In various rodent models,
administration of GLP-1R agonists induced BAT thermogenesis
through increased uncoupling protein 1 (UCP1), mitochondrial
respiratory chain element Cox4i1 (Cytochrome C Oxidase
Subunit 4I1) and PGC1α, independent of nutrient intake, as well
as altering the expression of transcription factors involved in de
novo lipogenesis (123, 181, 186). Interestingly, GLP-1 has also
been shown to activate Adipose-resident invariant natural killer
T (iNKT) cells, triggering fibroblast growth factor 21 (FGF21), a
major player in iNKT cell induced weight loss (187).

While still in its infancy, and convoluted by the various
interconnected pathways, studies investigating the effects of GLP-
1 therapies in the adipose tissue of patients with obesity show
promise, with trials replicating in vitro studies, and indicating
a potential long term benefit of GLP-1R agonists therapies also
in this important tissue. Deeper studies into the underlying
mechanisms are warranted in order to specifically identify direct
actions of GLP-1 agonists in BAT and WAT physiology and lipid
metabolism.

Heart
Given that both T2D and obesity represent important risk
factors for cardiovascular disease (CVD), there is emerging
interest to establish the potential cardiovascular benefits of
GLP-1R stimulation. Even though the positive effects of GLP-
1 analog therapies on the metabolic conditions described
above could theoretically improve CVD outcomes, mounting
evidence points that GLP-1 can also influence the cardiac
tissue through direct receptor mediated responses. Indeed, it
is recognized that the classical response initiated by GLP-
1R activation leads to facilitation of cardiac function through
enhanced glucose uptake, improved coronary flow, and in
mice, secretion of atrial natriuretic peptide (ANP), a blood
pressure and electrolyte regulator (163, 173, 188). However,
studies to define the mechanism through which GLP-1 directly
influences cardiac tissue are complicated by its broad actions
in other tissues, such as blood vessels. For instance, a study
conducted by Mells et al. (189) indicated that liraglutide
treatment was able to reverse BP increases and cardiac
hypotrophy resulting from a high fat diet (HFD) induced
obese mouse model. The study, however, did not dwell further
into the underlying mechanisms, making it particularly difficult
to distinguish between the direct effects of the treatment
in the cardiac muscle from those emanating from other
tissues. Recent data published by the Drucker Laboratory
and colleagues have indicated that some of the contrasting
results of GLP-1 on the cardiovascular system in regards
to both increasing and decreasing heart rates, and BP, are
partially mediated by neurological signaling (120). Remarkably,
in studies where the GLP-1R was conditionally disrupted
only in mice cardiomyocytes (GLP-1RCM−/−), pre-treatment
with liraglutide could still promote cardioprotection, increased
survival and reduced infarct size following ischemia-reperfusion
injury, suggesting these outcomes are not mediated directly
by cardiomyocyte GLP-1R activity (190). Glucagon-like peptide
(GLP)-1 (9–36) amide-mediated cytoprotection in ischemic-
perfused mice was blocked by the GLP-1R antagonist exendin-
9–39 but did not require the known GLP-1 receptor (190–193).
Thus, the direct and indirect mechanisms which underpin the
beneficial effects of GLP-1R agonism on cardiac injury remain to
be clarified.

In an effort to address these gaps in knowledge, multiple
groups have endeavored to define the role of GLP-1, its analogs,
and related peptides (11, 194), in protecting cardiomyocytes and
endothelial cells from injury. Indeed, GLP-1R activation leads
to the re-establishment of ER homoeostasis, cytoprotection, and
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restoration of signaling pathways disrupted by diverse stress
stimuli (139, 191, 192, 195). For example, liraglutide treatment
corrected the decreases in eNOS, the endothelial nitric oxide
synthase, responsible for most of the vascular nitric oxide
production in a HFDmodel of cardiac dysfunction in mice (195).
This is of particular importance as NO is crucial in a pathway
that regulates the synthesis of the ubiquitous intracellular second-
messenger cyclic guanosine 3′,5′-monophosphate (cGMP). It
has been reported that cGMP can activate two types of
effector molecules in cardiovascular system, cGMP-dependent
protein kinases (PKGs) and phosphodiesterases (PDE), which
can stimulate cellular proliferation, mediate vaso-relaxation,
and inhibit hypertrophy (196). Importantly, the effects in
eNOS were accompanied by significant decreases in cardiac
tissue TNF expression and NFκB activation (195). These
effects were confirmed to be direct actions of the GLP-1R
agonist in heart and vascular tissues since liraglutide also
prevented palmitate-induced lipotoxicity in isolated mouse
cardiomyocytes and primary human coronary smooth muscle
cells in vitro. Together these data indicate that GLP-1R
activation can activate multiple complementary protective and
pro-survival mechanisms in cardiac cells, and endothelial
cells. These findings are further supported by larger animal
trials in which GLP-1 induced reduction in infarct size after
ischemia-reperfusion (IR) injury (197), improved left ventricular
function, and altered heart rate and BP when infused into
dogs with pacing-induced cardiomyopathy (198). Furthermore,
GLP-1 is hypothesized to activate ischemic conditioning
(IC) through reperfusion injury survival kinase (RISK) and
survivor-activating factor enhancement (SAFE) pathways (199,
200). Activation of this conditioning pathway post GLP-1R
stimulation has been shown to reduce infarct size, improve
cardiac function and enhance AKT activation and Bcl-2, an
important anti-apoptotic protein, expression after IR injury in
pigs (201). IC is interconnected with the mitochondrial K-
ATP channel (mK-ATP) (202, 203) as well as the ATP derived
metabolite adenosine, which activates the adenosine receptor
and its signaling pathway leading to ischemic preconditioning
(193, 204, 205). Although still unclear, the role of GLP-1R
signaling cascades in the activation of conditioning pathways
may include hijacking these subcellular pathways. Furthering
this, the GLP-1 mediated relaxation of ex vivo rat aorta
described by Green et al. (194), was lost upon K-ATP channel
blockage, indicating a link between GLP-1R activation induced
IC.

Initial human trials mimicked cellular and animal model
studies, with GLP-1 therapies improving left ventricular (LV)
function in patients with acute myocardial infraction (AMI)
and serve systolic dysfunction (206). The promising results
of this pilot study were followed in 2006 by an additional
study demonstrating that chronic GLP-1 infusion over 5 weeks
can improve LV function and quality of life in diabetic
and non-diabetic participants (207). As these improvements
were seen in both diabetic and non-diabetic groups, glycemic
control in the GLP-1 treated group was deemed not to be a
contributing factor to the beneficial effects. Since these early
studies, treatment with GLP-1 analogs has been noted to improve

hemodynamic recovery in patients undergoing coronary artery
bypass grafting (208), protect against ischemic LV dysfunction
(209), prevent hyperglycemia during cardiac surgery (210) and
reduce reperfusion injury (211–213). Finally, data from recent
large scale cardiovascular outcomes in T2DM trials revealed
a significant reduction in cardiovascular death rates in GLP-1
analog treated patients (214, 215). Research into GLP-1 therapies
on cardiac tissue continues to represent an expanding field,
with the potential for a broad range of therapeutic applications
beyond cardiovascular outcomes to be realized through an
understanding of the underlying mechanism of action.

Liver
Of the body’s organs, levels of GLP-1 are recognized to be
highest in the liver owing to transport of the incretin through
the hepatic portal vein. The therapeutic effect of GLP-1 and
its analogs on restoring hepatic function impaired by a variety
of insults is supported by in vivo and in vitro studies (27,
216). Changes induced from GLP-1 or its analogs, in the liver,
regulate a variety of processes including, hepatic gluconeogenesis,
glycogen synthesis, and glycolysis (Figure 3) (1, 216, 217).
In rodent models, GLP-1R agonist based therapies have been
reported to increase both glycogen and glycogen synthetase
α, through PI3K, PKC, PP-1 (type 1 protein phosphatase),
pathways in isolated hepatocytes (218), as well as acting in an
insulin-like manner to inhibit glucagon-induced glycogenolysis
in perivenous hepatocytes (219). While the presence of the
GLP-1R is still controversial in hepatocytes, GLP-1R expression
at the protein level has indeed been reported in transformed
human hepatocyte cell lines, HuH7 and Hep-G2, as well as
primary human hepatocytes (220). However, regardless of the
presence of the receptor in hepatocytes, direct receptor-ligand
mediated actions in the liver remain controversial with some
research groups proposing that observed benefits are a result
of receptor independent events (221–225). Mechanisms may
include GLP-1 degradation products GLP-19−36, GLP-128−36

or GLP-132−36 which may be transported through the plasma
membrane without the involvement of a receptor, and activate
AC and Wnt signaling [reviewed in (226)].

To date, studies in animals and humans have provided
evidence for the potential of Liraglutide to improve
hyperlipidemia, liver fibrosis and inflammation, non-alcoholic
fatty liver disease (NAFLD), as well as reduce liver fat content in
T2DM patients (227–230). Acute exposure of Sprague Dawley
(SD) rats to GLP-1R activators controlled hepatic glucose
production (HGP) through a gut-brain-liver neuronal axis,
discussed later, involving GLP-1R stimulated duodenal mucosal
PKC-δ activation (231). In this context, Exendin-4 was found
to inhibit key gluconeogenic enzymes and enhance hepatic
insulin signaling. Exendin-4 was also reported to improve
hepatic steatosis and insulin sensitivity in ob/ob mice, which was
paralleled by reduction in oxidative stress and genes associated
with fatty acid synthesis (232). Female APOE∗3-Leiden.CETP
mice, a model with human-like lipoprotein metabolism, were
fed a cholesterol-containing diet and subsequently treated
for 4 weeks with exendin-4. Utilizing a mouse model with
human-like lipoprotein metabolism and western-type diet for 5
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FIGURE 3 | Active GLP-1 and its truncated products signaling in the liver. Active GLP-1 and its cAMP dependent pathways (solid arrows), as well as hypothesized

(dashed arrows) truncated product induced signaling and their respective net effects.

weeks to induce atherosclerosis, Exendin-4 treatment reduced
inflammation within the liver and vessel well (233). Use of
Exendin-4 in this mouse model limited the progression of
hepatic inflammation and atherosclerosis through a reduction
in macrophage influx and adhesion to the liver and vessel
wall. These findings are further supported by a study revealing
that GLP-1 analogs impact the production of triglyceride-rich
lipoproteins in normoglycaemic men (234).

The hepatic actions of GLP-1 may be mediated through signal
transduction of the AMPK/mTOR pathway. This was reported
in a study showing that improvement of hepatocyte steatosis by
liraglutide involves autophagy and its controlling AMPK/mTOR
pathways (235). By inducing autophagy, GLP-1 therapies can
relief the burden in the ER, reduce ER-stress, and subsequent
hepatocyte apoptosis (236). Understanding the impact of GLP-1
treatments on the liver is crucial, as perturbations to both cellular
lipid and very-low-density lipoprotein (VLDL) metabolism are
associated with development of hepatic insulin resistance, obesity
and diabetes. Recently, chronic stimulation of the GLP-1R
led to increases in the mitochondrial uncoupling protein 2
(UCP2), an anti-mitochondrial oxidative stress gene, and the
master mitochondrial biogenesis regulator and protective gene,
peroxisome proliferator activated receptor-gamma coactivator
1α (PGC-1α) (237). Such gene expression changes were
hypothesized to be mediated through downregulation of the
microRNA-23 and result in improved hepatocyte survival
through reduction in mitochondrial ROS production, inhibition
of P38 activity, and decrease in expression of apoptotic genes
Bak and Bax (237, 238). Combined with previous knowledge
that PGC-1α and UPC2, play critical roles in mitochondrial
metabolism (239), these data provide additional support for the
hypothesis that the improved metabolism resultant fromGLP-1R
stimulation underlies the pro-survival abilities of GLP-1 signaling
pathways.

Brain
GLP-1 and its receptor agonists are able to influence
a variety of brain functions, including but not limited
to: satiety, thermogenesis, blood pressure, neurogenesis,

neurodegeneration, retinal repair, and altering energy
homeostasis (Figure 4) (26, 30, 240–245). The GLP-1R is
expressed in cells of the cerebral cortex, hypothalamus,
hippocampus, thalamus, substantia nigra, circumventricular
organ (CVO), cerebellum, and brainstem nucleus. This pattern
of gene expression in the nervous system is evident in rodent,
non-human primates, as well as humans (26, 241, 242, 244, 246–
248). Studies with mice have identified the source of GLP-1
to derive from preproglucagon neurons of the nucleus of the
solitary tract within the brainstem (249). These neurons project
to the thalamus, hypothalamus and cortical regions, and induce
the release of GLP-1 by various stimuli in a mechanism similar to
L-cells of the small intestine (30, 31, 240, 243). Gut-derived GLP-
1 can cross the blood brain barrier (BBB) and bind receptors in
the circumventricular organs of the brainstem, however its short
half-life is believed to limit its function within the brain. Instead,
it most likely influence the brain indirectly, through vagal
nerve fibers in the enteric area, whereby it transmits metabolic
information to the nucleus of the solitary tract (NTS)—neurons
responsible to control brain regions known to mediate feeding
behavior (250). Recent research has revealed that GLP-1 analogs,
due to their extended half-lives, can reach the BBB and have
distinct effects to endogenous GLP-1 in the brain (26, 250).
These effects include the well-investigated anorexigenic effects,
outlined below, as well as a range of neuroprotective abilities that
have led to the use of GLP-1R agonists as therapies in human
trials for a range of neurodegenerative diseases as discussed in
detail further below.

Studies in rats using intracerebroventicular (icv)
administration of GLP-1 or its analog Exendin-4, alone or
in combination with the receptor antagonist Exendin (9–39),
have shown that activation of the GLP-1R inhibits food intake
and weight gain; such effects are attributed to changes in brain
controlled hormone secretion (251–254). Similar findings have
been recapitulated in studies of obesity in humans, and have
highlighted GLP-1 based therapies as potential anti-obesity
treatments. The role for GLP-1 signaling in satiety is understood
to be a consequence of GLP-1R signaling attenuating the
release of the orexigenic neuropeptides Neuropeptide Y (NPY)
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FIGURE 4 | Pleiotropic effects of GLP-1 signaling in the brain. GLP-1 and its analogs activate diverse signaling pathways in the brain, leading to a plethora of

neuroprotective outcomes.

and agouti-related peptide (AgRP), as well as promoting the
anorexigenic neuropeptides pro-opiomelanocortin (POMC)
and cocaine- and amphetamine-regulated transcript (CART)
(250, 254–256). These neuropeptides are produced by arcuate
nucleus of the hypothalamus (ARC), a critical regulator of
energy balance, feeding behavior, and body weight (257, 258).
GLP-1 is believed to alter food intake through this pathway,
with an acute receptor induced modulation of AMPK activity in
the hypothalamus. Secher et al. (259), supports these findings,
but also discovered that while the GLP-1 analog Liraglutide
directly stimulates POMC/CART neurons, it indirectly inhibits
NPY/AgRP neurotransmission via GABA-dependent signaling.
This liraglutide induced weight loss, altered food intake and
conditioned taste aversion occurs through CNS receptors rather
than the vagus nerve, area postrema, paraventricular nucleus,
or visceral nerves (259, 260). Novel data has recently surfaced
proposing that activation of astrocyte GLP-1Rs may play a role in
energy balance in the CNS and GLP-1s anorectic effect, although
the mechanics underlying this new finding still require deeper
investigation (261). Furthermore, native GLP-1 infusions in the
CNS, have been shown to modulate thermogenesis of BAT, via
enhanced sympathetic nervous system (SNS) activity (183). Both
chronic and acute CNS infused GLP-1 promoted BAT activation
and subsequently glucose and triglyceride uptake, via activation
of AMPK in the hypothalamic ventromedial nucleus in rodents

(181, 182). GLP-1 is also able to upregulate alternatively activated
(M2) macrophage-related molecules in human monocyte-
derived macrophages (HMDM). This M2 macrophage activation
enhanced production of anti-inflammatory factors was also
found noted to enhance adiponectin secretion from adipocytes
and derived from GLP-1 induced activation of the activator
of transcription 3 (STAT3) which can further contribute to its
protective abilities against metabolic syndrome (262). More
recently, GLP-1 and its analogs have been shown to act in
the dorsal raphe, whereby GLP-1R activation alters serotonin
turnover and the 5-hydroxytryptamine 2A (5-HT2A) and 5-
HT2c serotonin receptors in rats (263). Dorsal Raphe GLP-1R
stimulation induces hypophagia and increases the electrical
activity of the serotonin neurons in this region, indicating that
serotonin may be a new neural substrate for GLP-1 activity
and aid GLP-1s ability to reduce appetite, and body weight
through bioenergetics metabolism (263). Whilst the ability
of GLP-1 and its analogs to stimulate serotonin receptors
in humans has yet to be tested, various studies have employed
neuroimaging techniques, such as functional magnetic resonance
imaging (fMRI) to assess GLP-1 actions in human brain. These
studies recapitulated animal studies, where infusion of GLP-1
analogs was found to; attenuate neuronal activity in reward
processing areas, reduce appetite and hedonic feeding in
healthy volunteers (264), as well as obese and T2DM patients
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(265, 266). Whilst weight loss as a result of GLP-1 therapies
in humans is believed to be primarily resultant from their
inhibitory effect on food intake; distinct neuronal responses
should be taken into account when investigating the effects of
GLP-1 in neurodegenerative diseases. Chronic inflammation
of the brain is a known pathophysiological hallmark of various
neurodegenerative diseases, including Alzheimer’s disease
(AD), multiple sclerosis (MS), and Parkinson’s disease (PD), all
demonstrated in animal models to benefit from GLP-1 mimetics
therapy (14, 26, 30).

Mental illnesses and neurodegenerative diseases not only
negatively impact on a patient’s quality of life through their
impairment of motor functions, they can enhance dementia
and depression, which are often refractory to treatment (267).
This resistance to treatment may be influenced by accumulating
evidence that implicates a link between neural inflammation and
the pathology of depression (268, 269). In addition, analysis of
patients with psychiatric illnesses has revealed an alteration to
crucial intracellular signaling pathways including the AKT/GSK-
3 (glycogen synthase kinase) pathway (269, 270). This data
along with observation that GLP-1R signaling enhanced levels
of serotonin, dopamine (DA), and their receptors (263, 271),
has potentiated the use of GLP-1R agonists as a management
strategy for mental illness and neurodegenerative diseases. While
initial in vitro studies have begun to reveal the mechanistic effects
of GLP-1 in regards to neurodegenerative diseases, as outlined
further below, both animal and human trials have already taken
advantage of GLP-1’s beneficial actions. Several animal studies
have been undertaken with two studies showing that chronic
treatment in rats is associated with reversal of depression-like
behavior and acute treatment induced anxiety-like behavior
(270, 272), while an alternate study indicated no GLP-1 induced
changes in either behavior (273). Such contrasting results raise
caution in the design and implementation of human trials which
evaluate the therapeutic effects of GLP-1 and its analogies in the
treatment of neurodegenerative diseases.

Although several recent studies have begun to elucidate
the impact of GLP-1 analog therapies on the progress of
neurodegenerative disorders, no human clinical trials have
directly measured the impact of GLP-1 analog therapies on
mental health disorders. Despite this, several trials using GLP-
1 analogs for T2DM have a battery of neuropsychological
tests as secondary outcome measures that may provide insights
into GLP-1’s impact on mental illness (274). Whilst many
studies are still underway, only one recent clinical study
analyzing the effect of the liraglutide analog in regards to
Alzheimer’s disease has been reported (NCT01469351) (275),
and two clinical trials and one population based nested case-
control study assessing Parkinson’s Disease and GLP-1R activity
(NCT01971242, NCT01174810) (28, 267, 276–278). Findings
from the AD study in Denmark indicated that GLP-1 analog
treatment caused a slight, but non-significant increase in cerebral
glucose metabolism (CMRglc) after 6 months of treatment (275).
As a decline of CMRglc correlates with cognitive impairment,
synaptic dysfunction and evolution of the disease, GLP-1’s slight
reduction as noted in this study offers a potential mechanism
of benefit. However, a large gap in regards to AD and GLP-1

based therapies remains, since the small sample size of the
study precluded the ability for the study to determine if GLP-1
administration reduces amyloid β (Aβ) load or alter cognitive
scores (275). Nevertheless, in PD, an initial study into GLP-
1 analog therapy, published in 2013, assigned 45 patients with
moderate PD to receive subcutaneous Exenatide injections for
12 months alongside patient which did not receive any injection.
Despite lacking a placebo-control in this study, the blinded
ratings were indicative of clinical improvement in both motor
and cognitive measures compared to control (277, 278). This
study has since been expanded with a Swedish group assessing
the effects of both GLP-1R agonists and DPP-4 inhibitors, and
a UK based study opting for once weekly Exenatide treatments.
The Swedish study, through use of a population-based nested
case-control study, found a significantly decreased incidence of
PD among individuals who had been recorded to take DPP-
4 inhibitors (276). This is in contrast to the UK based studies
(NCT01971242 and NCT01971242) which noted a positive and
persistent effect of Exenatide treatment in off-medication motor
scores (267).

Given the promising results from clinical trials, an
understanding the mechanisms underlying GLP-1 mimetic
actions on normal and diseased neural tissue would be invaluable.
Neurodegenerative diseases share several pathological features,
including but not limited to, synaptic loss and failure, reduced
neurogenesis, enhanced free radical production, and cell death
[reviewed in (279–282)]. The accumulation of misfolded
proteins, common in neurodegeneration, impairs cellular
communication and function, and causes the activation of
neuronal inflammatory responses by activation of glial cells
(microglia and astrocytes). Although such neuroinflammatory
responses initially maintain homeostasis, chronic activation
leads to increased severity of the disease state (283–285).
Fortunately, GLP-1 effects in the brain are reminiscent of its
actions on pancreatic β-cells, signaling through GLP-1R to
initiate anti-inflammatory, anti-apoptotic and pro-survival
effects (250, 286, 287).

The pro-survival effects of GLP-1 on neurons are attributable
to the reduction of ER-stress and enhanced autophagy in
neural cells. Studies by Panagaki et al. (288) as well as Chen
et al. (289) reported that liraglutide enhanced AKT signaling
and STAT3 activation, resulting in reduced apoptosis. These
effects can also arise from activation of GLP-1R in astrocytes
and microglia (290), which when triggered can reduce the
levels of pro-inflammatory cytokines such as TNF-α and IL-1β
in different models of brain inflammation (290–293). In PD,
chronic activation of microglia can trigger polarization toward
the cytotoxic M1 macrophages, leading to a self–perpetuating
persistent inflammatory environment (294, 295), considered to
be amajor factor in driving dopaminergic degeneration (267, 296,
297). Use of Exenetide has been reported to halt dopaminergic
degeneration and restore dopamine (DA) imbalance induced
by 6-OHDA, MPTP, and Lipopolysaccharide in animal toxin
models (271, 287, 298). Although mechanism of action through
which GLP-1 stimulates microglial function in regards to
chronic inflammation remain unclear, several studies point
to NF-κB activation achieved through DPP-IV inhibitors in
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rotenone induced rodent PD models. Increased levels of NF-κB
are observed in tyrosine hydroxylase (TH) and dopaminergic
neurons, astrocytes and microglia, with implications on the
pathogenesis of PD; while inhibition of NF-κB is correlated
with neuroprotective effects in such PD models (299, 300).
Since GLP-1 signaling activates AKT, one plausible explanation
for its therapeutic effect in PD to reduce glial inflammation is
through this increased activity in order to elevate levels of the
Inhibitor of NF-κB (IκBα), ultimately leading to a reduction in
neuroinflammation (26, 301).

Extending from these findings, GLP-1 mimetics can also
act upstream of chronic neuronal inflammatory responses in
cells by ameliorating the accumulation of misfolded proteins.
The accumulation of misfolded proteins can occur through
dysregulation of key cellular process, which in turn adversely
affects neuronal homeostasis (267, 302–305). GSK-3 α/β isoforms
are an example of constitutively active key regulatory enzymes,
which when recruited and activated, by α-Synuclein (α-Syn)
(a key mediator of PD), leads to hyperphosphorylation of Tau
and subsequent increased accumulation of amyloid aggregates
(306–309). Several in vivo and in vitro studies have showed that
GLP-1 administration can protect neurons from Aβ aggregation,
advanced glycation end products (AGEs) insult, and reduce tau
hyperphosphorylation through regulation of GSK-3β signaling.
The proposed mechanism of action of GLP-1 is believed to occur
through activation the PI3K/AKT signaling pathway, leading
to phosphorylation and deactivation of GSK-3β amino-terminal
serine residue (271, 302, 310, 311). As previously indicated,
GLP-1R activation may reduce protein aggregation through
autophagic clearance, however a study by Yuan et al. (312) in
2015, indicated that rotenone induced alterations to autophagy
and α-Syn clearance, are mediated by Ca2+/AKT/GSK-3β
signaling pathway. Particularly, the authors reported that
rotenone treatment of PC12 cells (derived from a tumor of
the rat adrenal medulla) increased intra-cellular Ca2+ which,
in turn, induce aggregation and phosphorylation of α-Syn and
impair autophagy. While the hypothesis that raised intracellular
Ca2+ promotes aggregation α-Syn is supported by previous work
(313), the claim that rotenone induced alterations to autophagy
and α-Syn, are mediated by Ca2+/GSK-3β signaling pathway
may be an oversimplified statement, but nonetheless, reveals an
additional mechanism by which GLP-1R signaling can alleviate
protein aggregation. As Ca2+ is a second messenger in the cell,
inappropriate fluctuations would undoubtedly impact autophagy
and protein aggregation, and through the use of rotenone,
an inhibitor of mitochondrial complex I, leads to elevation of
intracellular Ca2+ through inhibition of resting background K+

currents, membrane depolarization, and VDCC opening, This
would in turn impact ATP production, inhibit AC activity, down
regulate cAMP signaling, and disrupt mitochondrial membrane
potential (314, 315). Changes in cellular ATP, and mitochondrial
stability, induced by protein aggregation would not only promote
apoptosis, but increase cellular ROS, and oxidative stress, all of
which act together to contribute to the destabilization of ER
homeostasis and autophagy in neurodegenerative diseases (314,
316–319). GLP-1R activation can act to mitigate the deleterious
effects of overloaded intracellular Ca2+, as mentioned before,

through the cAMP/PKA/EPAC pathways and is thought to be
an integral mechanism in the prevention of spatial memory and
hippocampal synaptic plasticity impairments arising from Aβ-
induced toxicity (43, 320, 321). The GLP-1 mediated regulation
of Ca2+ is also coupled to restoration of insulin signaling
throughout the brain, which can further promote its pro-survival
abilities. This is crucial as impaired insulin signaling in AD and
PD patients has been reported to negatively impact dendritic
sprouting, neuronal stem cell growth and tissue repair (322–324).

Within the brain, endogenous, brain derived GLP-1 can
promote insulin release (325, 326), thereby potentially increasing
the expression of the internalized IR and IGF-1R in AD patients.
Such a mechanism has recently been reported to restore IR
signaling deficits through decreases of the c-Jun N-terminal
kinase (JNK) signaling in symptomatic (?) T2Dmice (326). These
studies are furthered in rodent models whereby both chronic
and acute treatments of liraglutide have been shown to protect
against Aβ-induced impairment of memory and spatial learning
in rats (315), as well as prevent memory impairment, reduce β-
amyloid plaque, and plaque induced chronic inflammation in
the APP/PS1 AD mice model (315, 327). AD rodent models
chronically treated with the GLP-1 analog Val(8)glucagon-
like peptide-1 caused modulation of neurotransmitter release,
synaptic transmission (LTP) formation, and restoration of
synaptic plasticity, as well as preventing impairment in the
learning of new spatial tasks (328–330). Restoration of IR
signaling, acts synergistically with GLP-1 signaling, modulating
autophagy, oxidative stress, protein synthesis, apoptosis, and
mitochondrial biogenesis (331, 332). GLP-1’s oxidative stress
protective mechanisms are indicated to be ameliorated in
primary cortical neurons by GLP-1/CREB signaling inducing
expression of apurinic/apryimidinic endonuclease 1 (APE1),
a key enzyme of the base excision DNA repair (BER)
pathway (333), while also impacting protein aggregation induced
neurotoxicity through enhanced mitochondrial function. This
has been indicated to occur through the deacetylase SIRT1
(334), its promotion of heat shock protein 70 (HSP70),
an augmenter of normal α-Sync folding (335), modulation
of PGC-1α, as well as activation of ADAM10, through
retinoic acid receptor β, leading to the reduction of plaque
formation (336).

It is evident that the mechanism through which GLP-
1 stimulates pro-survival signaling, reduces neural tissue
inflammation and improves cognitive function is complex.
However, by defining cell-type specific signaling pathways in
neural cells, it may be possible to develop distinct treatment
strategies that uniquely modulate GLP-1 signaling in mental
illness as well as neurodegenerative diseases.

CONCLUSIONS

GLP-1 promotes glycemic control through a plethora of widely
recognized physiological mechanisms. Among them, stimulation
of insulin secretion and inhibition of glucagon release directly
improve postprandial glucose homeostasis, while inhibition of
gastric emptying and food intake represent a longer term positive
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effect of limiting weight gain. Due to these properties, GLP-
1 therapies have been routinely and successfully used for the
treatment of T2D and obesity for more than a decade. Most
recent studies unveiled that GLP-1 analogs also act in the CNS
and various peripheral tissues to restore and maintain normal
cellular functions. This has been demonstrated in response to a
variety of distinct disease paradigms and physiological insults,
either through direct cell autonomous effects or through indirect
whole bodymetabolic improvements. In this review, we provided
a thorough description of the diverse roles for GLP-1R signaling
across multiple tissues, focusing in the downstream pathways

stimulated by acute and chronic activation of the receptor, and
discussed novel pleiotropic applications of GLP-1 mimetics in
the treatment of human disease. Continuing efforts to delineate
tissue specific mechanisms of GLP-1 action are necessary in
order to identify novel translational alternatives and foster the
development of new GLP-1-based therapeutic agents harnessing

different aspects of GLP-1 biology with therapeutic potential not
only for T2D and obesity, but also for heart, liver, kidney, lung
and brain related disorders.
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