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Pleiotropic genetic architecture and novel
loci for C-reactive protein levels

Fotios Koskeridis 1 , Evangelos Evangelou1,2,3, Saredo Said4, Joseph J. Boyle5,
Paul Elliott 3,6,7, Abbas Dehghan 3,6,7 & Ioanna Tzoulaki 1,2,3,6,7

C-reactive protein is involved in a plethora of pathophysiological conditions.
Many genetic loci associatedwith C-reactive protein are annotated to lipid and
glucose metabolism genes supporting common biological pathways between
inflammation and metabolic traits. To identify novel pleiotropic loci, we per-
form multi-trait analysis of genome-wide association studies on C-reactive
protein levels alongwith cardiometabolic traits, followed by a series of in silico
analyses including colocalization, phenome-wide association studies and
Mendelian randomization. We find 41 novel loci and 19 gene sets associated
with C-reactive protein with various pleiotropic effects. Additionally, 41 var-
iants colocalize between C-reactive protein and cardiometabolic risk factors
and 12 of them display unexpected discordant effects between the shared
traits which are translated into discordant associations with clinical outcomes
in subsequent phenome-wide association studies. Our findings provide
insights into shared mechanisms underlying inflammation and lipid metabo-
lism, representing potential preventive and therapeutic targets.

Metabolic and immune are evolutionarily conserved and function-
ally entangled systems whose interplay is believed to play a central
role in the pathophysiology of a wide spectrum of cardiovascular
diseases1. As a result, metabolic disturbances are commonly asso-
ciated with immune responses in relation to cardiovascular out-
comes. For example, high low-density lipoprotein (LDL) cholesterol
levels and their subsequent modification are involved in the chronic
inflammatory response of the vascular wall2. C-reactive protein
(CRP), amarker of systemic inflammation, is an acute phase reactant
secreted mainly by the liver and released in high concentrations in
blood as a protective response to harmful irritants such as patho-
gens or damaged tissue. Genetic and environmental determinants
of CRP levels have been widely studied as its levels have been
associated with a plethora of cardiometabolic phenotypes and its
causal role has been under investigation for years3.

Genome-wide association studies (GWAS) on CRP levels have
identified numerous, robustly associated, genetic loci associated with
CRP levels4 supporting a polygenic model for this trait. Several of the
identified CRP loci are annotated not only to inflammation-related
genes but also to lipid and glucose metabolism-related genes whereas
several have been identified as pleiotropic affecting both
phenotypes5,6 providing further evidence towards common biological
pathways between inflammation and cardiometabolic traits. A deeper
understanding of the interplay between inflammation and cardiovas-
cular risk factors is likely to highlight important disease pathways and
interventions with added clinical benefit.

Here, we investigate further the pleiotropic nature of the genetic
architecture of CRP in relation to cardiometabolic traits. We per-
formed a Multi-Trait Analysis of GWAS (MTAG) on CRP levels with
established cardiometabolic risk factors followedby a series of in silico
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analyses to identify novel pleiotropic genes, their tissue site of action,
and evidence for causal associations with a range of disease outcomes.
Ultimately, the study provides additional biological insights into low-
grade inflammation and highlights biological pathways that are likely
to link inflammation to different cardiometabolic diseases.

Results
Multi-trait GWAS and novel CRP genetic loci
A schematic overview of our study is shown in Fig. 1. We performed
multivariate MTAG between CRP and five cardiometabolic risk factors
including high-density lipoprotein (HDL) levels, low-density lipopro-
tein (LDL) levels, triglyceride (TG) levels, body mass index (BMI), and
cigarettes per day (CPD), as well as bivariate MTAG between CRP and
each cardiometabolic trait separately. Multivariate MTAG identified
797 independent signals in 283 genetic loci associated with CRP at
genome-wide significance (GWS) level (P < 5 × 10−8) [Supplementary
Data 1, 2, Fig. 2]. For the remaining traits, we found 549 independent
signals (185 loci) for HDL, 527 (144) for LDL, 534 (173) for TG, 1,552
(740) for BMI, and 108 (62) for CPD [Supplementary Data 3, Fig. 2]. Of
the 797 CRP SNPs, 295 (151 loci) were associated with at least another
examined trait (P < 5 × 10−8), and 8 of them (8 loci) with at least 4 of the
5 examined traits [Supplementary Data 4, Supplementary Fig. 1].

The bivariate MTAG between CRP and each of the examined risk
factors identified 41 additional loci for CRP (Supplementary Data 5).
The 324 CRP loci (283 frommultivariate plus 41 from bivariate MTAG)
corresponded to 41 novel genomic loci for CRP (Table 1, Supplemen-
tary Figs. 2, 3). The strongest novel CRP locus was in the LPL gene

(rs35237252, P = 5.1 × 10−20) that encodes lipoprotein lipase which is
expressed in heart, muscle, and adipose tissue7.

Functional annotation and pathway enrichment
We used ANNOtate VARiation (ANNOVAR)8 and multi-marker analysis
of genomic annotation (MAGMA)9 through the Functional Mapping
and Annotation of GWAS (FUMA)10 pipeline to functionally annotate
and biologically interpret the MTAG results. In total, ANNOVAR and
MAGMA highlighted 1816 genes associated with CRP levels (Supple-
mentaryData 6). Of those, 1245geneswere also associatedwith at least
one of the other examined traits, and 23 of them were associated with
all six traits possibly indicating a wide pleiotropic effect (Supplemen-
tary Data 7, Supplementary Fig. 4).

MAGMA gene-set analysis highlighted 19 CRP-associated gene-
sets (P < 3.2 × 10−6) with various pleiotropic effects (Supplementary
Data 8). In particular, the gene-set of nucleic acid binding was sig-
nificantly associated with CRP, HDL, LDL, TG, and BMI. CRP-mapped
genes were enriched for tissue expression showing higher expression
in the liver (P = 2.7 × 10−4), and pituitary (P = 1.3 × 10−3) (Supplementary
Data 9, Supplementary Fig. 5A), brain cerebellum (P = 2.7 × 10−5) and
brain cerebellar hemisphere (P = 1.1 × 10−4) (Supplementary Data 10,
Supplementary Fig. 5B).

Colocalization of CRP loci and investigation of pleiotropy
We used HyPrColoc to investigate colocalization between the MTAG-
reported 324 CRP loci and the five other traits examined in this study.
We found 102 colocalized loci between CRP and at least one other trait

Fig. 1 | Study design schematic for the discovery of novel CRP loci and inves-
tigation of pleiotropic loci. BMI Body mass index, CPD Cigarettes per day, CRP
C-reactive protein, HDL high-density lipoprotein, LDL low-density lipoprotein, TG
triglycerides, ADHD attention deficit hyperactivity disorder, ASD autism spectrum

disorder, BD bipolar disease, MDDmajor depressive disorder, Schz schizophrenia,
BrCa breast cancer, PrCa prostate cancer, CAD coronary artery disease, MI myo-
cardial infarction, T2D type 2 diabetes, Gluc fasting glucose, Insl fasting insulin,
WHR waist-to-hip ratio, WC waist circumference.
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with a posterior probability (PP) > 0.8 (SupplementaryData 11). In 41 of
those loci, we prioritized a single candidate causal variant for the
colocalization (proportion of PP explained by variant ≥0.8) with 33 of
them being CRP top signals in MTAG. Out of those 33 colocalized CRP
top signals, 9 were also CRP novel signals (Table 2, Supplementary
Figs. 6, 7). The exonic variant rs1260326 mapping at the GCKR gene
colocalized with all six traits of interest (PP = 0.94) explaining 100% of
the PP of the shared association. Also, an intergenic variant upstream
(9 kb) from theCRP gene (rs2211320)was found to colocalizewithCRP,
HDL, LDL, TG, and CPD (PP =0.97) with 99.95% of the shared asso-
ciation explained by this SNP. Novel CRP-associated variants
rs34811474 (ANAPC4), rs10968576 (LINGO2), and rs879620 (ADCY9),
colocalizedwithHDL, BMI, andCPD, respectively. Of the 41 colocalized

variants, 12 hadadiscordant directionof effects between the examined
traits (MTAG P < 0.05) (Supplementary Data 12, Fig. 3). For those 12
variants, we further performed a phenome-wide association analysis
(PheWAS)11 in UK Biobank (UKB) to investigate possible discordant
effects in clinical outcomes as well (Supplementary Data 13, Fig. 4). Of
them, 7 variants (rs1260326, rs112875651 and rs1421085, rs117113213,
rs1800961, rs183130, rs429358) had discordant FDR significant asso-
ciations with various disease phenotypes. For example, rs1260326
(GCKR)whichwas associatedwith higherCRP andLDL levels, but lower
BMI in MTAG, was also associated with 28 diseases in PheWAS
including direct associations with disorders of lipid metabolism
(P = 2 × 10−22), gout (P = 3.9 × 10−18), and angina pectoris (P = 3.9 × 10−4)
and inverse associations with type 2 diabetes (P = 3.6 × 10−13),

Fig. 2 | Circular plotwithMTAG results between C-reactive protein levels, high-
density lipoprotein levels, low-density lipoprotein levels, triglyceride levels,
bodymass index and cigarettes per day. The inner part of the graph presents the
Manhattan plots of the genome-wide significant variants (P < 5 × 10−8) for each trait.
The middle part presents the trait-specific genomic risk regions. The outer part
presents the mapped genes of the CRP top signals which are either discovered as

novel loci (red color) or additionally associated with any of the other examined
traits. In the latter case, the colorful squares on the gene lines show the traits that
the gene is associated with. The exact summary statistics are presented in Sup-
plementary Data 1 and 3. BMI body mass index, CPD cigarettes per day, CRP
C-reactive protein, HDL high-density lipoprotein, LDL low-density lipoprotein, TG
triglycerides.

Article https://doi.org/10.1038/s41467-022-34688-6

Nature Communications |         (2022) 13:6939 3



cholelithiasis (P = 9.5 × 10−12), alcoholism (P = 1.8 × 10−4), and fasciitis
(P = 6.7 × 10−4). Another variant, rs1421085 (FTO) was associated with
27 diseases including direct associations with obesity (P = 5.6 × 10−39),
type 2 diabetes (P = 8.2 × 10−27), and hypertension (P = 6.4 × 10−9) and
inverse with breast cancer (P = 1 × 10−11), and fasciitis (P = 3.1 × 10−4).

Mendelian randomization
We performed two-sample Mendelian randomization (MR) analysis
to investigate the causality between CRP levels and a variety of
prespecified outcomes with potential biological connection with
CRP12. We used summary statistics generated from the multi-trait
MTAG analysis and we further performed subgroup analysis keep-
ing the CRP-independent SNPs without pleiotropic evidence and

separately those that were pleiotropic based on colocalization. To
allow comparison between CRP and the rest of the examined traits
(HDL, LDL, TG, BMI, CPD), we extended the MR analysis to each one
of them.

Genetically predicted higher CRP levels were associated with a
lower risk of schizophrenia with consistent results across sensitivity
analyses (Supplementary Data 14, Fig. 5) and breast cancer. The
remaining outcomes examined did not show strong evidence for a
causal association as sensitivity analyses were not supportive of the
main IVW analysis suggesting pleiotropy (e.g., ischemic heart disease
and diabetes). In subgroup analyses limited to the SNPs that were
associated with CRP levels only, no outcome showed strong evidence
for a causal effect except for schizophrenia which presented modest

Table 1 | Novel genomic loci associated with C-reactive protein in genome-wide significance level (two-sided P < 5 × 10−8)

SNP Chr:Pos EA OA EAF Beta SE P Gene

rs545152 1:96886504 T C 0.366 0.012 0.002 4.7 × 10−8 UBE2WP1

rs6587552 1:151018861 A G 0.229 0.013 0.002 2.5 × 10−8 BNIPL

rs8024 1:201845575 A C 0.301 0.012 0.002 4.0 × 10−8 IPO9

rs11122456 1:230305966 A G 0.391 0.013 0.002 8.8 × 10−10 GALNT2

rs754524 2:21311541 G T 0.257 0.013 0.002 8.4 × 10−9 TDRD15:APOB

rs76866386 2:44075483 C T 0.079 −0.026 0.004 1.7 × 10−10 ABCG8

rs4519576 2:48966146 C T 0.450 0.011 0.002 4.2 × 10−8 STON1-GTF2A1L:LHCGR

rs12998606 2:188725859 G A 0.461 −0.011 0.002 2.3 × 10−8 LINC01090

rs566279474 3:44135752 C T 0.003 0.055 0.010 1.5 × 10−8 MIR138-1

rs171390 3:154038412 C T 0.424 0.011 0.002 4.7 × 10−8 DHX36

rs2606227 3:183536836 T C 0.361 0.012 0.002 4.5 × 10−8 MAP6D1

rs34811474 4:25408838 A G 0.217 −0.015 0.002 6.3 × 10−10 ANAPC4

rs1229978 4:100256199 C T 0.406 0.012 0.002 1.7 × 10−9 ADH1C

rs1450786 4:112653076 G A 0.367 −0.011 0.002 3.7 × 10−8 RP11-269F21.1

rs10461497 5:63942398 C T 0.494 −0.011 0.002 3.3 × 10−8 MRPL49P1

rs6870983 5:87697533 T C 0.236 −0.014 0.002 7.3 × 10−9 TMEM161B-AS1

rs11135450 5:95554016 A G 0.345 −0.012 0.002 2.4 × 10−8 CTD-2337A12.1

rs2228213 6:12124855 A G 0.333 −0.012 0.002 1.8 × 10−8 HIVEP1

rs2635727 6:50820940 T C 0.250 −0.014 0.002 2.5 × 10−9 RPS17P5

rs57648913 7:21602065 A G 0.145 0.016 0.003 2.4 × 10−9 DNAH11

rs35237252 8:19870271 A C 0.273 −0.021 0.002 5.1 × 10−20 LPL

rs10464844 8:106419754 G A 0.230 0.014 0.002 2.0 × 10−8 RP11-127H5.1:ZFPM2

rs1411432 9:16728532 C A 0.183 0.015 0.003 1.1 × 10−8 BNC2

rs10968576 9:28414339 G A 0.302 0.013 0.002 1.1 × 10−9 LINGO2

rs722564 10:118550831 T C 0.386 −0.011 0.002 4.3 × 10−8 RPL5P27

rs36089024 11:67244644 T C 0.401 −0.012 0.002 1.6 × 10−9 AIP

rs10750096 11:116656788 C A 0.093 0.021 0.004 4.1 × 10−8 ZNF259

rs7138803 12:50247468 A G 0.338 0.012 0.002 1.5 × 10−8 RP11-70F11.7

rs56205943 12:57679414 A G 0.193 −0.013 0.002 4.9 × 10−8 R3HDM2:RP11-123K3.4

rs825457 12:124538302 C A 0.161 −0.016 0.003 2.7 × 10−8 FAM101A

rs17522122 14:33302882 T G 0.489 0.012 0.002 2.6 × 10−9 AKAP6

rs11856579 15:78012688 A G 0.220 −0.013 0.002 2.1 × 10−8 LINGO1

rs879620 16:4015729 C T 0.389 −0.012 0.002 1.7 × 10−9 ADCY9

rs12446515 16:56987015 T C 0.292 −0.020 0.002 1.3 × 10−19 AC012181.1

rs2000999 16:72108093 A G 0.192 0.015 0.003 9.8 × 10−9 TXNL4B:HPR

rs56823429 16:81533789 C A 0.283 0.014 0.002 3.6 × 10−10 CMIP

rs77542162 17:67081278 G A 0.011 0.048 0.007 5.4 × 10−12 ABCA6

rs9951447 18:20009691 C T 0.439 −0.012 0.002 7.3 × 10−9 RP11-863N1.4

rs2236707 18:21114997 T C 0.430 −0.014 0.002 1.0 × 10−11 NPC1

rs2147338 20:50320079 C T 0.406 0.011 0.002 2.8 × 10−8 ATP9A

rs3746778 20:61341472 A G 0.392 −0.011 0.002 3.0 × 10−8 NTSR1

Chr:Pos chromosome:position, EA effect allele, OA other allele, EAF effect allele frequency, P P-value, Gene mapped gene of the SNP.
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evidence for inverse associations with genetically determined higher
CRP levels (Supplementary Data 14).

Discussion
Using multi-trait analysis of GWAS between CRP and five cardiometa-
bolic risk factors we boost the statistical power to search for genomic
variants associated with circulating CRP levels identifying 41 novels
CRP loci. Moreover, we present a comprehensive overview of the
pleiotropic genetic architecture of this trait and indicate 19 gene sets
associated with CRP as potential master regulators of chronic low-
grade inflammation with wide pleiotropic effects on lipids and other

cardiometabolic pathways. Through subsequent colocalization analy-
sis, we identified 41 shared causal variants between CRP and cardio-
metabolic risk factors and further examine the associations across the
phenome for 12 colocalized variants with discordant effect direction
between the traits. MR analysis provided evidence for a causal effect of
low-grade chronic inflammation as measured by genetically predicted
serum CRP on a lower risk of schizophrenia supporting findings from
the previous studies12. Evidence for causality on other diseases was
limited when pleiotropic signals were excluded.

The multi-trait GWAS via MTAG leveraged the correlation
between C-reactive protein with its major determinants (lipids, BMI,

Table2 |C-reactiveprotein top signalswhichcolocalize (PP >0.8)with anycombinationof theother examined traits explaining
at least the 80% of the shared association

Causal SNP Chr:Pos Traits PP PP% Gene

rs75460349 1:27180088 CRP, TG 1.00 80.1 ZDHHC18

rs61812598 1:154420087 CRP, HDL, LDL 0.96 88.3 IL6R

rs2211320 1:159693605 CRP, HDL, LDL, TG, CPD 0.97 100.0 CRP

rs4658403 1:243832560 CRP, HDL, BMI 0.95 99.7 AKT3

rs1260326 2:27730940 CRP, HDL, LDL, TG, BMI, CPD 0.94 100.0 GCKR

rs17326656 2:48962291 CRP, HDL, TG 0.93 98.6 STON1-GTF2A1L:LHCGR

rs2161037 2:169893419 CRP, LDL 1.00 99.9 ABCB11

rs6792725 3:24520283 CRP, LDL, TG 1.00 100.0 THRB

rs171390 3:154038412 CRP, BMI 0.98 87.0 DHX36

rs247975 3:173107443 CRP, HDL, TG, BMI, CPD 0.80 88.9 NLGN1

rs34811474 4:25408838 CRP, HDL, BMI, CPD 0.95 100.0 ANAPC4

rs10938397 4:45182527 CRP, HDL, BMI 0.86 82.7 RP11-362I1.1

rs6870983 5:87697533 CRP, BMI 1.00 100.0 TMEM161B-AS1

rs2228213 6:12124855 CRP, BMI 0.96 90.6 HIVEP1

rs5017416 6:18492350 CRP, BMI 1.00 94.0 RNF144B

rs1490384 6:126851160 CRP, LDL 0.81 92.5 MIR588

rs35237252 8:19870271 CRP, CPD 0.98 92.8 LPL

rs112875651 8:126506694 CRP, LDL, TG 1.00 100.0 RP11-136O12.2

rs7031064 9:14455076 CRP, BMI 1.00 99.4 NFIB

rs10968576 9:28414339 CRP, HDL, BMI, CPD 0.87 85.6 LINGO2

rs11012732 10:21830104 CRP, BMI 0.99 85.6 MLLT10

rs6486122 11:13361524 CRP, HDL, LDL, TG 0.99 96.1 ARNTL

rs6265 11:27679916 CRP, BMI, CPD 0.93 91.6 BDNF-AS:BDNF

rs4755720 11:43628749 CRP, HDL, TG 0.96 80.2 HSD17B12

rs3741298 11:116657561 CRP, LDL, TG 0.95 100.0 ZNF259

rs7138803 12:50247468 CRP, HDL, BMI 0.99 100.0 RP11-70F11.7

rs9604045 13:113927208 CRP, HDL 0.99 100.0 LDHBP1

rs2239222 14:73011885 CRP, LDL 1.00 100.0 RGS6

rs11635675 15:63793238 CRP, LDL, TG, BMI 0.94 81.3 USP3

rs11852372 15:78801394 CRP, TG, CPD 0.83 99.7 HYKK

rs879620 16:4015729 CRP, HDL, BMI, CPD 0.98 100.0 ADCY9

rs3814883 16:29994922 CRP, HDL, TG, BMI 0.93 100.0 TAOK2

rs1421085 16:53800954 CRP, HDL, LDL, BMI, CPD 0.98 100.0 FTO

rs183130 16:56991363 CRP, HDL, LDL, TG, CPD 0.89 100.0 AC012181.1

rs2000999 16:72108093 CRP, LDL, TG 0.99 88.1 TXNL4B:HPR

rs2925979 16:81534790 CRP, HDL, TG 0.93 100.0 CMIP

rs56113850 19:41353107 CRP, BMI, CPD 0.95 100.0 CTC-490E21.12:CYP2A6

rs429358 19:45411941 CRP, BMI, CPD 1.00 100.0 APOE

rs117113213 20:39165692 CRP, LDL, TG 0.99 99.4 SNORD112

rs1800961 20:43042364 CRP, HDL, LDL 1.00 100.0 HNF4A

rs397092 21:46582564 CRP, HDL, TG, BMI, CPD 0.91 96.0 ADARB1

Causal SNP candidate variant causing the colocalization, Chr:Pos Chromosome:Position, Traits traits which colocalize, PP posterior probability, PP % percentage of PP explained by SNP, Gene
mapped gene, BMI body mass index, CPD cigarettes per day, CRP C-reactive protein, HDL high-density lipoprotein, LDL low-density lipoprotein, TG triglyceride.
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and cigarette smoking) to increase the number of identified loci and
the informativeness of the bioinformatics analysis. Our findings sup-
port the close link between CRP and lipid metabolism. Many of the
novel CRP loci were well-known lipid and BMI loci such as variants
mapped at LPL, APOB, and LINGO2 genes which had not been asso-
ciated with CRP previously in univariate GWAS analyses. At the same
time, several novel CRP loci have not been previously associated with
any of the other examined traits highlighting the additional power of
MTAG analysis13. Prioritized CRP loci were enriched for expression not
only in the liver and pituitary but also in the brain cerebellum and
cerebellar hemisphereunderlining the importanceof thosepleiotropic
loci in this tissue.

An exonic variant (rs2228213) within the human immunodefi-
ciency virus type I enhancer-binding protein 1 (HIVEP1) genewas found
to colocalize between CRP and BMI and was highlighted as a novel
locus for CRP from MTAG. HIVEP1 regulates the transcription of
inflammatory target genes such as those belonging to the interleukin
signaling pathway and HIVEP1 deficiency has been shown to exacer-
bate inflammation in sepsis14. The colocalized exonic variant provides a
possible mechanism for the interaction between infection, inflamma-
tion, and adiposity.

A non-synonymous exon variant (rs34811474) within the
anaphase-promoting complex subunit 4 (ANAPC4) gene was identified
as the causal variant for multiple traits including CRP, HDL, BMI, and
CPD. Whereas high pleiotropy at the locus and gene level is common
across the genome, wide pleiotropic effects at the SNP level are much
less abundant15. The same variant has been previously associated with
cognitive performance and educational attainment16, lung function17,

and osteoathritis18. The biological function of ANAPC4 is largely
unknown but it’s wide pleiotropic effects and its low tissue specificity
indicate a possible involvement in general biological functions.

The DHX36 gene (rs171390) was found to colocalize between CRP
and ΒΜΙ and was highlighted as a novel locus for CRP from MTAG.
DHX36, a highly conservedmemberof theDExD/Hboxhelicase family,
bindswith andunfoldsG-Quadruplex (G4)DNA, therebychanginghow
G4 structures influence DNA- and RNA-dependent processes19.
G4 structures and DHX36 interactivity has been studied in relation to
cancer and tumorigenesis, neurodegenerative diseases and aging
mechanisms including cellular senescence19. Our findings support a
possible role of this gene in these traits through inflammation path-
ways and adiposity.

Other highlighted variants which colocalized across multiple
traits include variants within well-studied genes such as the glucoki-
nase regulatory protein (GCKR). The common non-synonymous
mutation of rs1260326 close to the GCKR gene is widely reported to
have pleiotropic effects on cardiometabolic traits and has been asso-
ciated with increased triglyceride levels and decreased glucose
levels20. Our study supported these observations. In particular, a dis-
cordant direction of effect across CRP, lipids, and BMI was observed
whichwas also translated into a discordant direction of effects with 28
different disease phenotypes.

Our study had several strengths. First, we used large-scale data
with substantial sample sizes of over 500,000 participants each
resulting in high statistical power. The statistical power of our study
was boosted even higher considering that we analyzed the data by
performing suitable multivariate methods. Second, a particular

Fig. 3 | Effect size across traits for the 12 colocalized SNPs with a discordant
direction of effect between C-reactive protein levels and any of the other
examined traits. Inverse effect directions between CRP and any of LDL, TG, BMI,
and CPD or direct directions between CRP and HDL were considered discordant if
the association of the SNP with the discordant trait was statistically significant
(P <0.05) in multi-trait MTAG. The red dashed line represents the zero value of the

effect. Significant associations (P <0.05) are presented with white-filled circles
while genome-wide significant (GWS) associations are with black-filled circles. The
exact summary statistics are provided in Supplementary Data 12. BMI body mass
index, CPD cigarettes per day, CRP C-reactive protein, HDL high-density lipopro-
tein, LDL low-density lipoprotein, TG triglycerides.
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Fig. 4 | Highlighted PheWAS results (FDR significant) in UK Biobank for the 12
colocalized SNPs with a discordant direction of effect between C-reactive
protein levels and any of the other examined traits. The color of each bar
represents the genetic effect size for the respective SNPwhile the length of eachbar
shows the statistical significance on the −log10P scale. The variant rs429358 (APOE)

presented 96 FDR significant associations that can be found in Supplementary
Data 13. To optimize the visualization of the results, the diseases that were asso-
ciated only with that variant were removed from the graph. The variant rs11635675
(USP3) presented no FDR significant association and thus it was removed from the
graph. The exact summary statistics are provided in Supplementary Data 13.

Fig. 5 | Two-sample Mendelian randomization results. Each row is a different
exposure and each column is a different outcome. Each Mendelian randomization
analysis is summarized in a four-squared box including the estimates from inverse-
varianceweightedmethod (IVW, top left square),weightedMedian (WM, top right),
Egger method (slope, bottom left; intercept, bottom right). The color of each

square represents the respective effect size while the asterisks indicate the statis-
tical significance. The exact summary statistics are provided in Supplementary
Data 14. BMI bodymass index, CPD cigarettes per day, CRP C-reactive protein, HDL
high-density lipoprotein, LDL low-density lipoprotein, TG triglycerides, ADHD
attention deficit hyperactivity disorder, ASD autism spectrum disorder.
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strength of our study is that it combines advancedmethods of genetic
epidemiology such as multivariate analysis, colocalization, PheWAS,
and Mendelian randomization. Third, we investigated possible asso-
ciations between CRP and many risk factors for various complex dis-
eases including CVDs, mental disorders, and neoplasms as well as
other diseases. However, our study also had some limitations. Our
analysis was restricted to individuals of European ancestry only and
results may not be generalizable in other ancestries. Also, we excluded
all rare variants (MAF < 1%) from our MTAG analysis and consequently
from all following analyses. Therefore, we may not be able to identify
rare variants with large effects, However, we should consider that
several of these associationsmay stem from false-positive findings and
biased results. Moreover, MTAG was conducted using summary sta-
tistics data and hence, it was impossible to adjust for other con-
founders. We should also pinpoint, there was sample overlap between
the studies in themulti-trait analysis. However, the sample overlapwas
addressed within each GWA study by using bivariate linkage dis-
equilibrium (LD) score regression13. Fifth, we defined pleiotropy as the
presence of statistically significant associations between a genetic
variant andmore than one phenotype. Our definition, therefore, refers
to ‘statistical pleiotropy’ and includes situations of horizontal pleio-
tropy (for example, one SNP directly influences multiple phenotypes),
and situations of vertical pleiotropy where statistical associations to
multiple traits are induced via causal effects of one trait on another or
via a third common factor15. Although detecting shared genetic asso-
ciations between two or more traits suggest that possibly there are
pleiotropic genes involved in the biological pathways of all the asso-
ciated traits, still, this does not necessarily mean that the traits share
biological pathways, as the pleiotropic genes could affect the traits
independently via different pathways, or they could even be expressed
in different tissues in response to different signaling21,22. The extensive
pleiotropy at the CPR loci is likely to bias the MR assumption of no
pleiotropy. However, the analyses, limiting genetically predicted CRP
to variants thatwere not also associatedwith lipids or BMI resulted in a
small number of CRP variants and suffering from small power. Fur-
thermore, our GWAS introduced several novel genes for CRP, but high
polygenicity and pleiotropy of the trait pose a challenge to uncovering
biological mechanisms, especially as many novel variants each have a
small effect on CRP. Finally, larger GWAS on lipids or CRP could
increase the number of pleiotropic loci in the future and further
expand our knowledge of the link between mechanisms of inflamma-
tion and cardiometabolism.

In conclusion, we performed a comprehensive multi-trait analysis
on CRP and cardiometabolic traits discovering 41 novels of CRP
genetic loci. Our subsequent colocalization analysis further high-
lighted 41 shared causal variants between inflammation and cardio-
metabolism implying that a perturbation in these loci might be
expected to affect several of these traits. Our comprehensive analysis
of pleiotropic effects, therefore, offers a promising path forward for
novel preventive and therapeutic targets and for the study of antici-
pated side effects across several traits. Functional work to elucidate
causal variants and mechanisms at these loci may provide further
insights into the etiological pathways for this collection of traits.

Methods
Study design and population samples
The summary statistics from six GWAS were used in this study: CRP,
HDL, LDL, TG, BMI, and CPD. As a rule, the largest GWAS of Eur-
opean ancestry for the respective trait was used. All GWAS used in
this study has exclusively or partially been conducted in UK Biobank
(UKB). More specifically, the CRP summary statistics were obtained
from theGWASmeta-analysis of UKB and CHARGE-1000Genomes12;
HDL, LDL, and TG from the respective GWAS in UKB (UK Biobank—
Neale lab)23; BMI from the GWASmeta-analysis of UKB and GIANT24;
and CPD from a meta-analysis of over 30 GWAS including UKB25.

Although all the above GWAS have been described elsewhere, a
brief presentation of each GWAS characteristic can be found in
Supplementary Data 15.

Genotypic quality control
The initial datasets contained 11,140,987; 13,791,468; 13,791,468;
13,791,468; 27,381,303, and 12,003,614 genotyped and imputed SNPs
in CRP, lipids (HDL, LDL, TG), BMI and CPD, respectively. All insertion
and deletion polymorphisms, rare variants (MAF < 0.01), variants with
a sample size <2/3 of the 90th percentile and palindromic SNPs were
excluded from the analysis. Furthermore, all non-overlapping SNPs
that were not present in at least one dataset were further excluded
from the analysis leaving 6,206,408 SNPs for analysis.

Multi-trait GWAS analysis
A multi-trait analysis of GWAS (MTAG)13 was performed to jointly
analyze the summary statistics of CRP, HDL, LDL, TG, BMI, and CPD.
The genetic correlation between the traits was calculated and further
corrected for sample overlap using bivariate LD score regression
which estimated the correlation in GWAS estimation error as imple-
mented in MTAG. Distinct trait-specific effect estimates were gener-
ated for each SNP resulting in six summary statistic datasets in total,
one for each trait. Thus, a distinct P-value per SNP was generated for
each trait which can be interpreted like those from a univariate single-
trait GWAS.

As well as analyzing the six traits jointly, three additional bivariate
MTAG analyses were performed: CRP with lipids; CRP with BMI; and
CRP with CPD, using the same methodology as described above.

Functional mapping and annotation
The generated summary results from all themultivariate GWASwere
further functionally analyzed using the platform functionalmapping
and annotation of GWAS (FUMA v.1.3.6a)10 in a total of 14 distinct
functional analyses (6 from the multi-trait MTAG; 4 from the CRP-
lipids MTAG; 2 from the CRP-BMI MTAG; and 2 from the CRP-CPD
MTAG). In each one of them, a similar process was implemented
which is described as follows. All trait-specific genome-wide sig-
nificant SNPs at a predefined threshold of P = 5 × 10−8 were identified
and clumped two times at a different r2 threshold each time. The first
clumping at r2 < 0.6 was used to determine the coordinates of the
genomic risk loci. All the SNPs that survived the first clumping were
included for further annotation and gene prioritization. A second
clumping was performed afterward at r2 < 0.1 to define independent
signals. SNPs in LD with each other at 0.1 ≤ r2 < 0.6 were assigned to
the same LD block. The LD blocks were merged into one locus if
there were SNPs from different LD blocks closer than 500 kb. The
SNPs that survived the second clumping were defined as indepen-
dent SNPs. Independent SNPs with the smallest P-value in each
region were defined as the top lead SNPs representing the corre-
sponding genomic risk loci. The European sample of 1000 Genome
Project Phase 3 was used as a reference panel to calculate pairwise
LD between SNPs using PLINK v1.926. SNPs were positionally mapped
to their nearest protein-coding genes (Ensembl build v92) at a
maximum distance of 10 kb using ANNOVAR8.

CRP novel genetic loci definition
As CRPwas analyzed in four distinctMTAG analyses (1multi-trait and 3
bivariate), we gathered all CRP-independent signals from all four dis-
tinct CRP-generated summaries and after excluding the same signals
or proxies (either in distance ±500 kb or in LD r2 > 0.1), we compared
our top CRP independent signals with those from the UKB-CHARGE
GWASmeta-analysis onCRP12. The topCRP signals fromour analyses in
absolute distance >500 kb and r2 < 0.1 from all previously reported
independent CRP signals were considered novel signals and their
region’s novel loci.
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Gene-based, gene-set, and gene-property analysis: Tissue
expression analysis
We used Multi-marker Analysis of GenoMic Annotation software
(MAGMA v1.08)9 to perform gene, gene-set, and gene-property ana-
lysis. The gene analysis was performed for SNPs physically located in a
gene using the referencepanel of 1000Genomes phase 3. An SNP-wide
mean model for gene tests was implemented following the default
parameters of the FUMA pipeline. In the gene-set analysis, we tested
15,477 different gene-sets derived from MsigDB v7.027. The results
frombothgene andgene-set analyseswerecorrected formultiple tests
implementing the Bonferroni correction (P-value threshold: 2.7 × 10−6

and 3.2 × 10−6, respectively).
The gene-property analysis was performed to test possible asso-

ciations between tissue-specific gene expressionprofiles and the genes
found to be associated with the trait of interest. The gene expression
data sets were obtained from the Genotype-Tissue Expression version
8 (GTEx v8) testing a positive relationship at a Bonferroni significance
level between genetic associations and gene expression in 30 general
and 53 more specific tissue types, respectively.

Colocalization
Multi-trait colocalization analysis was performed in R v.4.1.028 using
HyPrColoc v.1.0.0R package29 which is a Bayesian divisive clustering
algorithm for identifying shared genetic associations between traits in
a genomic region using GWAS summary statistics. More specifically,
this method was performed to identify colocalized loci between CRP
and any combination of the other examined traits and candidate dis-
tinct causal variants explaining the shared association in genomic
regions associated with CRP.

We performed a distinct colocalization analysis for each CRP-
associated top signal fromMTAG in a region ±200 kb from the topSNP
using the MTAG summary statistics. We considered variant-specific
priors for our analyses, which assumes that the probability of a variant
being colocalizedwith a set of traits decreases as the number of the set
of traits increases. The variant-specific priors model requires the spe-
cificationof twopriors.We specified the prior probability that a variant
is associated with a single trait only at P = 1 × 10−4 and a conditional
prior probability that a variant is associated with an additional trait
given that it is already associated with another trait at Pc = 0.02. A PP
higher than 0.8 was considered strong evidence that the traits colo-
calize in the region. The variant with the highest proportion of PP
explained was considered the candidate causal variant for the shared
association if that proportion was at least 80%.

Direction of genetic effect investigation and Phenome-Wide
Association Analysis (PheWAS)
Variants found to colocalize with CRP and any combination of the
other examined traits were further investigated focusing on the
direction of their genetic effect across traits. For each distinct colo-
calized SNP, we compared the direction of its genetic effect on all
examined traits using the summaries from the multivariate MTAG.
Hence, we were able to highlight colocalized SNPs with a discordant
direction of effect between CRP and any of the other traits. Opposite
directions of effect between CRP and any of LDL, TG, BMI, and CPD or
the same directions between CRP and HDL were considered dis-
cordant if the association with the discordant trait was statistically
significant (P <0.05).

Afterward, to investigate the impactof the colocalizedgenetic loci
with the discordant direction of effect on the phenome, we performed
a distinct PheWAS analysis in UKB for each one of those SNPs. The
PheWAS analysis was restricted to participants of European ancestry
and to ensure the independence of participants, we randomly exclu-
ded one participant from each pair of relatives based on their kinship
coefficient > 0.0884 as provided by UKB. After the quality control

process, we ended up with 424,439 individuals available for the
analysis.

We used the inpatient Hospital Episode Statistics (HES) records,
cancer, and death registries, which follow the WHO’s International
Classification of Diseases coding system, 9th Revision (ICD-9) or 10th
Revision (ICD-10). We used both ICD-9 and ICD-10 to define cases and
controls after translating them to the phecode grouping system as
implemented in PheWAS R package30. A series of case-control groups
were generated for each phecode, with controls identified as indivi-
duals with no record of the respective outcome and its related
phecodes.

To ensure adequate statistical power in these analyses, we tested
only phecodes with a sample size ≥200 cases as previously proposed
from simulation studies31. We used logistic regression models adjust-
ing for age, sex, and the first 15 genetic principal components. To
reduce false-positive signals due to multiple testing, we implemented
the false discovery rate (FDR) method32.

Mendelian randomization
We used MR analysis to investigate causality between CRP and pre-
specified outcomes which have previously shown associations with
CRP and have been extensively studied. We performed multiple MR
analyses, one for each combination between 6 exposures (CRP, HDL,
LDL, TG, BMI, and CPD) and 14 outcomes including diseases of the
circulatory system, neoplasms, mental disorders and metabolomic
traits (Supplementary Data 16). For each exposure, the genetic
instrumental variables were the independent SNPs (LD r2 < 0.1,
P < 5 × 10−8) of the respective trait from multivariate MTAG.

In all MR, our main analysis was the inverse-variance weighted
(IVW) method assuming a random-effects model33. Additionally, two
sensitivity analyses were performed: (1) the weighted median (WM)
method to check if at least 50% of our SNPs were valid instruments34

and (2) the MR-Egger method to test and correct for possible direc-
tional pleiotropy35.

We performed a subgroup MR analysis on SNPs associated with
CRP levels based on the existence or absence of evidence of pleio-
tropy. Two groups of SNPs were created; one with the colocalized CRP
SNPs only and the other with non-colocalized SNPs that were non-
significant (MTAG P-value > 0.01) for all the other examined traits.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The summary statistics of all GWAS used in this study are publicly
available from GWAS Catalog (CRP: GCST90029070; BMI:
GCST009004; CPD: GCST007459) or Neale lab (lipids: http://www.
nealelab.is/uk-biobank). The MTAG summary statistics generated in
this study have been deposited in NHGRI-EBI GWAS Catalog under
accession codes GCST90179146 (CRP), GCST90179147 (HDL),
GCST90179148 (LDL), GCST90179149 (TG), GCST90179150 (BMI) and
GCST90179151 (CPD). All other data generated in this study are pro-
vided with this published article (and its supplementary informa-
tion files).

Code availability
No previously unreported custom computer code or mathematical
algorithm was used to generate results central to the conclusions.
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