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Pleiotropy or linkage? Their relative contributions to

the genetic correlation of quantitative traits and

detection by multi-trait GWA studies.

Jobran Chebib* and Frédéric Guillaume*,1

*Department of Evolutionary Biology and Environmental Studies, University of Zürich,

Winterthurerstrasse 190, Zürich, Switzerland. CH-8057

Abstract

Genetic correlations between traits may cause correlated responses to selec-

tion. Previous models described the conditions under which genetic correla-

tions are expected to be maintained. Selection, mutation and migration are

all proposed to affect genetic correlations, regardless of whether the underly-

ing genetic architecture consists of pleiotropic or tightly-linked loci affecting

the traits. Here, we investigate the conditions under which pleiotropy and

linkage have differential effects on the genetic correlations between traits by

explicitly modeling multiple genetic architectures to look at the effects of

selection strength, degree of correlational selection, mutation rate, muta-

tional variance, recombination rate, and migration rate. We show that at

mutation-selection(-migration) balance, mutation rates differentially affect

the equilibrium levels of genetic correlation when architectures are composed

of pairs of physically linked loci compared to architectures of pleiotropic loci.

Even when there is perfect linkage (no recombination within pairs of linked

loci), a lower genetic correlation is maintained than with pleiotropy, with a
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lower mutation rate leading to a larger decrease. These results imply that the

detection of causal loci in multi-trait association studies will be affected by

the type of underlying architectures, whereby pleiotropic variants are more

likely to be underlying multiple detected associations. We also confirm that

tighter linkage between non-pleiotropic causal loci maintains higher genetic

correlations at the traits and leads to a greater proportion of false positives

in association analyses.

Keywords: Pleiotropy, Linkage, Genetic Architecture, GWAS, Migration,

Mutation

Introduction1

Both pleiotropy and linkage disequilibrium create genetic correlations be-2

tween traits so that traits do not vary independently of one another (Wright,3

1977; Arnold, 1992; Walsh and Blows, 2009). Under natural selection, this4

process can prevent a combination of traits from reaching their respective op-5

timum trait values favored by natural selection (Falconer and Mackay, 1996).6

Likewise, under artificial selection it can constrain breeders from improving7

one trait due to undesired changes in another, and in medical gene targeted8

therapy treatments it can cause adverse side-effects (Wright, 1977; Parkes9

et al., 2013; Visscher et al., 2017; Wei and Nielsen, 2019). Pleiotropy may10

cause genetic correlation because one gene’s product (e.g., an enzyme or a11

transcription factor) has more than one target and therefore affects more12

than one trait or because one gene’s product belongs to a metabolic pathway13

that has more than one downstream effect (Hodgkin, 1998; Stearns, 2010;14

Wagner and Zhang, 2011). Linkage disequilibrium (LD) may be the result of15

a set of loci in close physical proximity on a chromosome that makes a set of16

alleles at those loci less likely to be split up by recombination and therefore17

more likely to get passed on together from one generation to the next. But18

other mechanisms leading to the transmission of one combination of alleles19

at separate loci over another combination, can also generate LD and cre-20
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ate genetic correlations between traits that those loci affect (e.g., assortative21

mating, environmental correlations) (Falconer and Mackay, 1996).22

One of the main objectives of a genome-wide association study (GWAS)23

is to identify causal genetic variants underlying one or more traits. GWASes24

leverage the rapid increase in genomic sequencing to find correlations between25

traits and genotypes, and their success is dependent on the effect sizes of the26

loci and the distinction between phenotypes. GWASes have had success27

in associating genetic variants with traits of interest, which have allowed28

researchers to find the molecular underpinnings of trait change (Visscher29

et al., 2017). Moving from one trait to two or more trait associations can30

lead to discovering pleiotropic loci (Saltz et al., 2017). One GWAS using 109431

traits and 14,459 genes, found that 44% of genes were “pleiotropic”, but this32

was determined by assigning genetic variants to the closest gene and even to33

both flanking genes when the genetic variant was intergenic (Chesmore et al.,34

2018). This conflates linkage and pleiotropy, and the chain of causality (Platt35

et al., 2010). Another study, found 90% of genes and 32.4% of SNPs were36

associated with more than one trait domain, but they could not rule out37

SNPs associated with traits due to linkage disequilibrium (Watanabe et al.,38

2018). Unfortunately, determining whether genetic variant associations and39

trait correlations are actually the result of pleiotropy or linkage is difficult40

since they often map to large regions of genomes, or are in intergenic regions41

and don’t associate with the closest genes (Flint and Mackay, 2009; Zhu42

et al., 2016; Peichel and Marques, 2017; Visscher et al., 2017). Distinguishing43

between the two types of genetic architectures is important for understanding44

the underlying molecular functions of the traits, and determining how the45

traits may be deferentially affected by selection (Lynch et al., 1998; Barrett46

and Hoekstra, 2011; Saltz et al., 2017). This is salient at a time when an47

increasing number of traits of interest (e.g., human diseases) appear to be48

affected by loci that affect other traits, and especially when targeted gene49

therapy clinical trials are more widespread than ever (Edelstein et al., 2007;50
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Cai et al., 2016; Pickrell et al., 2016; Visscher and Yang, 2016; Chesmore51

et al., 2018; Ginn et al., 2018). There are potentially negative implications for52

gene therapy because fixing a gene underlying one disease might increase risk53

for another disease. For example, some genetic variants that are associated54

with greater risk of Ankylosing spondylitis are also associated with less risk55

of Rheumatoid arthritis, and so “fixing” one gene would have undesired side-56

effects in this case (Parkes et al., 2013; Gratten and Visscher, 2016).57

But the evolutionary dynamics of pleiotropic versus linked loci in creat-58

ing genetic correlations are expected to be different, since pleiotropy requires59

only one mutation to affect multiple traits and build-up genetic correlations,60

and linked pairs require two. Mutation rate should be an important factor61

distinguishing pleiotropy and linked pairs because single mutations affecting62

more than one trait provides the opportunity for combinations of effects to63

match patterns of correlational selection better than linked loci that affect64

one trait at a time. Thus, linked pairs may require high mutation rates to65

maintain genetic correlations. Recombination can also reduce genetic corre-66

lations between traits by breaking up associations between alleles at linked67

loci, but the same cannot occur with a pleiotropic locus (but see Wagner68

et al. (2007) for other mechanisms to alleviate pleiotropic constraints). Poly-69

genic analytical models attempting to approximate the level of genetic vari-70

ance and covariance at mutation-selection balance in a population suggest71

that tight linkage between pairs of loci affecting separate traits “is nearly72

equivalent to” pleiotropic loci affecting both traits (Lande, 1984). Therefore,73

genetic correlations between traits can be approximated using previously74

elucidated pleiotropic models under certain conditions (Lande, 1980, 1984;75

Turelli, 1985). On the other hand, more recent extensions of Fisher’s Ge-76

ometric Model (Fisher, 1930) predict that pleiotropic mutations, compared77

to mutations that affect only one trait, are less likely to be beneficial over-78

all since a beneficial effect on one trait may be detrimental to others (Orr,79

1998; Otto, 2004). The detrimental effect of pleiotropy is exacerbated when80
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increasing the strength of selection or with very strong correlational selection81

between traits, since both reduce the amount of phenotypic space where mu-82

tations are beneficial (unless pleiotropic effects are aligned with the fitness83

surface created by correlational selection). This detriment is not present for84

linked loci affecting separate traits since their beneficial mutations will not85

have the collateral effects of pleiotropy. These, therefore suggest that linkage86

and pleiotropy may have differential effects on genetic variance and covari-87

ances depending on mutation, recombination and selection regimes, but this88

comparison was not fully explored in any previous model.89

Lande (1984) predicted that when loci affecting different traits are tightly90

linked, and there is strong correlational selection between traits, recombina-91

tion rates between loci affecting different traits can strongly affect genetic92

correlations between traits, when selection is weak and mutation rates are93

relatively high. In an extreme case where there is complete linkage between94

pairs of loci affecting different traits (the recombination rate is 0), and no95

linkage between sets of these pairs of linked loci (the recombination rate is96

0.5), then he determined that the maximum genetic correlation due to link-97

age may be almost as large as the extent of correlational selection, which can98

be calculated from the (per linkage group) genetic covariance between traits99

and the genetic variances, respectively, as:100

genetic covariance (b) =
ρω2µα2

2c
, (1)

101

genetic variance (c) =

√

(1 +
√

1− ρ2)ω2
µα2

2
, (2)

where ρ is the extent of correlational selection acting between the traits, ω2 is102

the strength of selection (with lower values representing stronger selection), µ103

is the per-locus mutation rate, and α2 is the per-locus mutation variance. If104

there is equal variances among traits then the genetic correlation is calculated105
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as:106

genetic correlation =
b

c
=

ρ

1 +
√

1− ρ2
. (3)

From these equations we see that, even in the absence of pleiotropy, genetic107

covariance may arise from linkage disequilibrium, and depends on both the108

strength of correlational selection between traits and selection on each trait,109

as well as on the mutational inputs (mutation rates and mutational variances)110

of the genes affecting those traits. Yet, from equation (3), the resulting111

genetic correlation among traits is independent of the genetic architecture of112

the traits. Lande goes on further to state that the case of complete linkage113

between pairs of loci affecting different traits is “equivalent to a lesser number114

of loci with pleiotropic effects”, but this is not quantified nor is the scaling115

of the two examined. We seek to quantify the equivalence of pleiotropy and116

linkage in their ability to maintain equilibrium levels of genetic (co)variation117

under the same conditions. We also wish to extend this to look at a range118

of linkage distances, selection variances and correlations, and mutation rates119

and variances, to look at the relative effects of each.120

The expectations given by Lande are only expected to be accurate under121

conditions where mutation rates are high compared to the strength of selec-122

tion on the traits of interest (Turelli, 1984; Turelli and Barton, 1990). When123

mutation rates are lower (< 10−4), predictions for equilibrium levels of genetic124

variation break down and are better approximated by the “house-of-cards”125

model (Kingman, 1978; Turelli, 1984). Analytic predictions for equilibrium126

levels of genetic covariation between traits due to linkage disequilibrium, on127

the other hand, have not been well explored for the “house-of-cards” model128

(Bürger, 2000).129

Additionally, levels of trait genetic covariation can be influenced by other130

evolutionary processes that affect allele frequencies, and the covariation of al-131

lelic values in a population (e.g., migration (Guillaume and Whitlock, 2007),132

drift (Griswold et al., 2007), inbreeding (Lande, 1984), and phenotypic plas-133

ticity (Draghi and Whitlock, 2012)). Migration affects genetic covariation134
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because when it is sufficiently high (relative to selection in the focal popula-135

tion), then combinations of alleles coming from a source population will also136

be maintained in the focal population. This can lead to higher genetic co-137

variation between traits in the focal populations, whether the combinations138

of alleles immigrating are (more likely to be) correlated in their effects on139

those traits or not (Guillaume and Whitlock, 2007). Migration may also have140

different effects depending on whether the genetic architecture is pleiotropic141

or made up of linked loci, but this has not been explored.142

Here, we are interested in the conditions in which pleiotropic architectures143

behave similarly or differently to architectures with tight physical linkage144

between loci affecting different traits, with respect to their effects on genetic145

correlations between the traits. We use computer simulations to investigate146

whether the effect of evolutionary forces on the genetic correlation between147

traits is dependent on the type of genetic architecture, and how. We focus on148

the relative contributions of selection, mutation and migration to the build149

up of genetic correlation between traits having different genetic architectures.150

We show that unless mutation rates are high, genetic architectures with tight151

linkage between loci maintain much lower equilibrium genetic correlations152

than pleiotropic architectures. Even when mutation rates are high, other153

evolutionary forces affecting equilibrium levels of genetic correlation still show154

a difference between architectures but to a much lesser extent. Additionally,155

we simulate genomic single-nucleotide polymorphism (SNP) data sets using156

the different architectures, and show that map distances between causative157

and non-causative QTL affect false positive proportions in GWA analyses.158

Materials and Methods159

We modeled four different genetic architectures in a modified version of160

the individual-based, forward-in-time, population genetics simulation soft-161

wareNemo (Guillaume and Rougemont, 2006; Chebib and Guillaume, 2017).162

Nemo was modified to allow single non-pleiotropic loci to affect different163
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quantitative traits. To compare how pleiotropy and linkage differentially af-164

fect the genetic correlation between traits, we modeled a set of 120 pairs of165

linked, non-pleiotropic loci, and a set of 120 pleiotropic loci affecting the two166

traits. We varied the recombination distance between the two non-pleiotropic167

loci of each pair with distances 0cM, 0.1cM, or 1cM (Figure 1). Pairs were168

unlinked to other pairs. The pleiotropic loci were also unlinked to each169

other. The recombination rates chosen represent no recombination between170

linked loci, as well as an average and an extreme value of recombination at171

“hotspots” in the human genome, respectively (Myers et al., 2006). All loci172

had additive effects on the traits.173

Figure 1: Four genetic architectures showing the distribution of loci on 120 chromosomes.
In the case of linkage architectures, pairs of loci affecting the two different traits on each
chromosome are either 1, 0.1 or 0 cM apart. In the case of the pleiotropic architecture,
each locus on each chromosome affects both traits.

Unless otherwise specified, each simulation was run with 5,000 initially174

monomorphic (variation is gradually introduced through mutations), diploid175
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individuals for 10,000 generations achieving mutation-selection(-migration)176

balance in order to observe general patterns of genetic correlation in the177

near-absence of drift. Individuals were hermaphrodites mating at random178

within a population, with non-overlapping generations. Phenotypes were179

calculated for each of the two traits modeled by summing the allelic values180

of all loci affecting one trait. Gaussian stabilizing selection was applied and181

determined the survival probability of juveniles, whose fitness was calculated182

as w = exp
[

−1
2

(

(z− θ)T ·Ω−1 · (z− θ)
)]

, where z is the individual phe-183

notype vector (initialized to the optimum values), θ is the vector of local184

optimal trait values (set to 10 for both traits in the focal population), and185

Ω is the selection variance-covariance matrix (n× n, for n traits) describing186

the multivariate Gaussian selection surface. To examine the effects of the187

strength of stabilizing selection on each trait and strength of correlational188

selection between traits, different sets of simulations were run with the di-189

agonal elements of the Ω matrix set as ω2 = 50, or 100 (selection strength),190

and off-diagonal set to ω2 × ρω (where the correlational selection, ρω = 0.5191

or 0.9). The strength of selection scales inversely with ω2 where a value of192

100 corresponds to weak (but non-trivial) selection as opposed to correla-193

tional selection, ρω, where a value of 0.9 corresponds to strong correlational194

selection between traits (Lande, 1984; Turelli, 1984).195

To examine the effects of mutational input on genetic correlation between196

traits, different sets of simulations were run with mutation rates (µ) of 0.001,197

0.0001, or 0.00001, and moderate mutational effect sizes (α2) of 0.1, 0.01,198

or 0.001 (Turelli, 1984). Mutational effects at each non-pleiotropic locus199

were drawn from a univariate normal distribution (with a mean of zero) or200

a bivariate normal distribution (with means of zero and a covariance of 0)201

for pleiotropic loci. Mutational effects were then added to the existing allelic202

values (continuum-of-alleles model; Crow and Kimura, 1964). All loci were203

assumed to have equal mutational variance. No environmental effects on the204

traits were included.205
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To examine the effects of migration from a source population on genetic206

correlation between traits, additional sets of simulations were run with uni-207

directional migration from a second population (as in an island-mainland208

model with each population consisting of 5000 individuals) with backward209

migration rates (m) of 0.1, 0.01, and 0.001. The backward migration rate210

represents the average proportion of new individuals in the focal population211

whose parent is from the source population. The local optimum values for212

the two traits in the source population were set at θ =
[√

50,
√
50
]

(10213

units distance from the focal population’s local optimum). Both focal and214

source populations had weak stabilizing selection with a strength of ω2 = 100,215

the focal population had no correlational selection between the two traits216

and the source population had a correlational selection of ρω = 0 or 0.9.217

Fifty replicate simulations were run for each set of parameter values and218

statistics were averaged over replicates. Averages were also compared against219

analytical expectations laid out by Lande (1984) and reproduced here in220

Equations 1–3.221

Effects of genetic architecture on false positive/negative proportions in asso-222

ciation studies223

In order to elucidate the differential effects of pleiotropy and linkage on the224

detection of true causal genetic variants in association studies, a genome-wide225

association (GWA) analysis was performed on data simulated as described226

above (with only a single population), except that diallelic loci were used in-227

stead of a continuum-of-alleles model to better represent SNPs. Correlational228

selection values were chosen that provided equal on-average genetic correla-229

tions between traits for all genetic architectures of 0.2, 0.3, and 0.4, values230

frequently observed in both morphological and life-history traits (Roff, 1996).231

In the association study, a per-locus regression of trait values was performed232

over genotypes, and the (negative log 10) p-values of regression slopes were233

plotted with a Benjamini-Hochberg False Discovery Rate (FDR) cutoff to234

adjust significance levels for multiple tests (Benjamini and Hochberg, 1995).235
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From this, we observed the number (and proportion) of false positives (linked236

loci that had no effect on a trait but whose regression slope p-values were237

above the FDR cutoff for that same trait) and false negatives (pleiotropic loci238

that had an effect on both traits but whose regression slope p-values were239

below the FDR cutoff for either trait). No correction for population strat-240

ification was performed during this analysis because each simulation had a241

single, large, randomly breeding population. Linkage disequilibrium values242

of D
′

and R2 between pairs of linked traits were also calculated using the R243

package genetics (v1.3.8.1) (Warnes et al., 2013). Statistics for number and244

proportion of false positives and negatives were obtained from the average245

over 20 replicate simulations of each genetic architecture. We also assessed246

the false positive rate on an additional set of neutral QTL linked to the causal247

loci. We simulated a set of 120 independent linkage groups with 200 neutral248

di-allelic QTL per group, evenly distributed on both sides of the central po-249

sition occupied by the two causal QTL. Each linkage group was 1 cM long.250

The minimum recombination rate between two adjacent loci was 10−5. The251

neutral QTL were set in 10 successive windows of 0.05cM (∼50kb) on each252

side of the causal QTL. The two causal QTL were perfectly linked (0cM)253

and non-pleiotropic. The simulations were run for 50,000 generations and 10254

replicates.255

Results256

Effects of genetic architecture on genetic correlation at mutation-selection257

balance258

By generation 10,000, when mutation-selection balance is reached, simu-259

lations with the pleiotropic architecture generally maintain a higher average260

genetic correlation than those with linkage architectures, even when recom-261

bination is absent (linkage distance of 0cM between pairs of loci) (Figure262

2). Variation in the mutation rate has the largest effect on the difference of263

genetic correlation between pleiotropic and fully linked non-pleiotropic loci,264
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with much lower correlations as the mutation rate decreases from 10−3 to265

10−5 (Figure 3). This reduction in genetic correlation mostly affected the266

non-pleiotropic pairs of loci for which a large drop in genetic correlation oc-267

curred between µ = 10−3 and µ = 10−4 (Figure 3). With lower mutation268

rates there is also a lower total genetic variance and lower genetic covari-269

ance. The higher genetic correlation obtained with pleiotropic loci was due270

to a lower total genetic variance when the mutation rate was high (µ = 10−3),271

but to a higher genetic covariance when mutation rate was low (µ = 10−4 or272

10−5).273

The genetic correlation between the traits decreases with reduction in all274

four factors tested (µ, ρω, ω
2, and α2) and for all genetic architectures, with275

the coefficient of correlational selection (ρω) having the strongest effect (Fig-276

ure 4), as expected from equation (3). However, changes in the strength of277

selection (ω2) and the mutational variance (α2) also affect the genetic corre-278

lation at equilibrium. We find that reducing the strength of selection (Figure279

5) had a relatively smaller effect than reducing the mutational variance (Fig-280

ure 6). A decrease in mutational variance leads to a decrease in genetic281

correlation by a similar amount regardless of genetic architecture (though282

loose linkage is affected the most). Populations with linkage architectures283

need both high mutation rates and high mutational variance to maintain284

strong genetic correlation, whereas the pleiotropic architecture just needs285

high mutational variance.286

In contrast to the correlation, the genetic covariance of the two traits287

was generally equal between pleiotropic and fully linked non-pleiotropic loci,288

and decreased as recombination increased within pairs of non-pleiotropic loci.289

The cause of the observed higher trait correlation obtained with pleiotropic290

loci was the lower genetic variance they maintain under stabilizing selection.291

Effects of migration on genetic correlation292

A higher migration rate from a source population, whose traits are un-293

der correlational selection, leads to higher genetic correlations in the focal294
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Figure 2: Average genetic correlation, total genetic variation and genetic covariation (and
their standard deviations) over 10,000 generations reaching mutation-selection equilibrium
for four different genetic architectures: pairs of linked loci affecting two different traits with
0, 0.1 or 1cM between loci, or pleiotropic loci affecting both traits. N = 5000, ω2 = 100,
ρω = 0.9, α2 = 0.1, and µ = 0.001. Dashed line represents Lande’s 1984 expectations for
completely linked loci (0 cm).

population regardless of the genetic architecture (Figure 7A). The effect of295

migration increases with tighter linkage and is highest with pleiotropic archi-296

tecture. This effect on genetic correlation is still observed when there is no297

correlational selection on the traits in the source population, but to a largely298

reduced degree (Figure 7B).299

Effects of linkage and pleiotropy on proportion of false positives/negatives300

and linkage disequilibrium in multi-trait GWASes301

In simulations where there is linkage between SNPs and equivalent lev-302

els of genetic correlation between traits, the number and proportion of loci303

that are false positives (above FDR cutoff but no effect on trait) increase as304

linkage distance decreases between SNPs affecting different traits (shown in305

Figure 8 and Supplementary Figure S1). When genetic correlation is higher306

(due to stronger correlational selection), linkage distance has a greater im-307

pact on the proportion of false positives. Also, genetic correlation has a larger308

effect than linkage distance on the number of false positives. In simulations309
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Figure 3: Effect of mutation rate (µ) on average genetic correlation, total variance and
genetic covariance (and their standard deviations) after 10,000 generations of correlated,
stabilizing selection for four different genetic architectures. N = 5000, ω2 = 100, ρω = 0.9,
and α2 = 0.1. Dashed lines represents Lande’s 1984 expectations for completely linked
loci (0 cM).

where SNPs are pleiotropic, genetic correlation due to correlational selection310

has little impact on the number and proportion of false negatives (below311

FDR cutoff but does affect the traits). Linkage disequilibrium between pairs312

of linked SNPs decreases as distance between SNPs increases regardless of313

genetic correlation (Figure 9 and Supplemental Table S1). Long-distance314

linkage disequilibrium between unlinked SNPs increases with the strength of315

correlational selection when the map distance within pairs of linked SNPs316

increases (when measured with D
′

, Supplemental Figure S2). In simulations317

where SNPs are pleiotropic, long-distance linkage disequilibrium does not318

seem to be affected by a change in genetic correlation. Finally, in simula-319

tions with neutral QTL, the false pleiotropic positive rate is 4.2e-5 (genetic320

correlation: gcor = 0.2), 8.3e-5 (gcor = 0.3), and 1.5e-4 (gcor = 0.4) on aver-321

age in the first 50kb window (within 0.05 cM of the causal QTL). No false322
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Figure 4: Effect of correlational selection (ρω) on average genetic correlation, total variance
and genetic covariance (and their standard deviations) after 10,000 generations of corre-
lated, stabilizing selection for four different genetic architectures. N = 5000, ω2 = 100,
α2 = 0.1, and µ = 0.001. Dashed lines represents Lande’s 1984 expectations for completely
linked loci (0 cM).

pleiotropic positives were found at map distance above 0.15 cM for gcor = 0.2323

and 0.3, and above 0.25 cM for gcor = 0.4.324

Discussion325

Pleiotropy and linkage are not the same326

The main expectation under an assumption of weak selection and strong327

correlational selection is that populations with a genetic architecture con-328

sisting of unlinked pairs of two completely linked loci (0cM distance) should329

maintain similar equilibrium levels of genetic correlation as with a genetic330

architecture consisting of a lesser number of unlinked pleiotropic loci (Lande,331

1984). Our results show that this is the case when there are half as many332

pleiotropic loci and mutation rates are relatively high. A high rate of muta-333

tion (10−3) allows for multiple mutations in both loci in a tightly linked pair334
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Figure 5: Effect of selection variance (ω2) on average genetic correlation, total variance and
genetic covariance (and their standard deviations) after 10,000 generations of correlated,
stabilizing selection for four different genetic architectures. N = 5000, ρω = 0.9, α2 = 0.1,
and µ = 0.001. Dashed lines represents Lande’s 1984 expectations for completely linked
loci (0 cM).

to accumulate and maintain levels of genetic covariance near to that of muta-335

tions in a single pleiotropic locus, but empirical estimations of mutation rates336

from varied species like bacteria and humans suggests that per-nucleotide mu-337

tation rates are in the order of 10−8 to 10−9 (Nachman and Crowell, 2000;338

Ford et al., 2011; Keightley et al., 2015; Lindsay et al., 2019). If a polygenic339

locus consists of hundreds or thousands of nucleotides, as in the case of many340

quantitative trait loci (QTLs), then per-locus mutation rates may be as high341

as 10−5, but the larger the locus the higher the chance of recombination be-342

tween within-locus variants that are contributing to genetic correlation. This343

leads us to believe that with empirically estimated levels of mutation and re-344

combination, strong genetic correlation between traits are more likely to be345

maintained if there is an underlying pleiotropic architecture affecting them346

than will be maintained due to tight linkage. Consequently, GWASes that347
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Figure 6: Effect of mutation variance (α2) on average genetic correlation, total variance
and genetic covariance (and their standard deviations) after 10,000 generations of corre-
lated, stabilizing selection for four different genetic architectures. N = 5000, ω2 = 100,
ρω = 0.9, and µ = 0.001. Dashed lines represents Lande’s 1984 expectations for completely
linked loci (0 cM).

detect associations between multiple traits and single genetic variants are348

more likely to be detecting pleiotropic loci than linked loci. Also, previous349

theoretical models suggest that Lande’s (1984) equilibrium levels of genetic350

variation are not well approximated at low per-locus mutation rates (com-351

pared to the strength of selection), which was also true in our simulations352

(Supplemental Figure S3) (Turelli, 1984; Bürger, 2000).353

We find that even under scenarios where pleiotropy and tight linkage354

maintain similar levels of genetic covariance, pleiotropic architectures have355

higher genetic correlations because they have lower total genetic variance.356

This can be explained by understanding the differential fitness effects of loci.357

Mutations that affect more than one trait are less likely to be beneficial (Orr,358

1998; Otto, 2004). The distribution of fitness effects of pleiotropic mutations359

is shifted towards more negative average values as the number of traits af-360
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Figure 7: Average genetic correlations in the focal populations (and their standard de-
viations) after 10,000 generations of migration from a source population with different
migration rates (m) for four different genetic architectures. A– Migration from a source
population with correlational selection between traits (ρω = 0.9). B– Migration from a
source population without correlational selection between traits (ρω = 0).

fected increases (Martin and Lenormand, 2006; Chevin et al., 2010). Hence,361

pleiotropic architectures that affect more traits have less positive mutational362

effects on fitness and maintain a lower equilibrium genetic variation when363

compared to linked architectures (Turelli, 1985). It has been suggested that364

this might be overcome in more complex organisms with a greater number365

of traits by modularization of the effects of different pleiotropic genes to366

separate sets of traits and decrease the pleiotropic degree of the mutations367

but theoretical models have shown mixed results (Baatz and Wagner, 1997;368

Hansen, 2003; Welch et al., 2003; Martin and Lenormand, 2006; Chevin et al.,369

2010; Wagner and Zhang, 2011).370

When correlational selection on the traits is strong in the simulations with371

linked architectures, the equilibrium genetic correlation is dependent on the372

recombination rates between loci within linkage groups. Tightly linked loci373
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Figure 8: Average number of false positives from GWA analyses (and their standard devi-
ations) for different linkage distances between paired loci and different genetic correlations
(gcor). A locus was considered a false positive if associations between the locus’ genotypes
and trait values, that the locus does not directly affect, are above the Benjamini-Hochberg
FDR cutoffs (with a significance level of 0.05).

can maintain higher levels of genetic correlation from a build-up of positive374

linkage disequilibrium than loosely linked loci. This matches the analytical375

predictions put forth in Lande (1984) under the assumption of weak stabi-376

lizing selection, strong correlational selection, and loose linkage between loci377

affecting the same trait.378

The impact of pleiotropy and linkage maintaining different genetic correla-379

tions in association studies380

When methods like GWA analyses are employed to detect shared ge-381

netic influences (pleiotropy or linkage) on multiple traits of interest, they382
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Figure 9: Average linkage disequilibrium (LD) between pairs of linked loci (and their
standard deviations) for different linkage distances between paired loci and different genetic
correlations (gcor).

are dependent upon detecting combinations of effect sizes of genetic variants383

associated with those traits (Hill and Zhang, 2012b,a; Chung et al., 2014;384

Visscher and Yang, 2016). The success or failure of this endeavor is directly385

connected to the ability to detect loci with associations to each trait and386

the strength of genetic correlation between traits (Wei et al., 2014; Pick-387

rell et al., 2016; Chesmore et al., 2018; Verbanck et al., 2018). Our results388

show that (tight) linkage between loci affecting different but correlated traits389

will lead to “many” false positives. We also show that false positive rates390

are only marginally affected by linked but non-causative loci. As expected,391

false positive rates decrease with the map distance to the causative loci and392

the correlation between the traits (Siegmund and Yakir, 2007). Therefore,393
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GWASes will not be able to empirically distinguish between pleiotropy and394

linkage when loci affect genetically correlated traits. The proportion of genes395

associated with two or more phenotypes in the GWAS catalog has increased396

to around 40% in the last decade (Welter et al., 2013; Pickrell et al., 2016).397

But it is difficult to determine if this is truly representative of the prevalence398

of pleiotropy because QTLs are often mapped to loci that can encompass399

thousands of nucleotides (and more than one gene) and informative SNPs400

with significant effect sizes are assigned to the closest genes with annotated401

phenotypes (Chesmore et al., 2018; Liu et al., 2019; Cai et al., 2020). Con-402

flating inter-genic SNPs with nearby pleiotropic genes (or loci) can distort403

the prevalence of pleiotropy and reduce the ability to distinguish pleiotropy404

from physical linkage (Dudley et al., 2005; Gianola et al., 2015). Finding405

the true false positive rate in GWA studies due to linkage is difficult because406

it is almost never known whether the source of genetic correlations between407

traits is linked loci or not, even when fine-scale sequences are available (for the408

reasons mentioned above and because of the way pleiotropy is erroneously de-409

fined in GWA studies) (Platt et al., 2010). Watanabe et al. (2018) attempted410

to break down this issue in a meta-analysis of 558 GWASes by looking at411

the proportion of genomic loci, genes, and SNPs associated with multiple412

traits, which may provide a clearer picture of the prevalence of pleiotropic413

causal variants. They found that 93.3% of loci, 81.0% of genes, and 60.2% of414

SNPs, were associated with more than one trait. This may seem to provide415

a better estimate of pleiotropic levels, except that in this study SNPs that416

were associated with more than one trait could still have been the result of417

linkage disequilibrium. A point that was brought up by the authors.418

On the other hand, we observed very few false negatives in pleiotropic loci419

(regardless of genetic correlation) because we “sampled” the entire popula-420

tion and therefore had the power to find significant associations with (almost)421

all causal loci. Had we taken smaller samples of our population to perform422

the GWA analysis, we would have found a greater number of false nega-423
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tives. The salient consequence is that study design, threshold levels, and424

genetic correlations between traits will all affect detection of genetic vari-425

ants, whether the variants are causal themselves or linked to causal variants426

(Wagner and Zhang, 2011; Hill and Zhang, 2012a). Also, the number of427

pleiotropic effects a locus has may be under-represented by significance lev-428

els in association studies (Hill and Zhang, 2012b). Wagner and Zhang 2011429

go a step further to suggest that number or proportions of traits affected430

may not be as meaningful as describing the distributions of pleiotropic effect431

sizes on traits.432

There is a difference between pleiotropy and linkage at the nucleotide level433

Transgenic experiments may differentiate pleiotropy from linkage at the434

gene level (Mills et al., 2014), but at the nucleotide level does the distinction435

between two linked loci and one pleiotropic locus go away? There is evidence436

that even in the same gene, adjacent polymorphisms affecting different traits437

in Drosophila can be in linkage equilibrium due to fine-scale recombination438

(Carbone et al., 2006; Flint and Mackay, 2009). But imagine a case where439

a mutation in a single base-pair has an effect on one trait and a mutation440

in the base-pair right next to the first base-pair has an effect on a second441

trait. Now imagine a second case where a mutation in a single base-pair442

has an effect on two traits. There still seems to be a distinction between443

these two cases because the probability of a change in both traits in the first444

case is the mutation rate squared compared to the second case where the445

probability of a change in both traits is just the mutation rate. Depend-446

ing on the per-locus mutation rate this difference can be quite large (e.g.447

10−8 versus 10−16). Even in this extreme case, there may indeed still be a448

gray area in the distinction between pleiotropy and linkage at a mutational449

level. Mutations may affect the pleiotropic degree (e.g. like enzyme speci-450

ficity) of a protein-coding gene and the degree to which the gene maintains451

multi-functionality may itself evolve (Guillaume and Otto, 2012). If there452

is correlational selection between the catalytic functions of an enzyme, then453
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some pleiotropic mutations that affect more than one catalytic ability will454

be favoured, and genetic correlations will increase. With this in mind, it455

makes more sense from a theoretical and functional standpoint to refer to456

pleiotropy at the nucleotide level (or at the unit of a mutation), than at the457

gene or larger locus level (but this may depend on the questions of interest458

(Rockman, 2012; Rausher and Delph, 2015)).459

Other factors460

Even in the absence of correlational selection it is possible to maintain461

genetic correlation through continued migration from a source population.462

High migration brings individuals whose combination of alleles will expand463

focal population variation in the direction of the source population. This464

corroborates previous results that showed that slow introgression of allelic465

combinations into a population can affect the genetic variance-covariance466

structure of that population (Guillaume and Whitlock, 2007). Whether ge-467

netic covariance will be maintained in real populations depends on the nature468

of correlational selection on traits in the population of interest, since migra-469

tion can reduce local fitness (i.e. migration load) if allele combinations are not470

favoured by selection or increase it if they are (Nosil et al., 2006; Bolnick and471

Otto, 2013). Migration into a population will also affect false positive rates472

since immigrating allele combinations will be in LD from the source popula-473

tion and will therefore increase the proportion of certain genotypes, even if474

there is no strong trait correlation in the source population. Although not475

investigated in this study, a structured population and/or a continual system476

of inbreeding in a population where there is correlational selection between477

polygenic traits can result in increased genetic covariation caused by larger478

LD Lande (1984), which can in turn increase false positive proportions.479

Conclusion480

Pleiotropic loci maintain stronger genetic correlations between traits than481

linked loci affecting different traits even when no recombination occurs be-482
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tween the loci, and especially in the magnitude of empirically estimated mu-483

tation rates. Previous models of the maintenance of genetic covariation at484

mutation-selection equilibrium describe genetic covariation as a function of485

the product of mutation rate and variance. These models provide similar486

expectations for pleiotropic and tight linkage architectures. The discrepancy487

occurs because of the contingency of mutational covariance input on the oc-488

currence of mutations (and hence mutation rate). Without high mutation489

rates, the ability to create genetic covariance between linked loci is highly490

diminished because the combined likelihood of mutations in each linked loci491

with both mutational effects in the same direction is low. This result will492

have implications in the type of underlying architecture we expect to find493

in multi-trait association studies. On the one hand, tighter linkage between494

causal loci and detected loci maintains higher genetic correlations, leading to495

a greater proportion of false positives in pleiotropy tests. More importantly,496

on the other hand variants are more likely to have pleiotropic effects on497

traits than linked effects, when they are found to be associated with strongly498

correlated traits.499
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Supplemental522

Figure S1: GWA analysis: -log(p-values of slope of regression of trait values on genotypes)
from one set of example simulations. In the case of linkage architectures, the first 120
loci only affected trait 1 and the next 120 loci only affected trait 2. The order of the loci
are sorted for visualization purposes whereby linked pairs are separated by the trait they
affect (e.g. loci 1 and 121 in the figure are a linked pair). In the case of the pleiotropic
architecture, all 120 loci affected both traits. The average genetic correlation of ≈ 0.3
was observed by adjusting the correlational selection levels to 0.88, 0.89, 0.93, and 0.965
for pleiotropy, linkage 0cM, linkage 0.1cM, and linkage 1cM, respectively. Dashed lines
represent the Benjamini-Hochberg FDR cutoffs for a significance level of 0.05.
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Figure S2: Average linkage disequilibrium (measured by D
′

) between linked pairs (left
panel) and between unlinked pairs (right panels) for different genetic correlations and
genetic architectures. N.B. No linked pairs existed between pleiotropic loci.
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Figure S3: Average genetic variances for different mutation rates and genetic architectures,
with either one pleiotropic locus or two completely linked loci, compared against theoretical
expectations from several models (Bürger, 2000).
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Table S1: Results of GWA analyses for different architectures with average false nega-
tives (Type II errors) for pleiotropic architectures and false positives (Type I errors) for
linkage architectures, as well as linkage disequilibrium (LD) measurement averages for
short-distance (physically linked loci) and long-distance (unlinked loci) comparisons. The
genetic architectures in the bottom half of the table have higher genetic correlations than
the top half (created by adjusting correlational selection) to compare the differences at
different genetic correlation.

Genetic Genetic Cor Type I/II D’ D’ R2 R2

Architecture (SE) Error % short long short long
Pleiotropy 0.308 (0.0046) 0.35% NA 0.018 NA 0.00027
Linkage (0cM) 0.300 (0.0055) 22.06% 0.37 0.023 0.089 0.00026
Linkage (0.1cM) 0.300 (0.0045) 20.17% 0.26 0.025 0.047 0.00027
Linkage (1cM) 0.308 (0.0035) 18.28% 0.13 0.030 0.007 0.00027
Pleiotropy 0.407 (0.0048) 0.32% NA 0.018 NA 0.00027
Linkage (0cM) 0.398 (0.0074) 28.76% 0.43 0.025 0.107 0.00027
Linkage (0.1cM) 0.408 (0.0035) 28.46% 0.30 0.027 0.050 0.00027
Linkage (1cM) 0.404 (0.0029) 25.34% 0.19 0.048 0.006 0.00027
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