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Summary. Recent results from the analysis of postglacial rebound data 
suggest that the viscosity of the Earth's mantle increases through the 
transition region. Models which fit both relative sea-level and free air gravity 
data have viscosities which increase from a value near 1OZ2poise in the upper 
mantle beneath the lithosphere to a value of about loz3 poise in the lower 
mantle. In this paper we analyse the effect of deglaciation upon the Earth's 
rotation and thereby show that the observed secular trend (polar wander) 
evident in the ILS-IPMS pole path, and measurements of the non-tidal 
acceleration of the length of day, are both consistent with the viscosity 
profile deduced from postglacial rebound. The two analyses are therefore 
mutually reinforcing. 

1 Introduction 

The traditional method which has been employed to estimate the viscosity of the planetary 
mantle is that based upon analysis of postglacial rebound data. These data constitute a 
memory of the planet's response to the massive deglaciation event which began c. 18 000 
yr BP. Although it is not our purpose here to discuss such analyses in detail, it is important 
to appreciate the main results which have been obtained to date. These results are based 
upon inversion of the data using a global model (Peltier 1974, 1976; Peltier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Andrews 
1976; Peltier, Farrell & Clark 1978) which accepts as input a complete deglaciation history 
and produces as output predictions of relative sea-level, free air gravity anomaly, or other 
observable signatures (e.g. surface tilt) of the response. Preliminary analysis of relative sea- 
level data with this model suggested that the viscosity was sensibly constant and equal to 
about 10"poise (Peltier & Andrews 1976; Peltier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. 1978) or that the rsl data were 
insensitive to viscosity increases at sufficiently great depth. When the rsl histories were 
augmented by free air gravity data from the Laurentide region, it was found (Peltier 1980; 
Wu & Peltier 1981a, b) that some increases of viscosity with depth was required in order to 
fit the 35-40 mgal negative anomaly over the central depression. These data seem to require 
a lower mantle viscosity which is somewhat less than 1OZ3poise. 

Since knowledge of the variation of mantle viscosity with depth is an important in- 
gredient in a very wide range of geodynamic models, particularly those for the mantle 
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5 54 

convective circulation (Peltier 1980), it is interesting to enquire as to whether there might 
be other geophysical observations, distinct from those pertaining to glacial isostasy itself, 
which could be employed to verify the validity of the inference from isostatic adjustment. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As we wdl show here, a set of data which does provide such corroboration is that which 
concerns changes in the Earth's rotation which were forced by the same deglaciation event 
responsible for producing the observed rsl variations. That we should expect this event to 
produce substantial effects upon rotation, follows immediately from the fact that the masses 
of the major ice sheets (Laurentide, Fennoscandian) were on the order of 1022g, as may be 
deduced from the observation (e.g. Shepard 1963) that their melting effected a global sea- 
level rise of approximately 80 m. 

In Fig. 1 we show the main set of data with which the analysis in this paper is concerned. 
The top and bottom portions of the figure illustrate the polar motion in CIO coordinates 
(x-axis through Greenwich and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy-axis along 90" W longitude) based upon the reduction of 
early ILS data by Vicente zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Yumi (1969, 1970) as described in Dickman (1977). These 
polar motion data clearly show the 7 yr beat period associated with the superposition of the 
12 month annual and 14 month Chandler periodicities. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThis oscillatory component is itself zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

R. Sabadini and W. R. Peltier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 1. x and y components of the polar motion in CIO coordinates during the period 1900-75 based 
upon ILS-IPMS data. The dashed lines denote the secular trend upon which the 7 yr beat between the 
14 month Chandler and 12 month annular variations are superimposed. This secular trend constitutes 
'real' wander of the rotation pole relative to the geography. The inset polar projection shows the location 
of the CIO coordinates and the disposition with respect to them of the major continental ice sheets. The 
line extending from the origin of the CIO system and marked by the dark arrows denotes the current 
direction of polar wander, 
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superimposed upon a secular trend which constitutes real ‘wander’ of the rotation pole 
relative to the geographic coordinates. The slope of this secular trend is such as to imply a 
present day speed of polar wander of approximately zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl0/1O6yr. The direction of migration 
of the pole over the 75 yr period spanned by the polar motion data is shown in the central 
portion of Fig. 1 by the heavy arrow drawn from the origin of the CIO system. 

Also shown in the central part of Fig. 1 are the locations of the major continental ice 
sheets which were in place at glacial maximum 20000 yr ago. It is important for our 
purposes here to note that the direction of polar wander is approximately towards the 
ancient Laurentide ice sheet which was easily the largest of those which later disintegrated 
(Peltier & Andrews 1976). This is precisely what we would expect if the observed polar 
wander were induced by the deglaciation event: the net polar motion being in a direction 
determined by the vector sum of the forcing produced by the individual ice masses. Since 
the Laurentide sheet dominates the forcing we expect the polar wander to be very nearly in 
the direction of its centroid. The question which we shall address here is whether the 
observed rate of polar wander is compatible with the viscosity profile deduced from post- 
glacial rebound data and the known mass and areal extent of the major ice sheets. 

In Section 2 we describe the simple theoretical model which we have developed for the 
purpose of analysing the above described polar motion data. Section 3 is concerned with a 
discussion of various exact and approximate methods which may be employed to solve the 
model equations and these are compared numerically. In Section 4 we first prove that a 
linear approximation to the complete system is adequate for most purposes and proceed to 
employ it to analyse the polar wander forced by deglaciation. From the observed speed of 
polar wander we infer a mean mantle viscosity. In Section 5 we employ the same model to 
predict a non-tidal variation in lod and show by fitting the model to this observation that the 
same viscosity is required as obtained from the analysis of polar wander. Our main con- 
clusions are presented in Section 6. 

2 A simple theoretical model 

If we suppose that the Earth is subject to no external torque, then the principle of angular 
momentum conservation may be expressed in the form (e.g. Goldstein 1950) 

which applies in a coordinate system rigidly attached to the Earth as a whole. This body 
fixed coordinate system, with its origin at the Earth’s COM, is chosen such that the inertia 
tensor of the initially unperturbed Earth is diagonal. In (l), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwi is the angular velocity vector, 
4j is the moment of inertia tensor, and Eijk is the Levi-Cevita (alternating) tensor. Munk & 
MacDonald (1960) remains an excellent reference to various applications of (1) to studies of 
the rotation of the Earth. The inertia tensor Jii contains contributions from two sources 
wluch are of interest to us here, due respectively to the effect of the deformation produced 
by the basic rotation and that associated with the response of the planet to the surface 
loading of the ice sheets. Both of these effects are time-dependent but may be specified 
exactly if the rheology of the Earth and the deglaciation history may be assumed known. 
Because we are interested in testing the compatibility of the rotation data with postglacial 
rebound observations we will employ the same Maxwell model of the rheology as in Peltier 
(1 974). In the remainder of this section we shall discuss the two contributions to Jii .  Once 
these are known, the problem of determining the rotational response of the Earth to de- 
glaciation reduces to the problem of solving the, set of simultaneous ordinary differential 
equations (1). 
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556 R. Sabadiniand W. R. Peltier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP E R T U R B A T I O N S  O F  INERTIA  D U E  TO V A R I A B L E  R O T A T I O N  

The deformation of the Earth which is associated with its rotation may be determined most 
simply using the Love number formalism in combination with MacCullagh’s formula 
(Jeffreys 1970). If the Earth is subject to a disturbing potential &(r, s ) ,  such that 

m 

9 2 @ ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= c @z, 1(r, s)4(cos 0) (2) 
I =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

where s is the Laplace transform variable, r the distance from the COM, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 the usual 
Legendre polynomial, then this applied potential will elicit a response $J1(r ,  s) such that 

91, l k  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs) = @z, 1k s)kl(r* s) (3 1 
where kl(r, s) is the so called ‘tidal’ Love number. If the applied potential is the centrifugal 
potential \k associated with rotation, then 

\k = % [ 0 2 r 2  - ( W ~ X ~ ) ~ ]  (4) 

which (e.g. Munk & MacDonald 1960) can be split into two terms as 

\k = 1/3u2rZ t x 

where 

x =  ‘/a [o : (x ;  + x :  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2:) + . . . - 6 w l o z ~ l ~ z ]  

is a spherical harmonic of degree 2 and the dots designate 
cyclic permutation of the indices. The external gravitational 

( 6 )  

additional terms obtained by 
potential V ,  produced by this 

part of the centrifugal potential, therefore enters MacCullagh’s formula as 

where the * indicates convolution (i.e. the Laplace inverse of (3)). The Love number k2(t)  
may be obtained from the equivalent time-independent expression for an elastic Earth (e.g. 
Munk & MacDonald 1960) by application of the correspondence principle (e.g. Peltier 
1974). For an incompressible homogeneous Earth the elastic Love number is 

where f i  = 19p12pga is the non-dimensional rigidity in which p is the elastic rigidity, p the 
density, g the surface gravitational acceleration, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa the radius of the homogeneous model. 
To apply the correspondence principle we simply note that kz(s) for the Maxwell model 
(Peltier 1974) is 

312 

1 + f i ( s ) ’  
kz(s) = 

where 

The Laplace inverse of (9a) is 
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Pleistocene deglaciation and the Earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA’s rotation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA557 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where y = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@/u)/(  1 t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAji) is the inverse relaxation time of the I = 2 component of the deforma- 
tion in which v is the molecular viscosity of the homogeneous model. Introducing the 
explicit expressions for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 and k2 into MacCullagh’s formula, we get 

G 
- [C11(xi +x: - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb;) + . . . - ~ C ~ ~ X I X ~ I  = - x(t)*k,(t)  
2r’ 

where Iaij zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt Cij are the elements of the inertia tensor of the rotationally deformed sphere. 
Taking into account the fact that a solid harmonic will produce deformations which leave 
Cii invariant (e.g. Rochester & Smylie 1974) we may equate similar terms on each side of 
(1 1) to obtain 

cr (1 1) 

x exp [--y(t - t ‘ ) ] d t ’  1 . (12) 

It is a consequence of the incompressibility of the model that the term a2r2/3 in (5) does 
not contribute to the perturbations of inertia (Rochester & Smylie 1974). To obtain the 
total inertia of the rotating sphere we must add to (12) the inertia which exists in the 
absence of rotation. This may be obtained by assuming that the effect of rotation is to 
change the moment about the polar axis by 2A/3 and about the two orthogonal equatorial 
axes by -A/3 (e.g. Burgers 1955) where A is unknown. If we insist that the resulting 
principal moments must equal the observed values C and A (say) we get the moment of 
inertia of the non-rotating sphere (I) as 

C - A  

3 
Z = A  t - .  

We may then write the total inertia tensor Jii(t) as 

Jij(t) = I6ij + Cij(t)  t h j ( t )  (14) 

where Zij(t) is the variation of the inertia tensor which is forced by the surface mass loading 
of the ice sheet and the deformation of the Earth which is produced in response. In order 
to calculate this contribution we shall assume (reasonably) that variations in rotation do not 
feed back on to the rebound itself. We shall also assume that the earth model is homogeneous 
and incompressible as above. Since the rotational response to deglaciation is entirely 
associated with the I = 2 component of the load and of the response to it, and since the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 = 2 deformation samples the entire mantle, any inference which we make by fitting the 
homogeneous model to the observations will refer to the mean material properties of the 
interior. Since the real Earth is neither incompressible nor homogeneous it is useful to adjust 
the parameters of the model to reflect reality better. Some improvement may be obtained 
if the fluid part of the k2 Love number in (10) is forced to equal that which is observed 
the result being the so-called equivalent earth model (Munk & MacDonald 1960) in which 

where kf = 0.96. 
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558 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASabadini and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. R. Peltier 

2.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP E R T U R B A T I O N S  O F  INERTIA  D U E  TO S U R F A C E  M A S S  LOADING A N D  

ISOSTATIC A D J U S T M E N T  

The contributions to hj in (14) are due to the ice sheets themselves and to the deformation 
which their melting induces. Rather than attempting to employ a detailed deglaciation 
model such as that described in Peltier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Andrews (1976), particularly since such models 
may still contain rather significant errors (Peltier 1980), we will use a simple spherical ice 
cap to model the glacial forcing. Since this forcing is so strongly dominated by the large 
Laurentide ice sheet, whose geometry is well known, we expect that the error incurred in 
employing such a simplified representation will be small. The strategy which we shall adopt 
for calculating zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhi in (14) is to obtain it in a coordinate system which has the ice cap on its 
polar axis and in this coordinate system we shall call the tensor components zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ i .  Having 
computed I; in this fashion we may obtain hi by multiplying Z i  with an appropriate rotation 
matrix. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn ice sheet of angular radius a and total mass M may be described by the following 
surface density (Farrell 1972) 

where 8 is the angular distance from the centre of the ice cap. We may force our system to 
mimic a closed hydrological cycle by assuming that there is a defect of mass in a global 
ocean outside the ice sheet of magnitude - M  distributed over the surface area 2na2(1 + 
cos a )  and thus corresponding to the surface density 

Conservation of mass is then ensured by the fact that crFc + uicE = 0 (i.e. the 1 = 0 com- 
ponents cancel). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

In the coordinate system O x ~ x ~ x $ ,  in which the centre of the ice cap lies along the 
xh-axis and distance a from the origin, the perturbations of inertia due to the surface mass 
distribution o(e) = ooc(8) + uICE(e) can be written as 

a' 
& = -  L ,  

3 

where 

L z  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/:/I' Pz(x)o(x, $)az dx d$ 
1 

and the off-diagonal elements of Z,!i are identically zero. In general u (and thus L, )  is time- 
dependent and it is through this dependence that we shall later introduce explicit deglacia- 
tion histories into the model. In the Laplace transform domain this requires u = u(s). 

The contribution to I,!i due to isostatic compensation is produced by the change in shape 
of the planet as a whole which is effected by viscous flow due to the initial isostatic dis- 
equilibrium. This contribution may be calculated as follows. By definition the inertia tensor 
'ii is 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx‘(x, s) denotes the position vector of the mass element with density zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp in the 
reference frame 0 x ; x ; x ;  of the material particle x and may be expressed as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x; =xi  t Uj(X, s). (21) 

Substituting (21) in (20) and linearizing with p = po (homogeneous) yields 

in which the first term is just the inertia of the unperturbed sphere, while the second gives 
the inertia due to the deformation induced by the load. Again due to incompressibility we 
have Zil = Z;2 and I;,  = - 2Zi1 so that it suffices to compute but one of the diagonal com- 
ponents. 

To evaluate the second term in (22) for a disc load we require the displacement vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
u = urgr + ue&e which from Peltier (1974) may be written in the form 

Substituting (23) into the second term of (22), evaluated for Ii3, gives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2R R 

143(s) = 2p0 Jo r 3  [ur(e,  r ,  S) sin2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 + ue (0, r ,  s) sin 0 cos 01 sin 0 dB d@ dr. (24) 
0 0  

Now ur and ue, for a load of arbitrary surface mass density u may be obtained by convolu- 
tion as (Peltier & Andrews 1976) 

2n R 

ue(0, @, r ,  s )  = ( [ CT(p, r ,  s)u(0’, @’, s)a2 sin 8’ do‘ d@‘ (26) 
J o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ o  

where GR and GT are the Green functions for radial and tangential displacement respectively, 
which give the impulse response of the system to a point mass load (Peltier 1974), and /i? = 
0 - 8’ denotes the angular separation between the point of observation and the point of 
application of the load. Since GR and GT have spherical harmonic decompositions 

substitution of (27) and (28) in (24), making use of the addition theorem for spherical 
harmonics and the implications of the incompressibility condition, yields 
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560 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
For the incompressible sphere the parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGF, GT are given explicitly by (Wu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Peltier 
1980a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. Sabadini and W. R. Peltier 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE = 87rGpi/3,S = 19/a2,dl = 2Gpo/a',d2= - 16Gpo/3a3 
Substitution of (30) into (29) leads to the analytic result 

where L2(s) is as defined in (19). Incompressibility requires = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ;, and Z;, = -ZJ3/2, as 
previously. 

These perturbations to the inertia tensor due to global relaxation under the ice sheet 
may be expressed in terms of the surface load Love number kk(s).  In fact, the instantaneous 
elastic part of kk(s) is just 

so that application of the correspondence principle yields 

kk(s) = kk (1 i- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s+7 

(33) 

and the component of the inertia perturbation ZJ3 in (31) may then be written 

(34) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL 
I&) = - - a2L2(s)kk(s). 

Combining (34) (using I ; ,  = -Zi3/2) with (18a) gives (with L2(s)  = L 2 - f ( s )  in which L2 is 
obtained from (1 9) and f(s) contains the s dependence of the load) 

3 

The Love number kk must be corrected to take into account both the inhomogeneity of the 
real Earth and the sinking of the surface load. This correction is obtained by making use of 
the isostatic factor I to correct the elastic part of kk  in equation (34) as 

where 1 = 4(b/a) . ( 1  - p'lp,) (Munk & MacDonald 1960). In this expression b is the average 
crustal thickness, and p' the average density of the crust. When the complete tensor Z:i is 
rotated counter-clockwise through the angle 0 about the y-axis, where 0 is the colatitude of 
the centre of the ice sheet, and the result transformed into the time domain by explicit 
calculation of the Laplace inverse, the result is the tensor Zi f ( t )  which appears on the right 
side of (14) for Jii(t), which is itself required in the system (1). 
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3 Solution for the forced rotational response: exact and approximate methods zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Clearly the system of equations (l), withJi,(t) a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAknown function (14) of the components of 
instantaneous angular velocity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwi and the applied load, are highly non-linear in general and 
therefore difficult to solve. In this section we shall establish the conditions under which the 
general system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1) may be approximated by an equivalent linear system by investigating the 
rotational response of the earth model to a specific (and simple) deglaciation history. Exact 
and approximate methods of solution will be discussed in turn. 

3.1 A N  E X A C T  M E T H O D  O F  S O L U T I O N  FOR H E A V I S I D E  E X C I T A T I O N  

Suppose that the planet has been spinning with angular velocity 52 about its axis of greatest 
inertia from t = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00 until t = 0, at which time it is perturbed by the addition to its surface 
of the circular ice cap described in Section 2.2. We shall assume that this ice cap remains on 
the surface thereafter. With the change of variable 

Wi 

52 
m i = - - ,  (3 7) 

where the mi are the direction cosines of the rotation axis in the Oxlxzx3 coordinate 
system, the Cii(t) defined in (1 2 )  may be simplified by evaluating the integrals analytically 
for te [- 00,0] to give 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I-( 

3 
+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAii exp (- yt)m363i - - exp (- yt)mi C. .m.  = 

11 I 

and in the following we shall define the constant R = a552zkf/3C(1 + D). Now the set of 
equations (1) constitutes a system of three coupled non-linear integro-differential equations 
because of the appearance of the history integrals in (38). By defining the auxilliary variables 

t 

hii = y j,, mimi exp [- r ( t  - t ' ) ]  dt' (39) 

this system may be reduced to an equivalent set of ordinary differential equations which 
may be solved as an initial value problem using conventional methods. Because the hij matrix 
is symmetric it has only six independent elements. If these independent elements are 
assembled with the mi into a 9-vector y = (ml, m2, m3, h l l ,  hzz,  h33, hl, ,  h I3 ,  hz3), then the 
system of equations (1) may be written in matrix form as 

where x is a non-dimensional time defined as 

QRFt 

I 
x=- 

and where we have initially neglected the contribution to Jij(t)  due to the ice load and the 
deformation associated with it. The factor fZRji/I in (41) has the dimensions of inverse time 
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and is in fact the initial frequency of the Chandler wobble forced by the glaciation event. In 
(40) the matrices zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA*(x) and B*(x) are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 3 ,  I is the 6 x 6 identity matrix, and D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis 6 x 9. 
The elements of each of these matrices are given in Appendix A. 

If the effect due to the surface load alone were included in ( l ) ,  as described by I i j ( t )  in 
(14), and the Cjj ( t )  and Rii j  neglected, then (1) would reduce to the system 

R. Sabadini and W. R. Peltier 

dm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
dx 

P - = Q m  

where P and Q are 3 x 3 matrices whose non-dimensional forms are given in Appendix B 
for Heaviside excitation. When both the effects of loading and of rotation are included, as 
they must be in the full problem, then the evolution of the system is described by (40) 
with A*(x) replaced by A = A* t P and B*(x) replaced by B(x) = B* t Q. The resulting set 
of simultaneous ordinary differential equations may therefore be written in standard form as 

dx D 
(43) 

This system may be solved using standard numerical procedures, but before presenting such 
solutions we will first describe two approximate methods of solution with which the exact 
solution will be compared. 

3.2 A P P R O X I M A T I O N  S C H E M E S  

The first approximation scheme which we shall consider is that proposed by Munk & 
MacDonald (1 960) for application to the problem of polar wander under conditions such 
that the axes of figure and rotation do not wander too far from the reference pole. The set 
of equations (1) is linearized in the quantities mi and Zij/C and the result, in the Laplace 
transform domain of the imaginary frequency s, is the algebraic system 

where ur= Q(C - A ) / A  is the Chandler wobble frequency for a rigid earth and where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m(s) is the complex variable m(s) = ml(s) t im2(s) in which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm l  and mz are the direction 
cosines of the rotation axis in the 0 ~ ~ ~ ~ x 3  system and \kD(s) and @(s) are respectively the 
excitation functions due to the rotational deformation and surface load. The latter have the 
explicit forms 

where @(s) = @J~(S) t i&(s). In this scheme variations in the lod, which are described through 
m,(t), are decoupled from the ml and m2 variations and may be calculated from G3(s) where 
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Pleistocene deglaciation and the Earth’s rotation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA563 

When explicit use is made of equations (1 0) and (1 5) in the expression for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA\ k ~ ( s )  in (45a), 
then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(44) has the simple s-domain solution 

(47) 

in which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo$/( 1 + i i) is the Chandler frequency for the Maxwell earth. From (47) it is 
apparent that, within the context of this linear approximation, the problem consists simply 
of a discussion of the extent to which two normal modes are excited by the deglaciation 
forcing. These two normal modes correspond respectively to the poles at s = 0 and at s = 
io, - y in the complex s-plane. The first of these, at s = 0, contains the polar wander com- 
ponent of the response while the second is just the free Eulerian nutation (Chandler wobble) 
which is damped at the rate y due to the imperfection of elasticity embodied in the Maxwell 
rheology. In general the deglaciation event will excite both wander and wobble although the 
strength of the forcing at the Chandler frequency will be extremely weak if the time-scale 
of deglaciation is sufficiently long. Obviously we would prefer to employ the simple linear 
solution (47), rather than the exact solution embodied in (43), but before doing so we are 
obliged to establish its accuracy. 

A second approximation scheme which we shall also discuss briefly was proposed by 
Burgers (1955) for a model with standard linear solid rheology rather than for the Maxwell 
rheology which is most appropriate to the problem of polar wander which concerns us here. 
Burgers’ approximation is less restrictive than complete linearization, and is based upon the 
assumption that the Earth behaves as a perfect fluid in so far as the rotation is concerned. 
This assumption suffices to filter the Chandler mode completely from the dynamical system 
which is the reason for its theoretical utility. The same approximation was employed in 
Murk & MacDonald (1 960) to solve the so-called Goguel-Fermi problem and is embodied 
in their equations (12.6.3) which in the present application take the form 

-- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdm2 - S 2 + r S l m 3 - r S 3 m l  
&’ 

in which the quantities r, S1, S2, S3,  are defined in Appendix C for the case in which the load 
has a Heaviside time dependence and with x‘ = t/SCALE where the time-scale SCALE is taken 
somewhat arbitrarily to be 103yr. Like the complete system (43) the approximate system 
(48) may be solved as an initial value problem using a standard subroutine for the solution of 
simultaneous ode’s. In the following subsection we shall compare exact and approximate 
solutions for the Heaviside load history. 

3.3 COMPARISON O F  EXACT A N D  APPROXIMATE SOLUTIONS 

In the limit of small time following application of the load, the linear solution (47) is exact 
and so may be employed to compute starting values for the non-linear systems (43) and 
(48). Given the starting values, these systems of ode’s may be integrated directly and for this 
purpose we have employed the sixth-order accurate Runge-Kutta-Fehlberg scheme 
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564  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

6 -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5- 

N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 -  

k! 3- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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I 1 I I I 1 I I 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Table 1. 

Parameter Symbol Value 

Viscosity U 

Ice sheet mass M 
Angular radius of ice sheet a 

Initial displacement of the centre of the ice 
e 

Density Po 
Rigidity P 

Gravitational acceleration g 
Earth's radius a 

Earth's mass Me 

sheet from the axis of figure 

Crust thickness 
Crust average density 

b 

P' 

poise 
2 X 102"kg 
15" 

25" 
5517 kg m-3 
1.4519 X 10"N m-2 
9.82 m 
6.371 X 106m 
5.976 X 1024kg 
20 km 
2840 kg m-3 

described by Enright & Hull (1976). Although the direct integration of (48) is straight- 
forward, the same is not true for the exact equation (43). The difficulty with (43) is due to  
the fact that it contains two widely separated time-scales due to the Chandler wobble and 
polar wander components of the response. The short time-scale wobble component is 
filtered in (48) but its presence in (43) makes the system 'stiff and obliges us to employ a 
short time-step based on the Chandler period which means that direct integration requires 
considerable CPU time. In practise we sample the response approximately 10 times per cycle 
and extract the polar wander by applying a running average to the complete history. 

In Table 1 we list the model parameters to be employed in the following comparisons of 
exact and approximate solutions for the response due to a Heaviside glaciation history. 
Several of the quantities listed in the table, such as the viscosity of the mantle and the ice 
sheet radius and mass, are employed only for illustrative purposes in this section. 

Figs 2 and 3 compare the exact and two approximate solutions for the polar wander 
forced by a Heaviside excitation. Only the secular variation in m l  is shown (since all of the 

22 
V -  10 POISE 
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Pleistocene deglaciation and the Earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA's rotation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA565 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 I 2 

TIME zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Yrs)xlO-* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 3. Complete polar wander history forced by loading due to sudden application of a circular ice cap 
for both positive loading (glaciation) and negative loading (deglaciation). In each case the centre of the 
circular ice cap is 25" away from the initial position of the rotation pole. The solid line is the exact 
solution and the dashed line the linear approximation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
time-dependence of m2 is due to Chandler wobble) and variations of m3 will be discussed 
later in relation to the question of the forced variations of lod. The linear solution, shown as 
the broken line on Fig. 3, is obtained from the Laplace inverse of (47) which gives 

where Pl = cos 0 sin 0L2a29/(1 + j i ) ,  P2 = cos 0 sin 0L2C(a2/(1 + ji), and we have used f ( s )  = 
l/s in the definition of @(s) in (47) since the load history is a step function in time. 
Inspection of Fig. 3 shows that the polar wander part of the linear solution begins to deviate 
substantially from the exact solution (solid line) for times in excess of some tens of millions 
of years. In Fig. 2 the linear solution (dashed line) coincides with the exact solution while 
the approximate solution obtained from (48) (solid line), on the other hand, becomes a good 
approximation to the history only after the Chandler wobble has been damped signifi- 
cantly. 

In Fig. 3 we have employed the long-term accuracy of the system (48) to continue the 
exact solution from (43) beginning from a time t = 4y-I until equilibrium is achieved. The 
curve labelled 'glaciation', in which m l  takes on positive values due to our choice of 'IT for 
the longitude of the centre of the ice cap, shows the polar wander produced by adding a 
positive load to the surface at t = 0 of radius a and by simultaneously removing an equiva- 
lent mass from the global ocean (the centre of the ice sheet is offset by 25" from the initial 
rotation axis). The equilibrium configuration in this case has the rotation pole displaced 65" 
away from the centre of the ice sheet. The second curve in Fig. 3, labelled deglaciation, 
shows the response to removal of an equivalent load within the same area of radius a and 
simultaneously adding the same mass to the global ocean. In equilibrium the new rotation 
pole coincides with the centre of the defect of mass, i.e. orthogonal to the final location of 
the pole in the glaciation case. In each case, the final location of the pole coincides with the 
axis of greatest inertia. The relaxation time of the polar wander in both cases, when the 
mantle viscosity is 10'' poise, is on the order of 108yr. This true polar wander is entirely a 
consequence of the non-zero value of the isostatic factor 1 in equation (36). 
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Y " 

L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
500 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

THOUSANDS OF Y E A R S  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAGO 

Figure 4. Oxygen isotope ratio (l6O, 'OO) variability obtained from a deep sea core covering the time 
period 0-5 X 10Syr before present. These data are related to global ice volume in the manner shown and 
demonstrate that the long time-scale climatic fluctuations are dominated by quasi-periodic changes on a 
timescale of IO'yr. This figure is based upon data from Hays et al. (1976). 

In spite of the considerable disagreement obtained at large times between the linear 
approximation (43) and either the exact or approximate non-linear model, in so far as the 
response to a Heaviside excitation is concerned, the linear model turns out to be quite 
adequate for present purposes as shown in the next section. 

4 Polar wander for realistic surface load histories 

The best currently available data which provide information on the actual time dependence 
of the extent of northern hemisphere ice coverage are the time series of oxygen isotope 
variability (0l6/Ol8) obtained for sedimentary cores taken in the deep ocean basins (e.g. 
Hays, Imbrie & Shackleton 1976). These proxy data, an example of which is shown in 
Fig. 4, have clearly established the existence of a dominant 105yr cycle in the ice coverage 
record with statistically significant variability also at the periods of 23 000 and 41 000 yr 
corresponding to the time-scales of the precession of the equinoxes and of changes in orbital 
obliquity. Although the latter periods are those predicted by the astronomical theory of the 
ice ages due to Milankovitch, the reason why the 10Syr fluctuation should so strongly 
dominate the variability is presently unknown ; indeed such variation should not exist 
according to current elaborations of the Milankovitch hypothesis. From the oxygen isotope 
data we see that although the accretion and distintegration of the ice sheets is roughly 
periodic with a period of about 105yr, the time-scale of accretion is very much longer than 
the time-scale of disintegration, leading us to expect that a reasonable approximation to the 
actual history of loading and unloading might be the sawtooth wave form shown in Fig. 5 
(bottom) with a disintegration time of 104yr compared to an accretion time of 9 x 104yr. 

Here we are interested in fitting the model to the ILS data shown in Fig. 1, which clearly 
pertains to a time following a major deglaciation episode. We will first establish that the 
errors incurred in employing the linear model (47) are within tolerable bounds and then 
proceed to use this linear approximation to infer mantle viscosity from the observed speed 
of polar wander. An upper bound to the error incurred by making the linear approximation 
will be obtained by replacing the sawtooth waveform in Fig. 5 by a square wave of the same 
period, since this will accentuate the effect of non-linearity. For a single 'top hat' 
glaciation-deglaciation event the speed of polar wander obtained from (47), neglecting the 
Chandler pole completely, is 

- w 
A 0 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV(t)  = - (Pip - P,)[exp (- yt) - exp [- y( t  - t*]J, t > t* 

where the constant load is applied at t = 0 and removed at t = t*. We compared the linear 
speed history (50) to that obtained by solving the non-linear system (48) using the excita- 
tion function given in Appendix C. For this calculation the duration of the loading event was 
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a(n-ll o(n-ll+b zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon an+b a(n+ll  

TIME (Yrs.! 

Figure 5. The top frame shows the speed of polar wander as a function of time which is forced by the 
glaciation-deglaciation history shown in the bottom frame. The triangular wave shape chosen for the 
loading history is based upon the oxygen isotope data shown in Fig. 4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
futed at 5 x 104yr, the angular radius of the ice sheet was taken as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA01 = 15", the colatitude of 
the centre of the ice sheet as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA25",  and its mass as 1.8 x 1019kg. All of these parameters are 
appropriate approximations for the Laurentide ice sheet (e.g. Peltier et al. 1978). As 
expected, non-linear effects are strongest just after unloading. However, the relative error 
between the two predictions is at most on the order of 3 per cent and this obtains for the 
lower value of mantle viscosity, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv - 1022poise. It seems clear, on the basis of this com- 
parison, that the linear solution may be safely employed to predict the speed of polar 
wander following a deglaciation event. 

The fairly realistic ramp shaped history shown at the bottom of Fig. 5 has the simple 
mathematical representation 

t - a(n - 1) 

b 
for a(n - 1) < t < a(n - 1) + b Fn ( t )  = 

an - t -- - for a(n - 1) + b < t < an 
a - b  

for the nth ramp in the time domain (where n = 1, 2 , .  . . , etc.). The Laplace transform of 
F ( t )  is required in the transform domain representation of the linear solution (47) and is 
given by 

1 

bs2 
fn(s) = - (exp [- a(n - l)s] - exp 1- [a(n - 1) + b]s] l }  

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(a - b)s2 

- (exp [[- [a(n - 1) + b ] s ]  - exp ( -ans) )  

for the nth ramp in the sequence, with a =  10Syr and b = 9 x  104yr in Fig. 5 (these para- 
meters will later be varied to illustrate the dependence of the solution upon them). When 
(52) is inserted into (47) and the Laplace inverse computed (neglecting the wobble com- 
ponent) we obtain the following analytic expression for the contribution to the speed of 
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polar wander from the nth load cycle in the time domain as 

Vn(t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ". zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[VJ(f) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV,(t) + V,(t) + v:(t)] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 0  

where 

[ H [ t  - ~ ( n  - I ) ]  - H [ t  - ~ ( n  - 1 )  - b ] ]  
C - A  b 

(an - t)  
t -  [ H [ t  - a(n - 1) - b]  - H ( t  - an)] 

a - b  

v,(t) = ~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa (p,"p2) " 1  - exp [ - ( t - a ( n  - 1 )  - b ] ] H [ t -  a(n - 1 )  - b]  

V:(t) = - - ' l j i  - 

b ( a -  b )  C - A  

1 
1 - exp [- y ( t  - an)llle(t - an). 

a - b (  C - A  

The first term in (53a) is simply the load history itself weighted by the factor (o,/ao) .P1(l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ji)y/(C- A ) ,  while the three remaining terms contain the relaxation effects. Due to the 
latter, in any given load cycle the system posesses a memory of all proceeding cycles which 
must be taken into account. How rapidly the memory fades depends upon the magnitude 
of the viscosity such that the higher the viscosity the longer the memory. At a particular 
time t within the nth cycle the contribution of the relaxation terms for the (n - 1)st cycle 
is, from (53) 

(54) 

U 1 

b 
exp [- y(a - b) ]  t - exp (- ya) 

xexp [- y [t - u(n - i ) ] ] .  

It is therefore clear that the contribution from the (n - 2)nd cycle will be a factor exp 
(-ya) smaller than the contribution from the (n - 1)st cycle and so on. With v = 1 0 2 3 p ~ i ~ e ,  
ay - 10 and a very small error is made if we take into account only the contribution from 
the immediately preceding cycle. For higher viscosities, a better approximation can be 
obtained by multiplying (56 )  by the factor [ 1 + exp (-ay) t exp (- k y ) ] .  The speed in the 
interval [a(n - l), a(n - 1) + b ]  is then obtained by summing (55) and (56 )  to get zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

or P 1 ( 1 + j i ) ~  [ t - a ( n -  1 ) I t  
V( t )  = - 

u o l  ( C -  A )  b 

1 

b 

U 1 
" 1  -exp [ - y ( a -  b ) ] ]  exp [ - y [ f - u ( n - l ) ] ] - - ] ]  

(55) 
while in the interval [a(n - 1 )  + b ,  an] it is the sum of the term in square brackets in (55) 
and 

Pl(1 +ji)y (an - t )  P , f i - P ,  a 
V(t )  = - -+ ( ( € - A )  ( a - b )  C - A  b ( U - b )  

1- ( 1  - exp "-7 [ t - a ( n  - 1)-bl  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI]]. 
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Pleistocene deglaciation and the Earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA's rotation 

I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA569 

GLACl ATlON ;Li zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 I 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 4 5 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 8 9 10 

TIME (Yrs )m4 
Figure 6. Speed of polar wander as a function of time during the periodic glaciation-deglaciation history 
shown in Fig. 7 .  Solutions for different values of the viscosity are as marked and the dashed line denotes 
the average speed for the case u = 1.5 X poise. 

As zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa matter of convention, in the following figures the speed of polar wander is taken 
positive when the direction of motion is towards the region that is glaciated. In Fig. 6 we 
show the speed of polar wander as a function of time for different values of the viscosity of 
the mantle when the excitation uses the previously stated values of the parameters 
appropriate to the Laurentide ice sheet. Within the range of viscosities which concerns us, 
the relaxation terms do not contribute to the average speed. This turns out to be equal to 
the instantaneous speed obtained above for the box-shaped load history if an ice sheet mass 
equal to half that employed in the realistic history is used. This average speed is 

and this is also shown by the dashed line on Fig. 6 for the lower viscosity model. From 
Fig. 6 it is clear that the higher the value of the viscosity the smaller are the fluctuations of 
the instantaneous speed about the average value. In Fig. 7 we show the same variability as a 

4 

3 

- 2  
s 

GLPC IATON 

I 

v) w o  w 
LL 

-I 
n 
> -2 

-3 

-4 

P 

- 

0 I 2  3 4 5 6 7 8 9 10 

TIME (Yrs.)x 

Figure 7. Same as in Fig. 8 but for different values of the deglaciation time-scale b .  
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function of the relative durations of the glaciation and deglaciation parts of the loading 
cycle. The more rapid the deglaciation the higher the instantaneous speed following the 
event. As zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa - b tends to zero, the values of the speed in the two limits t + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan- and t + an+ 
do not match and we get a discontinuity as in the case of the box-shaped history. Another 
fact which we must draw attention to here, is that the average speed of polar wander does 
not depend upon the details of the load history within the cycle. 

The average speed (57), deduced from linear theory, is of course invariant from cycle to 
cycle and this cannot be correct because, as demonstrated explicitly in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 ,  the speed 
of wander decreases as the system approaches equilibrium (see Fig. 3). This variation is 
determined by the non-linearity of the system. Since the present configuration of the system 
is quite far from equilibrium (given the geographic location of the main loading event) it is 
clear that linear theory should be rather accurate as a description of the currently continuing 
polar wander. 

In order to compare the predictions of the model with the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAILS data shown in Fig. 1 we 
shall assume that the instantaneous measurement of the speed of polar wander which these 
data provide corresponds to a time of hiatus in a previously continuous loading-unloading 
cycle. In this case V( t )  predictions from the time of the last unloading event are shown in 
Fig. 8 for representative values of viscosity on the basis of equation (54). In constructing this 
figure we have assumed that the centre of the 104yr deglaciation period of the ramp-shaped 
model corresponds to a time 8000 yr ago since this gives a best fit to the glacial chronology 
in Peltier & Andrews (1976). Superimposed upon the V(t)  curve is the speed of polar wander 
implied by the ILS-IPMS data of about 1°/106yr and the errors associated with this in- 
ference given by Dickman (1977). It is quite clear by inspection of this figure that we can fit 
the observation with our deglaciation-induced polar wander model either with a low mantle 
viscosity of about 1.5 x 10z2poise or with a relatively high value of (say) 3 x 1 0 2 3 p ~ i ~ e .  With 
allowance for timing errors and geographic effects not included in the model we cannot 
exclude any viscosity within some range of each of the extreme values if we employ only the 
single observation of polar wander speed to constrain the parameter. We expect, for 
example, that proper incorporation of the effect of the Fennoscandian load into the model 

f I  \ 

0 I I 2  3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 8 9 10 

TIME (Yrs.)x 

Figure 8. Speed of polar wander following the last deglaciation event under the assumption that the 
system is not currently glaciating. The observation (from Fig. 1) may be fit with either of the two 
different values of the viscosity shown. The dashed line is the prediction from the 3 X 1OZ3poise model 
under the assumption that the system is in isostatic equilibrium before deglaciation begins and illustrates 
the importance of the load history in this case. For the 1.5 X 102*poise model this assumption leads to no 
significant difference in the prediction. 
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Pleistocene deglaciation and the Earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA’s rotation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA57 1 

and allowance for the radial heterogeneity of the Earth will lower the largest allowed 
viscosity from 3 x 1 OZ3 poise to somewhat less than loz3 poise. 

The dashed line on Fig. 8 illustrates the variation of the speed of polar wander predicted 
when we account only for the unloading part of the glacial cycle. In this case the speed 
prediction is simply 

t > a(n - 1) 

which is obtained under the assumption that prior to the onset of deglaciation the load is in 
isostatic equilibrium. As is apparent by inspection of Fig. 8, the speed in this case is con- 
siderably overestimated for the high viscosity model with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv = 3 x 1OZ3poise (by approxi- 
mately 30 per cent). With viscosity v - 1OZ2poise the memory is much shorter and the 
predictions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV(t )  and V*(t)  nearly coincide. This result serves to demonstrate that if the 
higher value of the viscosity is most appropriate then the load history may have an 
appreciable impact on the estimate of viscosity which we obtain by fitting the model to 
observations. 

The results obtained in this section very clearly demonstrate that the polar wander com- 
ponent of the ILS-IPMS pole path is just that expected to exist as a consequence of the 
disintegration of the large Pleistocene ice masses if the Earth has the viscosity structure 
which is required to fit postglacial rebound data (Peltier 1980; Peltier et al. 1978). The two 
analyses are therefore mutually reinforcing. This interpretation of the source of the secular 
trend in the polar motion data is different from a commonly held idea that the polar wander 
implied by these data is a consequence of changes in inertia associated with continental drift. 
Dickman (1977, 1979), making use of the plate velocity model proposed by Minster et al. 

(1974), found that such effects could not explain any substantial portion of the secular 
motion. Even under the most favourable circumstances, and by comparing plate velocity 
models of Solomon, Sleep & Richardson (1975), Kaula (1975) and Minster et al. (1974), 
continental drift could account for no more than about 30 per cent of the observed speed 
(the direction of motion not withstanding). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA similar estimate has been obtained by Yumi 
& Wako (1968) who based their analysis on the local residuals at each ILS station. The 
observed mean polar motion appears to be forced by Pleistocene deglaciation. 

In our analysis of polar wander we have completely ignored the excitation of Chandler 
wobble by the time-dependent surface mass load. That this assumption is reasonable can be 
seen from (47) in which it is clear that the efficiency of excitation of the Chandler mode 
depends on the energy in the excitation function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$(s) at the Chandler frequency s = iuo. 
Since the ‘realistic’ load history employed in this section artificially reduces the high- 
frequency forcing by assuming a regular sawtooth history with a 10Syr period, we must 
reconsider the loading model in order to obtain a realistic estimate of the forced Chandler 
amplitude. Evidence of high-frequency structure within the last lo5 yr cycle has been 
presented recently in Andrews & Barry (1978) in which it is suggested that during the 
accretion period there were superimposed fluctuations in global sea-level of 30-60 m at 
rates of 2-6 m/103yr (their fig. 2). If we use our triangular pulse model to compute the 
forced wobble amplitude from (47) for such excitation, using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa - b =a* and a = 2a* in 
the excitation function, then we obtain the wobble amplitude A(a*) = ( l/a*)[(P1 + Pz)/ 
(C - A ) ]  . I a,/(r - iu0)’ I. Even under the most favourable circumstances discussed by 
Andrews & Barry, we can expect, from this, a wobble amplitude no greater than about 
0.002” and this is completely negligible compared to that which we observe to be forced by 
earthquake and meteorological excitations. 
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In the next section we employ our model to make predictions of non-tidal lod variations 

and to compare these predictions with observation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThis will provide a second means of 
estimating mantle viscosity from polar motion data. As we will show, this estimate coincides 
with that just obtained by fitting the same model to the observed polar wander. 

5 Length of day variations produced by deglaciation 

Within the framework of the linear approximation employed in the last section, variations in 
lod in the coordinate system Oxlx2x3 may be obtained in the time domain by means of the 
relation (Munk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& MacDonald 1960) 

where G3 is obtained from the change in the moment of inertia about the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx3 axis ( 1 3 3 )  via 
equation (46), which is itself obtained in the Laplace transform domain by rotating I:j 

(one component of which is given in (35)) into the 0 ~ ~ x 2 ~ 3  system. From this we obtain 
the Laplace transform of @ ~ ~ ( t )  as 

I 
\ 

exp [-a(n - l ) s ]  - exp [- [a(n - 1) t b]sI 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 (exp I[- [a(n - 1) t b ] ]  - exp (- ans) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(U - b)s 

when the spectrum (52) is employed. In the time domain (60) gives 

1 - 3  c0s2e 

3 cos 0 sin 0 
) [T ' ( t )  t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP ( t )  + V ( t ) ]  

dt  

where 

x [ H [ t  - a(n - 1) - b ]  -H( t  - an)] (6 1 b) 

a(n - l ) ]  - exp I[- 7 [ t  - a(n - 1) 

(61c) I - b ] ] H [ t  - a(n - 1) - b ]  

T3(t) = -- (p1 ~ iP1') [ exp [- y [ t  - a(n - 1 )  - b ] ] H [ t  - a(n - 1) - b ]  
a - b  

- exp [- 7(t - an)]H(t - an) , te [a(n - I ) ,  an] 1 
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Pleistocene deglaciation and the Earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA's rotation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA573 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
and n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 ,  2, . . . , etc. When t > a(n - 1) the contribution from the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n - 1)st ramp is given 
by (61) with n replaced by n - 1 and the constant term dropped, i.e. 

1 - 3 cos2 0 )  
ui - exp [-r(a - b)in 

Equation (62) may be integrated to obtain the logarithmic derivative of m3(t)  which is 
required for comparison with observations. In Fig. 9 we plot two histories of m3/m3 for 
different values of the mantle viscosity, with all other parameters of the model futed as in 
the last section. As in the previous discussion of polar wander we have included in the 
calculations shown on Fig. 9, effects due to the two previous load cycles by multiplying 
(62) by the factor [ 1 + exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(-w) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt exp ( -2ur) l .  Clearly, even for v = 3 x 1023poise, the 
influence of the earliest of these previous cycles is negligible. The observational data shown 
on Fig. 9 warrant some comment. Besides the vertical error bars associated with the accelera- 
tion measurement itself, we have affured horizontal error bars to account for errors in 
timing. As previously, in plotting the data we have assumed that the midpoint of the final 
deglaciation stage corresponds to a time 8000 yr before present. The slight temporal dis- 
placements of the different observations shown on Fig. 9 have been introduced solely for 
convenience in plotting and have no physical basis. The observation labelled C is based on 
the analysis by Currot (1966) and is consistent with that of Dicke (1966). The data labelled 
M & S  is from Muller & Stephenson (1975) who re-analysed the ancient eclipse data 
employed by Newton (1972) keeping only those corresponding to total solar eclipses or for 
which deviation from totality was explicitly declared. The value marked M was obtained by 
Morrison (1973) based upon lunar occulations over the period 1663-1972. This observation 
deviates significantly from the others and may be strongly biased by long-period fluctuations 
in the Earth's acceleration since the observation period is rather short. The value marked L 
was proposed by Lambeck (1977) and was obtained from the difference between the value 
of the acceleration given by Muller (1975) and the mean of the Earth's tidal acceleration 
obtained from an ocean model and astronomical and satellite observations. 

NON TIDAL ACCELERATION 

41 

v) 

\ 

0 3- 

3 10z3pOlSE 

.3 
I -  

\I I c  

0 1 2 3 4 5 6 7 8 9  

2 10" POISE iU . 
0 3  

3 10z3pOlSE 

'$ 
0 1 2 3 4 5 6 7 8 9  3 

TIME ( Y ~ s . M O - ~  

Figure 9. Non-tidal acceleration of the length of day (lod) following the last deglaciation event for the 
two different viscosity models which fit the data. Observations are from Currot (C), Morrison (M), Muller 
& Stephenson (M & S) and Lambeck (L). 
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5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA74 

Assuming Morrison’s data to be unreliable, we see from Fig. 9 that our model fits the data 
for either of two quite widely separated values of the mantle viscosity; in fact, with precisely 
the same range of values found from the polar wander data. Therefore, the same ambiguity 
of interpretation exists in the case of the analysis of lod variations as found previously. From 
the two acceptable values of mantle viscosity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(- 1.5 x 1022poise and - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 x 1023poise) we 
have two possible relaxation times for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 = 2 harmonic of - 1.5 x 103yr and - 3 x 104yr. 
This ambiguity was pointed out in past work on lod data by both O’Connell (1971) who 
quoted relaxation times of 2 x 103yr and 105yr and Lambeck (1975) who found acceptable 
relaxation times of either 4 x 103yr or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 x 104yr. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

R. Sabadiniand W. R. Peltier 

6 Conclusions 

On the basis of the preceding analysis it seems clear to us that both the currently observed 
polar wander and the non-tidal lod variation are a consequence of forcing due to the build- 
up and disintegration of the large northern hemisphere ice sheets which has taken place 
quasi-periodically during the present glacial epoch. Both these observed polar motions are 
precisely those which are expected if the viscosity of the mantle has a mean value 
compatible with the postglacial rebound data. The two types of analysis, rebound and polar 
motion, are therefore mutually reinforcing. In the analysis of polar motion discussed in this 
paper we have employed an homogeneous earth model and a simplified deglaciation history. 
Because of the homogeneity of the model, the viscosity inferred by fitting it to the data 
must be interpreted as a mean mantle viscosity. Since the rebound data require an upper 
mantle viscosity of 1022poise with an increase to a value of about 1 0 2 3 p ~ i ~ e  in the lower 
mantle, the mean will be dominated by the lower mantle viscosity to which the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 = 2 har- 
monic which governs the polar motion is extremely sensitive. The fact that the polar motion 
depends only on the response of the 1 = 2 harmonic also ensures that the simple approxi- 
mation for the ice sheet geometry which we have employed will introduce no appreciable 
error into the analysis. Although this simplified analysis deserves to be repeated using the 
full apparatus for inhomogeneous viscoelastic models developed in Peltier (1974) and using 
a more fully realistic deglaciation history as described in Peltier & Andrews (1976) for 
example, we do not expect that this increase in sophistication of the model will lead to any 
substantial change in the interpretation of the polar motion data. These data are extremely 
important in that they enable us to obtain a strong upper bound on the viscosity of the 
mantle beneath the transition region. This viscosity is not sufficiently high as to inhibit the 
whole mantle mode of convection. 
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Appendix A 

In this section the previously defined parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR is normalized by dividing by the inertia zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I defined in equation (13).  With this modification, the components zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the symmetric matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A*, in non-dimensional form, are 

A,*,= 1 t - R ( 3 y : t y ; + y : ) - R - e x p  [ - ( y / 8 R F ) x ] - R - ( - 2 y 4 + y 5 + y 6 )  

R. Sabadini and W. R. Peltier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- - 

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIJ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIJ 

3 3 3 

4 

3 

4 

3 

A& = - RYlY 2 i- RFY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 

A1*3 = - RY1Y3 ' RPY8 

- 
2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF IJ 

3 3 3 
A&= 1 i- - R(y:+3yz+y:) - R  - exp [-(y/QRii)x] -R - (Y4- 2y5+y6) 

4 

3 
A ;3 = - RY2Y3 ' RfiY9 

The components of the matrix B*, in non-dimensional form, are 
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Pleistocene deglaciation and the Earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA's rotation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The only non-zero components of the matrix D are the following 

Y 

Dii zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi =  4-9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
mfi ' 
Y 

Appendix B 

The matrix P is defined in the following way 

o c  

P = g ( x ) l  1 0] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
O b  

where 

a =  1 - 3 sin28, b =  1 - 3 cos20, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC =  3 cose s ine,  

and g(x)  is defined as follows when the time history of the load is a step function 

In the following 

d 

dx 
d(x)  = - g(x) .  

The components of the matrix Q are given by 

Y 
Ql l  = - - . a d ( x )  

S2RJ 

Y 

Q13= - c d ( x )  
mfi 

577 

20 
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578 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. Sabadini and W. R. Peltier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y 

Q33 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - - bd(x).  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ClRG zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Appendix C 

The quantities r, S1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS2, S3 entering the set of equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(SO) are defined as 

Cl(C - A ) g  

C(1 +Er)Y 
r =  

where a, b and c are defined in Appendix B when g(x )  corresponds to a step function. After 
the end of the box as in Section 4, the function g(x)  is given by 

- 
a2L 

I 
( I  - 1) - [exp [- y . SCALE@ - x*) ]  exp [- .SCALE X I ]  g(x )  = ~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3(1 t i4  
(C3) 

P 

where x* is the non-dimensional time at which the step load is removed. 
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