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ABSTRACT
Parallel applications running across thousands of processors

must protect themselves from inevitable system failures. Many

applications insulate themselves from failures by checkpoint-

ing. For many applications, checkpointing into a shared sin-

gle file is most convenient. With such an approach, the size

of writes are often small and not aligned with file system

boundaries. Unfortunately for these applications, this pre-

ferred data layout results in pathologically poor performance

from the underlying file system which is optimized for large,

aligned writes to non-shared files. To address this funda-

mental mismatch, we have developed a virtual parallel log

structured file system, PLFS. PLFS remaps an application’s

preferred data layout into one which is optimized for the un-

derlying file system. Through testing on PanFS, Lustre, and

GPFS, we have seen that this layer of indirection and reor-

ganization can reduce checkpoint time by an order of magni-

tude for several important benchmarks and real applications

without any application modification.
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Figure 1: Summary of our results. This graph summarizes

our results which will be explained in detail in Section 4. The key

observation here is that our technique has improved checkpoint

bandwidths for all seven studied benchmarks and applications by

up to several orders of magnitude.

1. INTRODUCTION
In June 2008, Los Alamos National Labs (LANL), in part-

nership with IBM, broke the petaflop barrier and claimed
the top spot on the Top 500 list [3] with the Roadrunner
supercomputer [23]. Due to its unique hybrid architecture,
Roadrunner has only 3060 nodes, which is a relatively small
number for a supercomputer of its class. Unfortunately,
even at this size, component failures are frequent. For large
parallel simulations at LANL, and other High Performance
Computing (HPC) sites, which can run for several months,
restarting a calculation from the beginning is not viable,
since the mean time to interrupt for today’s supercomput-
ers is measured in days or hours and not months [31, 41].

Typically these applications protect themselves against
failure by periodically checkpointing their progress by sav-
ing the state of the application to persistent storage. After a
failure the application can then restart from the most recent
checkpoint. Due to the difficulty of reconstructing a con-
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(a) N-N

������������������������������������ ����������
��
��
��
���
���
���
���
������������������

����������������������������������

��
��
��
��

������������
������ ��������������

��
��
��
��
��
��
��

������
������������ �������������������� ���

���
���
���
���
���
���
���

���
���
���
���

P3 P4

N2

P5 P6

N3

P1 P2

N1

(b) N-1 segmented
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(c) N-1 strided

Figure 2: Common Checkpointing Patterns. This figure shows the three basic checkpoint patterns: from left to right, N-N, N-1

segmented, and N-1 strided. In each pattern, the parallel application is the same, consisting of six processes spread across three compute

nodes each of which has three blocks of state to checkpoint. The difference in the three patterns is how the application state is logically

organized on disk. In the N-N pattern, each process saves its state to a unique file. N-1 segmented is simply the concatenation of the

multiple N-N files into a single file. Finally, N-1 strided, which also uses a single file as does N-1 segmented, has a region for each

block instead of a region for each process. From a parallel file system perspective, N-1 strided is the most challenging pattern as it is the

most likely to cause small, interspersed, and unaligned writes. Note that previous work [16] refers to N-N as file per process and N-1

as shared file but shares our segmented and strided terminology.

sistent image from multiple asynchronous checkpoints [18],
HPC applications checkpoint synchronously (i.e. following
a barrier). Synchronous checkpointing, however, does not
eliminate the complexity; it merely shifts it to the paral-
lel file system which now must coordinate simultaneous ac-
cess from thousands of compute nodes. Even using opti-
mal checkpoint frequencies [9], checkpointing has become
the driving workload for parallel file systems and the chal-
lenge it imposes grows with each successively larger super-
computer [32, 42]. The difficulty of this challenge can vary
greatly depending on the particular pattern of checkpoint-
ing chosen by the application. In this paper, we describe
different checkpointing patterns, and show how some result
in very poor storage performance on three of the major HPC
parallel file systems: PanFS, GPFS, and Lustre.

We then posit that an interposition layer inserted into the
existing storage stack can rearrange this problematic access
pattern to achieve much better performance from the under-
lying parallel file system. To test this hypothesis, we have
developed PLFS, a Parallel Log-structured File System, one
such interposition layer. We present measurements using
PLFS on several synthetic benchmarks and real applications
at multiple HPC supercomputing centers. The results con-
firm our hypothesis: writing to the underlying parallel file
system through PLFS improves checkpoint bandwidth for all
tested applications and benchmarks and on all three studied
parallel file systems; in some cases, bandwidth is raised by
several orders of magnitude.

As we shall discuss, and is summarized in Figure 1, PLFS
is already showing very large speed ups for widely used HPC
benchmarks and important real HPC codes, and at extreme
scale. PLFS works on unmodified applications as an op-
tional mount point on the compute nodes and is designed to
augment, and not replace, an existing underlying parallel file
system. PLFS consists of three thousand lines of code and is
publically available at http://sourceforge.net/projects/plfs.

The rest of the paper is organized as follows. We present
more detailed background and motivation in Section 2, de-
scribe our design in Section 3 and our evaluation in Section 4.
We present related work in Section 5, current status and fu-
ture work in Section 6, and finally we conclude in Section 7.

2. BACKGROUND

From a file system perspective, there are two basic check-
pointing patterns: N-N and N-1. An N-N checkpoint is
one in which each of N processes writes to a unique file,
for a total of N files written. An N-1 checkpoint differs in
that all of N processes write to a single shared file. Ap-
plications using N-N checkpoints usually write sequentially
to each file, an access pattern ideally suited to parallel file
systems. Conversely, applications using N-1 checkpoint files
typically organize the collected state of all N processes in
some application specific, canonical order, often resulting in
small, unaligned, interspersed writes.

Some N-1 checkpoint files are logically the equivalent of
concatenating the files of an N-N checkpoint (i.e. each pro-
cess has its own unique region within the shared file). This
is referred to as an N-1 segmented checkpoint file and is
extremely rare in practice. More common is an N-1 strided

checkpoint file in which the processes write multiple small
regions at many different offsets within the file; these off-
sets are typically not aligned with file system block bound-
aries [8]. N-1 strided checkpointing applications often make
roughly synchronous progress such that all the processes
tend to write to the same region within the file concurrently,
and collectively this region sweeps across the file. These
three patterns, N-N, N-1 segmented, and N-1 strided, are il-
lustrated in Figure 2. Since N-1 segmented is a rare pattern
in practice, hereafter we consider only N-1 strided and we
refer to it with the shorthand N-1.

The file system challenge for an N-N workload is the con-
current creation of thousands of files which are typically
within a single directory. An N-1 workload can be even more
challenging however for several different reasons which may
depend on the particular parallel file system or the under-
lying RAID protection scheme. In the Panasas ActiveScale
parallel file system [46] (PanFS), for example, small strided
writes within a parity stripe must serialize in order to main-
tain consistent parity. In the Lustre parallel file system [25],
writes to N-1 checkpoint files which are not aligned on file
system block boundaries cause serious performance slow-
downs as well [28]. Although both N-N and N-1 patterns
pose challenges, it has been our observation, as well as that
of many others [14, 22, 28, 29, 44], that the challenges of
N-1 checkpointing are more difficult. Applications using N-
1 patterns consistently achieve significantly less bandwidth
than do those using an N-N pattern.
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Figure 3: Motivation. These three graphs demonstrate the large discrepancy between achievable bandwidth and scalability using N-N

and N-1 checkpoint patterns on three of the major HPC parallel file systems.

Figure 3 presents experimental data validating this dis-
crepancy: An N-1 checkpoint pattern receives only a small
fraction of the bandwidth achieved by an N-N pattern on
PanFS, GPFS, and Lustre and does not scale with increased
numbers of nodes. The PanFS experiment, run on LANL’s
Roadrunner supercomputer using its 1000 blade PanFS stor-
age system, shows a maximum observed N-N bandwidth of
31 GB/s compared to a maximum observed N-1 bandwidth
of less than 100 MB/s. Although we show PanFS results
using their default RAID-5 configuration, PanFS has also a
RAID-10 configuration which reduces the implicit sharing
caused by N-1 patterns when two writers both need to up-
date the same parity. While this solution improves scaling
and offers much higher N-1 write bandwidth without sac-
rificing reliability, it does so by writing every byte twice, a
scheme that, at best, can achieve only approximately half of
the write bandwidth of N-N on RAID-5. PLFS, however, as
will be shown in Section 4, can get much closer.

The GPFS and Lustre experiments were run on much
smaller systems. The GPFS experiment was run using an
archive attached to Roadrunner using its nine, quad-core,
file transfer nodes. The Lustre experiment was run using
five client machines, each with eight cores, and twelve Lus-
tre servers. All three file systems exhibit similar behavior;
N-N bandwidths are consistently higher than N-1 by at least
an order of magnitude. Measurements were gathered using
the LANL synthetic checkpoint tool, MPI-IO Test [12]. For
each of these graphs, the size of each write was 47001 bytes
(a small, unaligned number observed in actual applications
to be particularly problematic for file systems). Writes were
issued until two minutes had elapsed. Although this is atyp-
ical since applications tend to write a fixed amount of data
instead of writing for a fixed amount of time, we have ob-
served that this allows representative bandwidth measure-
ments with a predictable runtime.

Since N-N checkpointing derives higher bandwidth than
N-1, the obvious path to faster checkpointing is for appli-
cation developers to rewrite existing N-1 checkpointing ap-
plications to do N-N checkpointing instead. Additionally,
all new applications should be written to take advantage of
the higher bandwidth available to N-N checkpointing. Al-
though some developers have gone this route, many continue
to prefer an N-1 pattern even though its disadvantages are
well understood. There are several advantages to N-1 check-
pointing that appeal to parallel application developers. One,
a single file is much easier to manage and to archive. Two,
N-1 files usually organize data into an application specific
canonical order that commonly aggregates related data to-

gether in contiguous regions, making visualization of inter-
mediate state simple and efficient. Additionally, following a
failure, a restart on a different number of compute nodes is
easier to code as the checkpoint format is independent of the
number of processes that wrote the checkpoint; conversely,
gathering the appropriate regions from multiple files or from
multiple regions within a single file is more complicated.

Essentially these developers have once again shifted com-
plexity to the parallel file system for their own convenience.
This is not unreasonable; it has long been the province
of computer systems to make computing more convenient
for its users. Many important applications have made this
choice. Of the twenty-three applications listed on the Par-
allel I/O Benchmarks page [36], at least ten have an N-1
pattern; two major applications at LANL use an N-1 check-
pointing pattern as do at least two of the eight applications
chosen to run on Roadrunner during its initial stabilization
phase. N-1 checkpointing is very important to these appli-
cations. For example, at the core of one of LANL’s N-1
applications is a twenty-year old Fortran checkpointing li-
brary. About a decade ago, in response to a growing clamor
about the limitations of N-1 checkpointing bandwidth, de-
velopers for this application augmented their checkpointing
library with fifteen thousand lines of code. However, instead
of changing the application to write an N-N pattern, they
added a new IO routine in which interprocess communica-
tion is used to aggregate and buffer writes. Although they
did not improve the performance to match that of other
applications using an N-N checkpoint pattern, this effort
was considered a success as they did improve the N-1 per-
formance by a factor of two to three. This checkpointing
library, called bulkio, has been maintained over the past
decade and ported to each new successive supercomputer
at LANL [7]. Furthermore, N-1 patterns continue to be de-
veloped anew in many new applications. High level data for-
matting libraries such as Parallel NetCDF [19] and HDF5 [2]
offer convenience to application developers who simply de-
scribes the logical format of their data and need no longer
consider how that data is physically organized in the file sys-
tem. Once again this convenience merely shifts the complex-
ity to the underlying parallel file system since these libraries
use an N-1 pattern.

3. DESIGN OF AN INTERPOSITION LAYER
We start with the hypothesis that an interposition layer

can transparently rearrange an N-1 checkpoint pattern into
an N-N pattern and thereby decrease checkpoint time by
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A parallel application consisting of six processes on three compute nodes creates an N−1 strided file, checkpoint1.
PLFS preserves the application’s logical view of the file.
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PLFS Virtual Interposition Layer

Figure 4: Data Reorganization. This figure depicts how PLFS reorganizes an N-1 strided checkpoint file onto the underlying parallel

file system. A parallel application consisting of six processes on three compute nodes is represented by the top three boxes. Each box

represents a compute node, a circle is a process, and the three small boxes below each process represent the state of that process. The

processes create a new file on PLFS called checkpoint1, causing PLFS in turn to create a container structure on the underlying parallel

file system. The container consists of a top-level directory also called checkpoint1 and several sub-directories to store the application’s

data. For each process opening the file, PLFS creates a data file within one of the sub-directories, it also creates one index file within

that same sub-directory which is shared by all processes on a compute node. On each write, PLFS appends the data to the writing

process’s data file and appends a record into the appropriate index file. This record contains the length of the write, its logical offset

in the checkpoint1 file, and a pointer to the physical offset of the written data within the process’s data file. To satisfy reads, PLFS

aggregates these index files to create a lookup table for the logical file. Also shown in this figure are the access file, which is used to

store ownership and privilege information about the logical file, and the openhosts and metadata sub-directories which cache metadata

in order to improve query time (e.g. a stat call).

taking advantage of the increased bandwidth achievable via
an N-N pattern. To test this hypothesis, we have developed
one such interposition layer, PLFS, designed specifically for
large parallel N-1 checkpoint files. The basic architecture is
illustrated in Figure 4. PLFS was prototyped with FUSE [1],
a framework for running stackable file systems [49] in non-
privileged mode.

PLFS is a virtual FUSE file system, mounted on the com-
pute nodes, situated between the parallel application and
an underlying parallel file system responsible for the actual
data storage. As PLFS is a virtual file system, it leverages
many of the services provided by the underlying parallel file
system such as redundancy, high availability, and a globally
distributed data store. This frees PLFS to focus on just
one specialized task: rearranging application data so the
N-1 write pattern is better suited for the underlying paral-
lel file system. In the remainder of this paper, we refer to
PLFS generally to mean this virtual file system which itself
is comprised of a set of PLFS servers running across a com-
pute system bound together by an underlying parallel file
system; when we refer to a specific PLFS we mean just one
of these servers.

3.1 Basic operation
The basic operation of PLFS is as follows. For every log-

ical PLFS file created, PLFS creates a container structure
on the underlying parallel file system. Internally, the ba-
sic structure of a container is a hierarchical directory tree
consisting of a single top-level directory and multiple sub-
directories that appears to users; PLFS builds a logical view
of a single file from this container structure in a manner
similar to the core idea of Apple bundles [4] in Mac OS X.
Multiple processes opening the same logical file for writing
share the container although each open gets a unique data

file within the container into which all of its writes are ap-
pended. By giving each writing process in a parallel applica-
tion access to a non-shared data file, PLFS converts an N-1
write access pattern into a N-N write access pattern. When
the process writes to the file, the write is appended to its
data file and a record identifying the write is appended to
an index file (described below).

3.1.1 Reading from PLFS
Rearranging data in this manner should improve write

bandwidths, but it also introduces additional complexity for
reads. In order to read the logical file, PLFS maintains



an index file for each compute node which records the log-
ical offset and length of each write. PLFS can then con-
struct a global index by aggregating the multiple index files
into an offset lookup table. This global offset is constructed
as needed to satisfy read operations and lookup operations
when cached metadata is not available (as will be discussed
in Section 3.2).

One difficulty in constructing the global index stems from
multiple processes that may write the same offset concur-
rently. These processes cannot know which will be the ulti-
mate writer, so they need to synchronize to determine the
appropriate order. This synchronization needs to be exposed
to the file system to be effective [13]. If a logical clock [18]
was associated with these synchronizations, its value could
be written to index files so that the merge process could cor-
rectly determine write ordering. Since parallel applications
synchronize with a barrier called by all processes, a simple
count of synchronization calls could be sufficient. In prac-
tice checkpoints do not experience overlapping writes, so at
this time PLFS has not implemented overlap resolution.

One interesting nuance is that PLFS has a data file for
every process but only a single index file per compute node
shared by all processes on that node. Sharing an index file is
easy; by the time PLFS sees writes, they have been merged
by the operating system into a single memory space. The
operating systems sends all writes to a single PLFS process
which ensures index records are correctly, chronologically
appended. Having a single index greatly reduces the num-
ber of files in a container since current LANL applications
run up to sixteen processes on a node; on the next LANL
supercomputer, this could be up to sixty-four. We tried re-
ducing the number of data files similarly. Write bandwidth
was not affected, but reads were slowed for uniform restarts

in which reading processes access the file in the same access
pattern as it was written. The pattern of a single reader
accessing a single data file sequentially lends itself very well
to prefetching. However, due to timing differences between
the write and read phases, multiple processes in a uniform
restart may not always read from a shared file sequentially.

Having described the basic operation of PLFS, we now
present some of its implementation in finer detail. Although
there are many interposition techniques available ( [43] in-
cludes a survey), we have selected FUSE for several reasons.
Because FUSE allows PLFS to be accessible via a standard
file system interface, applications can use it without mod-
ification and files on PLFS can be accessed by the entire
suite of existing tools such as ls, diff, and cp. In addition to
providing user transparency, using FUSE dramatically sim-
plified our development effort. A file system in userspace is
significantly easier to develop than a kernel file system and
is more portable as well. However, this convenience is not
free as FUSE does add some overhead as shown in Section 4.

3.1.2 Container implementation
Because PLFS leverages the underlying parallel file system

as much as possible, we give the container the same logical
name as the PLFS file. This allows PLFS to pass a readdir

system call directly to the underlying parallel file system
and return its result without any translation. PLFS also
handles mkdir system calls without any translation. Lever-
aging the underlying parallel file system in this way requires
that PLFS use some other mechanism to distinguish between
regular directories and containers in order to implement the

stat system call correctly. As the SUID bit is rarely used
on directories and yet is allowed to be set by the underlying
file system, PLFS sets this bit on containers; the implica-
tion however is that PLFS must disallow setting this bit on
a regular directory.

As we discussed previously, parallel applications do syn-
chronized checkpointing; the implication for PLFS is that
multiple processes running on multiple compute nodes writ-
ing an N-1 checkpoint file will cause PLFS on each compute
node to attempt to create the same container concurrently
on the underlying parallel file system. The difficulty arises
because each PLFS must first stat that path to see whether
the path is available, whether that container already exists,
or whether there is a regular directory at that location. Ide-
ally, each PLFS could stat the path and, when the location is
empty, atomically create a directory with the SUID bit set.
Unfortunately, the mkdir system call ignores the SUID bit;
each PLFS must therefore first create a directory and then
set the SUID bit. Doing this naively results in a race condi-
tion: if one PLFS stats the path after another has made the
directory but before it has set the SUID bit, then the stat

will indicate that there is a regular directory in that loca-
tion. The application issuing the open of the logical file will
then receive an error incorrectly indicating that there is a
directory already at that location. To avoid this race condi-
tion, each PLFS first makes a hidden directory with a unique
name, set its SUID bit, and then attempts to atomically re-

name it to the original container name. Only one PLFS
process will successfully rename their hidden directory, and
the other processes will delete their directories when their
rename fails.

3.2 Metadata operations
Metadata operations against a file include accessing its

permissions (including SUID), its capacity, the offset of its
last byte and the timestamp of its last update. For a di-
rectory on PLFS, these are provided by the underlying file
system. But for a PLFS file which is constructed from a
container like the example in Figure 4, these metadata op-
erations have to be computed from the many underlying files
within the container.

Because the SUID bit on the container itself has been
overloaded to indicate that the directory is not a directory at
all, but rather a container, it cannot be also used to indicate
if the user has set SUID on the PLFS file represented by
the container. Instead we use a file inside the container, the
access file, to represent the appropriate SUID and the rest of
the permissions associated with the container. For example,
where chmod and chgrp are directed at the logical file, they
are applied to the access file within the container.

Capacity for the logical file is the sum of the capacities
of the files inside the container. The last update timestamp
is the maximum of the last update timestamps. And the
offset of the last byte is the maximum logical offset recorded
in any of the index files.

Computing these sums and maximums with every stat call
on a PLFS file is expensive. Our strategy for quickening this
is to cache recently computed values in the metadata subdi-

rectory. To make this cache as effective as possible we have
each PLFS server cache into this metadata subdirectory any
information it has in its memory data structures when the
last writer on that node closes the file. On this close, the
FUSE process creates a file named H.L.B.T, where H is the



node’s hostname, L is the last offset recorded on that node,
B is the sum of the capacity of all files that this node man-
ages, and T is the maximum timestamp among these files.

When no process has this container open for write, a stat
call on the container issues a readdir on the metadata sub-
directory, then reports the maximum of the offsets for last
byte offset, the maximum of the timestamps for modification
timestamp and the sum of the blocks for capacity.

If one or more processes has the container open for writ-
ing, then the corresponding cached metadata values could
be stale. PLFS clients therefore create a file in the openhosts

subdirectory named by its hostname when one or more pro-
cesses on that node have that file open for writing, and then
deleting this file once all opens have been closed. stat must
then do a readdir on openhosts as well to discover if any
node has the file open for writing, and thereby determine
which metadata cache entries might be stale.

When there are hostname files in the openhosts subdirec-
tory, the node that is executing the stat call could read the
contents of the index files associated with those hostnames
in order to find the largest logical offset, and then combine
this with the metadata cache files that are not stale.

In the experience of the HPC community, stat’ing an open
file is almost always done by a user trying to monitor the
progress of their job. What they want is an inexpensive
probe showing progress, not an expensive instantaneously
correct value [37]. Following this logic, PLFS does not read
and process the index files associated with hostnames that
have the container open for write. Instead it assumes that
files are not sparse (i.e. every byte has been written) and
sums the sizes of all data files within a container to esti-
mate the last offset of the PLFS file. Because writes to
each data are always simply appended, this estimation will
monotonically increase as additional data is written into the
file, allowing users to monitor progress. When the container
is closed, the metadata subdirectory contains fully correct
cached values, and full accuracy is provided at all times when
the container has no processes writing it.

4. EVALUATION
We present the results of our experimental evaluation in

Figure 5. Eleven of these twelve graphs present one exper-
iment each. The twelfth, Figure 5k, is a summary. In the
majority of these graphs, the write bandwidth is shown on
the y-axis in MB/s as a function of the number of pro-
cesses. We will note it in the text for those few graphs
for which we deviate from this general configuration. The
write bandwidth that we report is whatever is reported by
the particular benchmark; whenever possible, we report the
most conservative value (i.e. we include open and close times
in our write times, and we either barrier after close or we
use the time reported by the slowest writer). Benchmarks
were run on LANL’s Roadrunner supercomputer using the
default parameters unless indicated otherwise. Finally we
have attempted to run multiple iterations for each experi-
ment; where applicable, the standard deviation is included.

4.1 MPI-IO Test
The top three graphs, Figures 5a, 5b, and 5c, present the

results of our study using the LANL synthetic checkpoint
tool, MPI-IO Test [12], on three different parallel file sys-
tems, PanFS, GPFS, and Lustre. There are several things
to notice in these graphs. The first is that these are the same

three graphs that we presented in Figure 3 except that we
have now added a third line to each. The three lines show the
bandwidth achieved by writing an N-N pattern directly to
the underlying parallel file system, the bandwidth achieved
by writing an N-1 pattern directly to the underlying parallel
file system, and the third line is the bandwidth achieved by
writing an N-1 pattern indirectly to the underlying parallel
file system through PLFS.

These graphs illustrate how the performance discrepancy
between N-N and N-1 checkpoint patterns is common across
PanFS, GPFS, and Lustre. Remember, as was discussed
in Section 2, switching to N-N is not a viable option for
many applications which are inextricably wed to an N-1 pat-
tern and are resigned to the attendant loss of bandwidth.
Fortunately, as is evidenced by these graphs, PLFS allows
these applications to retain their preferred N-1 pattern while
achieving most, if not all, of the bandwidth available to
an N-N pattern. Particularly for the PanFS results, which
were run on our Roadrunner supercomputer, PLFS achieves
the full bandwidth of an N-N pattern (i.e. up to about 31
GB/s). In fact, for several of the points, an N-1 pattern
on PLFS actually outperforms an N-N pattern written di-
rectly to PanFS. Although we have yet to fully investigate
the exact reason for this, there are several reasons why this
could be the case. The first is that PLFS rearranges writes
into a log structured pattern so an N-N pattern which incurs
seeks could do worse than a PLFS pattern which appends
only. Secondly, the structure of the PLFS container spreads
data across multiple sub-directories whereas a typical N-N
pattern confines all N files into only a single parent directory.

Although PLFS does improve the bandwidth of N-1 pat-
terns on GPFS and Lustre, the improvement is not as large
as it is on PanFS. This is because the scale of the exper-
iments on PanFS are 200 times larger than on the other
two platforms. In the inset in Figure 5a at the extreme low
values for the number of processes, we see that PLFS does
not scale N-1 bandwidth as fast as N-N scales for PanFS as
well. This is due to overheads incurred by both FUSE and
PLFS; these overheads limit the total bandwidth achieved
by any single compute node relative to N-N. For HPC sys-
tems at extreme scale this limitation does not matter since
aggregate bandwidth across multiple nodes is more relevant
than the bandwidth from a single node. In this case the
real limiting factor is the total bandwidth capacity of the
storage fabric, which generally saturates when using only
a small fraction of compute nodes. However, with poorly-
behaved IO patterns (i.e. N-1), even very large jobs may
not reach these bandwidth limits because they will be more
severely constrained by file system limitations as exemplified
by Figure 3. PLFS is designed to remove these file system
limitations, so that jobs can achieve higher bandwidth and
reach the same limitation of the storage fabric which is con-
straining N-N bandwidth. We will examine the FUSE and
PLFS overheads in greater detail in Section 4.6.

An unusual feature of the inset graph in Figure 5a is that
there are localized bottlenecks about 700 processes. This is
due to the architecture of Roadrunner and its connection to
its 1000 blade PanFS storage system. Roadrunner is split
into seventeen sub-clusters, CUs, each of which can run 720
proceses. The CUs are fully connected via an Infiniband fat
tree, however, in order to minimize network infrastructure
costs, the storage system is partitioned into multiple sub-
nets. Each CU currently has six specialized IO nodes, one
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Figure 5: Experimental Results. The three graphs in the top row are the same graphs that were presented earlier in Figure 3, except

now they have an additional line showing how PLFS allows an N-1 checkpoint to achieve most, if not all, of the bandwidth available to

an N-N checkpoint. The bar graph in the center of the bottom row consolidates these results and shows a pair of bars for each, showing

both the relative minimum and the maximum speedups achieved across the set of experiments. Due to radically different configurations

for these various experiments, the axes for these graphs are not consistent. The relative comparison within each graph should be obvious;

absolute values can be ascertained by reading the axes.

for each sub-net; these six IO nodes are the storage band-
width bottleneck. Therefore, as a job grows within a CU, it
quickly saturates the IO node bandwidth; when it grows into
another CU, its bandwidth increases sharply due to gaining
six additional IO nodes: this explains the “stair-step” be-
havior of the N-N and PLFS lines in this graph.

We do see this same behavior in our GPFS and Lustre
graphs, but due to the very small size of our test systems, we
do not have enough compute nodes to saturate the available
storage bandwidth and thus neither the N-N nor the PLFS
lines in these graphs reach a storage bandwidth bottleneck.

4.2 Real LANL Applications
The second row in Figure 5 shows the results of using

PLFS to improve the bandwidth of three important LANL
applications which use N-1 checkpoint patterns. The appli-
cation shown in Figure 5d is the application whose develop-
ers augmented their checkpoint routine with a new check-
point library called bulkio, which aggregates and buffers
writes into larger, contiguous writes more friendly to the
underlying parallel file system. Therefore we compare the
bulkio method writing directly to PanFS to the MPI-IO
method writing indirectly to PanFS via PLFS. This data was



collected on Roadrunner. The next two graphs show similar
results; using PLFS to rearrange an N-1 pattern yields signif-
icantly improved bandwidths. Figure 5e was run on a small
Roadrunner test cluster which consists of 128 8-core com-
pute nodes with a 66 blade PanFS storage system, whereas
Figure 5f was run on Roadrunner itself. Note that these
are extremely important applications at LANL, consuming
more than half of LANL’s total cycles. Although they must
remain anonymous, traces of their IO are available [8].

4.3 NERSC’s PatternIO Benchmark
Figure 5g presents the data derived from our measure-

ments taken using NERSC’s PatternIO benchmark [28] which
plots write bandwidth as a function of write size. Notice that
this deviates from the other graphs in Figure 5 which plot
write bandwidth as a function of the number of processes.
For this experiment, run on the Roadrunner test cluster, the
number of processes was set at a constant 512. This graph
also is a scatter plot instead of using lines with standard
deviations. The points for writing directly to PanFS show
three interesting slopes all converging at about 1 GB/s on
the far right side of the graph. The highest of these three
regions shows the performance of writes when the write size
is both block aligned and aligned on file system boundaries.
The middle region is when the write size is block aligned only
and the lowest region is when the write size is not aligned
at all. This graph demonstrates that PLFS allows an appli-

cation to achieve a consistently high level of write bandwidth

regardless of the size, or alignment, of its writes.

4.4 Other Benchmarks
The remainder of the graphs show various other parallel

IO benchmarks with an N-1 checkpoint pattern. QCD [45]
in Figure 5h shows a large improvement using PLFS but
this improvement actually degrades as the number of pro-
cesses increases. This is because the amount of data written
by QCD is a small constant value and the overhead due to
container creation incurred in the open becomes proportion-
ally greater as the amount of data written by each process
decreases. BTIO [26] in Figure 5i also shows a large im-
provement but only for one data point. FLASH IO [24] and
Chombo IO[27], shown respectively in Figures 5j and 5l,
both show improvement due to PLFS which scales nicely
with an increasing number of processes. FLASH was run on
Roadrunner whereas Chombo was run on the Roadrunner
test cluster; both were built with the HDF5 library [2].

4.5 Summary
A summary of the benchmark results, excluding the LANL

and NERSC synthetics, is presented in Figure 5k. This sum-
mary shows a pair of bars for each benchmark; one for both
the worst-case and best-case speedups for PLFS. Only in
one case did PLFS actually degrade performance: a slow-
down of three percent for LANL 1 when it was run on just
a single node. Although we did test on single nodes to be
thorough, single node sized jobs are extremely rare in HPC.
The relevant results from reasonably sized jobs, showed at
least a doubling of performance for all studied benchmarks.
QCD and BTIO experienced a single order of magnitude im-
provement. The best result was observed for FLASH which
was improved in the best case by two orders of magnitude.
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Figure 6: Overhead. Ideally, N-1 patterns written through

PLFS would be able to achieve the bandwidth available to an N-

N pattern written directly to the underlying parallel file system.

However, this graph shows that various overheads make this dif-

ficult. Even though there is overhead, the important point is that

PLFS still allows an N-1 pattern to be written much more quickly

than if it was written directly to the underlying parallel file sys-

tem.

4.6 Overhead
As was seen in Figures 5a, 5b, and 5c, N-1 patterns writ-

ten through PLFS only match the bandwidth achieved by
N-N patterns written directly to the underlying parallel file
system once the storage system bandwidth is saturated. For
small number of processes, PLFS cannot match the perfor-
mance of N-N (nonetheless, it does still improve bandwidth
over a direct N-1 pattern). This overhead is measured in
Figure 6 which shows results as measured on LANL’s GPFS
system. In order to measure the both overhead incurred
by FUSE as well as any additional overhead incurred by
PLFS, we developed a second FUSE file system, No-opFS.
No-opFS does no extra work, merely redirecting all IO to the
underlying parallel file system(i.e. GPFS). For those read-
ers familar with FUSE, please note that No-opFS caches the
file descriptor created in the open into the opaque FUSE file
handle pointer, uses it for subsequent writes and reads, and
closes it in the flush.

Figure 6 is almost the same as Figure 5b which compares
the bandwidths measured for N-N directly to GPFS, N-1 di-
rectly to GPFS, and N-1 indirectly to GPFS written through
PLFS. The difference here is that several new measurements
have been added. The first is for N-N written indirectly to
GPFS through No-opFS. This line is significantly lower than
the line for N-N written directly to GPFS; the delta between
these lines is the overhead incurred due to FUSE, which is
approximately 20%. The next measurement added is run-
ning an N-N workload through PLFS; this shows the addi-
tional overhead incurred by PLFS, approximately 10%. The
delta beween that line and the existing N-1 through PLFS
measurements show additional overhead which we believe is
due to serializations within FUSE due to multiple processes
accessing the same path within FUSE’s file table (approxi-
mately another 10% loss). For completeness, we also mea-
sured the bandwidth achieved by an N-1 workload written
through No-opFS; therefore, the bottom two lines on the
graph provide another view of the overhead lost to FUSE.
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Figure 7: Read Bandwidth. These three graphs show the results of our read measurements on the Roadrunner test cluster. We

created a set 20 GB N-1 checkpoint files through PLFS and another directly on PanFS. Each file was produced by a different number of

writers; all of the writes were 47001 bytes in size. For each graph, the y-axis shows the read bandwidth as a function of the number of

writers who created the file. The graph on the left shows the read bandwidth when the number of readers is the same as the number of

writers, as is the case in a typical uniform restart; in this case, the size of the reads is the same as the size of the original writes. The

graph in the middle emulates a non-uniform restart in which the application resumes on one fewer compute nodes; in this case, the size

of the reads is slightly larger than the size of the original writes. Finally, the graph on the right shows the read bandwidth when there

only four readers; we used LANL’s archive copy utility and modelled the common scenario of copying checkpoint data to an archive

system using a relatively small number of readers. To enable comparison across graphs, the axis ranges are consistent.

Although this graph shows a total overhead cost of about
40 to 50%, this loss of potential bandwidth is not unduly
concerning. As was seen in Figure 5a, the loss of potential
bandwidth due to this overhead disappears for reasonable
HPC processor counts. Even with a limited per-node band-
width, a relatively small number of nodes writing through
PLFS is able to saturate the storage bandwidth.

4.7 Beyond Writing
Although PLFS is designed primarily for writing check-

points, checkpoint files are still occassionally read. We must
therefore weigh improvements in write bandwidth against
possible degradations in other operations.

4.7.1 Read Bandwidth
To ensure PLFS does not improve write bandwidth at the

expense of read bandwidth, we ran a set of read experiments
on Roadrunner test cluster which are shown in Figure 7.
We first created two sets of 20 GB files, each written by a
different number of writers; all writes were 47001 bytes (in
other words, increasing numbers of writers issued decreasing
numbers of writes). One set was created directly on PanFS;
the other indirectly through PLFS. In all cases, reads were
performed on different nodes than those where the corre-
sponding data was written and caches were always flushed
between successive reads.

We measured the time to read these files using three dif-
ferent read scenarios. One emulates a uniform restart in
which the number of processes resuming the application is
the same as the number that wrote the last checkpoint. In
this case, each process reads the same data in the same order
as one of the previous writers. In contrast, a non-uniform

restart is one in which the number of readers is different
from the number of writers and the read offsets are there-
fore not aligned with the previous writes. In this case, we
emulate the scenario where an application resumes after a
failure by simply running on the newly reduced number of
nodes. The number of reads is not affected by the size of the
job for typical N-1 checkpoints since each read is extract-
ing a region for a particular variable within the simulation.
However, the size of this region depends on the number of

processes within the job since each gets 1/Nth of the re-
gion. Specifically, for a non-uniform restart in which the
number of processes, N , has been reduced by M , the size of
each read will be N/(N − M) times the size of the original
writes. The third scenario emulated is where a relatively,
small fixed number of processes reads a checkpoint in order
to save it onto an archive system. For these measurements,
we used LANL’s archive copy utility with fours readers each
running on their own node; each reader reads a single con-
tiguous 5 GB region by issuing sequential 1 MB reads.

The results of these experiments can be seen in Figure 7.
In order to allow comparison across the three experiments,
the ranges of the axes have been made consistent. The y-axis
shows read bandwidth as a function of the number of writers
who created the checkpoint. We can easily see from these
graphs that the highest bandwidth is achieved using PLFS
in the uniform restart scenario. This is not surprising: each
reader moves sequentially through just one, nonshared file,
a pattern easily improved through prefetching performed by
the underlying parallel file system. The bandwidth decreases
here due to the decreasing amount of data read as the num-
ber of readers increases. With less data read by each, the
open times begin to dominate, and there is less potential for
prefetching.

The very low bandwidth observed when the checkpoint
is stored directly on PanFS is also not surprising due to
its layout of data within RAID groups. Each contiguous
GB is spread only across a single RAID group (in this case
consisting of just eight storage devices from a pool of around
one hundred). The nature of the N-1 pattern and the size
of the reads means that all readers will almost always be
reading within just a single RAID group. In addition to
limiting the bandwidth to only a few storage devices, it also
reduces the bandwidth from each of them due to overloading
them with non-sequential requests.

The results for the non-uniform restart can be similarly
explained. The PanFS results and explanation are essen-
tially the same. The results for PLFS are also very similar;
better than PanFS due to spreading the reads across all stor-
age devices and not quite as good as the PLFS results for
the uniform restart. The difference between the uniform and



non-uniform results for PLFS is only seen for small numbers
of readers in the area where PLFS was helped by prefetch in
the uniform experiment. Since the readers are reading dif-
ferent offsets than were written in the non-uniform restart,
they will read multiple data files instead of just reading a
single one. The underlying parallel file system, unsurpris-
ing, does not identify this admittedly strange pattern and
therefore there is no prefetch benefit. Only when there is no
longer any prefetch benefit, do these results converge.

Although we are pleased to see that PLFS also does rel-
atively well for the archive copy experiment, we do not yet
fully understand all of these results. We can think of no rea-
son why the bandwidths should be this low and we assumed
that PanFS would easily outperform PLFS due to having
contiguous data within its RAID groups instead of having
data spread across multiple data files within a PLFS con-
tainer. However, we are not surprised to see the read band-
widths drop as the number of writers increases. Increasing
numbers of writers results in a data layout with fewer large
contiguous regions of data for both PLFS and PanFS; there-
fore, the read bandwidth will suffer accordingly.

4.7.2 Metadata Queries
As we discussed in Section 3.2, there are currently two

techniques used to discover the metadata for a PLFS file.
For a file being currently written, metadata is discovered by
stat’ing individual data files. When a file is closed, meta-
data information is cached as file names within a specific
subdirectory inside the container. Thereafter, metadata in-
formation can be discovered merely by issuing a readdir.
Obviously, the first technique is much slower; if our primary
interest was in optimizing metadata query rates, than we
could cache this metadata following every write. However,
since PLFS is designed for checkpoint writing, we do not
consider this technique.

Figure 8 compares these two times against the time it
takes to query a closed file written directly to the underlying
parallel file system, PanFS. We have not yet measured the
time to query an open file on PanFS. For this experiment,
conducted on LANL’s Roadrunner test cluster, we created
two sets of 20 GB files each written by a different num-
ber of writers all issuing 47001 byte-sized writes. One set
was created directly on PanFS; the other indirectly through
PLFS. As the graph shows, the stat times for closed files on
PLFS and PanFS are approximately the same. However, as
expected, the time to query a PLFS file open for writing is
greater than to query a closed file.

5. RELATED WORK
Translating random access checkpoint writes into a se-

quential pattern is an idea which extends naturally from
work on log-structured file systems [38] such as NetApp’s
WAFL [17] and Panasas’s Object Storage [47]. While these
ideas reorganize disk layout for sequential writing, they do
not decouple concurrency caused by multiple processes writ-
ing to a single file. Another approach to log-structuring N-1
patterns addressed only physical layout and also did not
decouple concurrency [35]. We believe our contribution of
rearranging N-1 checkpoints into N-N is a major advance.

Checkpoint-restart is an old and well studied fault toler-
ance strategy. A broad evaluation of rollback-recovery pro-
tocols and checkpointing and a discussion of their future at
the petascale can be found in [10, 11].
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Berkeley Lab Checkpoint/Restart [15] and Condor Check-
pointing [21] both allow unmodified applications to check-
point the state of a single node. They leverage the operat-
ing system’s ability to swap a process to save the totality
of the swap image persistently. The great strength of this
approach is that it can be used by applications that have
no internal checkpoint mechanism. A disadvantage is that
these checkpoints are larger then when an application spec-
ifies only the exact data that it needs saved. Conversely,
incremental checkpointing and memory exclusion [32, 34]
reduce the size of checkpoint data by only saving data that
has changed since the previous checkpoint. Buffering with
copy-on-write [20] can also reduce checkpoint latency.
stdchk [40] saves checkpoints into a cloud of free disk

space scavenged from a cluster of workstations. A simi-
lar approach [39] reserves compute node memory to tem-
porarily buffer checkpoints and then asynchronously saves
them to persistent storage. Diskless checkpointing [33] also
saves checkpoints into compute node memory, but does not
subsequently transfer them to persistent storage. Rather it
achieves fault protection by using erasure coding on the dis-
tributed checkpoint image. Although these techniques work
well for many applications, large HPC parallel applications
jealously utilize all memory and demand a high degree of
determinism in order to avoid jitter [5] and are therefore
seen to be poorly served by techniques reducing available
memory or techniques which require background processes
running during computation.

The Adaptable IO System (ADIOS) [22] developed by the
Georgia Institute of Technology and Oak Ridge National
Laboratory provides a high-level IO API that can be used
in place of HDF5 to do much more aggressive write-behind
and log-like reordering of data location within the check-
point. While this technique requires application modifica-
tion, it enables interoperability with other middleware li-
braries. Similarly, Lustre Split Writing [48], uses a library
approach and leverages Lustre’s file joining mechanism to
decouple concurrent access at runtime as does PLFS. How-
ever, Lustre Split Writing is wed to the Lustre file system, re-
quires application modification, and prevents the data from
being immediately available following a checkpoint.



Interposition

Technique

Used

No Extra

Resources

Used During

No Extra

Resources Used

After

Maintains

Logical

Format

Works with

Unmodified

Applications

Data

Immediately

Available

ADIOS Library Yes Yes Yes No Yes
stdchk FUSE No (LD, M) No (LD, N, M) Yes Yes Yes

Diskless Library No (M) No (M) No No Yes
Sp Writ Library Yes Yes Yes No No

ZEST FUSE No (RD) No (RD) No No No
PLFS FUSE Yes Yes Yes Yes Yes

Table 1: Techniques for improving N-1 Checkpointing This table presents a comparison of the various techniques for reducing

N-1 checkpoint times. For exposition, we have used various shorthands: Diskless for Diskless Checkpointing, Sp Writ for Lustre Split

Writing, LD for local disk on the compute nodes, RD for remote disk on the storage system, M for memory, and N for network.

ZEST [29], developed at Pittsburgh Supercomputing Cen-
ter, is a file system infrastructure that is perhaps the most
similar in philosophy to PLFS, particularly in its borrowing
of concepts from log-structured file systems. Rather than
each client process pushing their writes sequentially to stor-
age, in ZEST manager threads running on behalf of each
disk pull data from a series of distributed queues, in a tech-
nique borrowed from River [6]. The key aspect of ZEST is
that no individual write request is ever assigned to a spe-
cific disk; disks pull from these queues whenever they are not
busy, resulting in high spindle utilization even in a system
where some devices are performing more slowly than others.
Unlike PLFS, however, data is not immediately available to
be read, requiring a subsequent phase to first rewrite the file
before it can be accessed. Since this phase happens in the
relatively long time between checkpoints and since it hap-
pens on the server nodes and not on the compute nodes, this
subsequent rewrite phase is not typically problematic for a
dedicated checkpoint file system.

6. CURRENT STATUS AND FUTURE WORK
We initially developed PLFS in order to test our hypoth-

esis that an interposition layer could rearrange checkpoint
patterns such that the convenience of N-1 patterns could be
preserved while achieving the bandwidth of N-N. However,
after achieving such large improvements with real LANL ap-
plications, we were compelled to harden it into a production
file system. Consisting of about three thousand lines of code,
PLFS is currently an optional mount point on Roadrunner
where several applications have begun using it to improve
their N-1 checkpoint performance. PLFS is publically avail-
able at http://sourceforge.net/projects/plfs.

Although PLFS works transparently with unmodified ap-
plications, in practice some applications may need to make
minor changes. Many users find it most convenient to stage
their input data sets and their executable code in the same
directory where they write their checkpoint files. Since PLFS
is specifically a checkpoint file system and is not a general
purpose file system, this usage pattern may suffer a per-
formance hit. These users should instead stage their input
data sets and their executable code in a general purpose file
system and merely direct their N-1 checkpoint files to PLFS.

Also, applications that open PLFS files in read-write mode
will find that reading from these files can be very slow. As
we discussed in Section 3.1.1, reads in PLFS are handled
by reading and aggregating the index files. When files are
opened in write-read mode, this process must be repeated

for every read since intervening writes may have occurred.
Although the vast majority of HPC applications are able to
read in read-only mode, we do plan to investigate remov-
ing this limitation in the future for those few applications
who must occasionally read while writing. One possibility
is to introduce metadata servers which can synchronously
maintain an aggregated index in memory.

Originally intended merely to address N-1 challenges, PLFS
as currently designed, also has the potential to address N-N
challenges. One way that PLFS can reduce N-N checkpoint-
ing times is by reducing disk seeks through its use of log-
structured writing. However, we have yet to measure the
frequency of non-sequential IO within N-N checkpoints.

Another challenge of an N-N pattern is the overwhelm-
ing metadata pressure resulting from the simultaneous cre-
ation of tens of thousands of files within a single directory.
Currently HPC parallel file systems do distribute metadata
across multiple metadata servers; however they do so at the
granularity of a volume or a directory (i.e. all files within a
directory share a single metadata server). PLFS can easily
refine this granularity by distributing container subdirecto-
ries across multiple metadata servers. At the moment, PLFS
only creates container structures for regular files; directo-
ries are simply created directly on the underlying parallel
file system. By extending PLFS to create a similar con-
tainer structure for directories, we believe that PLFS can
effectively address this N-N challenge as well, in a manner
similar to [30].

7. CONCLUSION
Large systems experience failures. To protect themselves

against these failures, parallel applications running on these
systems save their progress by checkpointing. Unfortunately
for many of these applications, their preferred checkpointing
patterns are extremely challenging for the underlying paral-
lel file system and impose severe bandwidth limitations. In
this paper, we have developed PLFS to demonstrate how a
simple interposition layer can transparently rearrange these
challenging patterns and improve checkpoint bandwidth by
several orders of magnitude.

The parallel file system attached to Roadrunner is the
largest LANL has ever had; testing it has revealed that the
challenges of N-1 patterns are severely exacerbated at this
scale. Given current bandwidths, we know of no current N-1
application at LANL that can effectively checkpoint across
the full width of Roadrunner. PLFS allows them to do so.
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