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Abstract: Drug resistance and metastasis are two major obstacles to cancer chemotherapy. During
metastasis, cancer cells can survive as floating cells in the blood or lymphatic circulatory system, due
to the acquisition of resistance to anoikis—a programmed cell death activated by loss of extracellular
matrix attachment. The anoikis-resistant lung cancer cells also develop drug resistance. In this
study, paclitaxel-encapsulated PLGA-lipid hybrid nanoparticles (PLHNPs) were formulated by
nanoprecipitation combined with self-assembly. The paclitaxel-PLHNPs had an average particle
size of 103.0 ± 1.6 nm and a zeta potential value of −52.9 mV with the monodisperse distribution.
Cytotoxicity of the nanoparticles was evaluated in A549 human lung cancer cells cultivated as
floating cells under non-adherent conditions, compared with A549 attached cells. The floating cells
exhibited anoikis resistance as shown by a lack of caspase-3 activation, in contrast to floating normal
epithelial cells. Paclitaxel tolerance was evident in floating cells which had an IC50 value of 418.56 nM,
compared to an IC50 value of 7.88 nM for attached cells. Paclitaxel-PLHNPs significantly reduced
the IC50 values in both attached cells (IC50 value of 0.11 nM, 71.6-fold decrease) and floating cells
(IC50 value of 1.13 nM, 370.4-fold decrease). This report demonstrated the potential of PLHNPs to
improve the efficacy of the chemotherapeutic drug paclitaxel, for eradicating anoikis-resistant lung
cancer cells during metastasis.

Keywords: PLA-based materials; nanoparticles; drug delivery; paclitaxel resistance; metastasis; lung
cancer; anoikis

1. Introduction

The two major problems in cancer treatment are drug resistance and the spreading of
cancer cells in the body or metastasis. Metastatic tumors are difficult to treat because they
frequently develop drug resistance, which remains a major cause of cancer-related death.
During metastasis, cancer cells float through the blood and lymphatic circulatory system
until they reach targeted locations in distant organs [1]. Normal epithelial and endothelial
cells require adhesion to their appropriate extracellular matrix (ECM) and neighboring
cells for maintaining their survival. Detachment from ECM or adhesion to inappropriate
ECM leads to activation of a programmed cell death termed anoikis in the normal epithelial
and endothelial cells [2,3]. This phenomenon avoids the misplaced growth of normal
cells in other sites. However, some populations of cancer cells are able to develop anoikis
resistance to support their survival when they become floating cells during the journey
through the circulatory systems [4]. There is considerable interest in developing approaches
for managing anoikis-resistant cancer cells.
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Drug resistance of cancer cells in patients can occur before receiving chemotherapy
(inherent or intrinsic resistance) or emerge after treatment (acquired resistance), this classi-
fication is based on the time when resistance is developed [5]. The effectiveness of current
chemotherapeutic drugs is gradually decreased by the acquired resistance after repeated
treatments, while the intrinsic resistance of cancer cells causes poor drug response from the
first treatment so that patients do not receive the benefit of chemotherapy [6].

New deaths worldwide from lung cancer in 2020 have been estimated to be 1.8 million
or 18% of all cancer deaths, making lung cancer the most deadly cancer [7]. A major type of
lung cancer is non-small cell lung cancer (NSCLC) which accounts for about 85% of all lung
cancer cases [8]. More than 75% of new lung cancer cases were advanced cases at metastatic
stage III or IV at the time of diagnosis [9]. Over the past decade, several new treatments
for advanced NSCLC have been developed, including targeted therapy and immunother-
apy [8]. However, cytotoxic chemotherapy has been the first-line standard regimen for
metastatic NSCLC patients who do not have a targetable mutation [10]. Therefore, the
improving efficacy of cytotoxic anticancer drugs is still essential for cancer chemotherapy.

Paclitaxel or TaxolTM is a widely used anticancer agent, either as monotherapy or in
combination with other drugs, for the treatment of several cancers such as lung, breast,
ovarian, prostate, liver, gastric, and bladder cancer [11,12]. Several lines of evidence
show that the occurrence of paclitaxel resistance is associated with metastasis in NSCLC
patients who have never received paclitaxel treatment. Intrinsic resistance to paclitaxel
was observed in 76–79% of the NSCLC patients with metastatic stage III/IV cancer [13,14].
So, we previously used an in vitro non-adherent culture model to mimic floating cancer
cells during metastasis and showed that floating H460 lung cancer cells exhibited paclitaxel
tolerance that resulted from increased expression of the βIVa-tubulin isotype [15]. Therefore,
this model may be used for studying metastasis-associated paclitaxel tolerance in anoikis-
resistant lung cancer cells.

Since paclitaxel-resistant cancer cells require a higher dose of the drug, it is important to
explore approaches that enable the increase in intracellular drug concentrations. Paclitaxel
is a drug with low solubility in water which requires assistance to allow desired therapeutic
concentrations to be reached in tumors: this is a major problem in enabling paclitaxel to
achieve satisfactory results [16]. With regards to this issue, a variety of nanoformulation
platforms for paclitaxel and other poorly soluble bioactive compounds have been developed
to improve solubility and bioavailability [17–19]. In addition, nano-sized formulations
utilize the concept of enhanced permeability and retention (EPR) effect and passively
extravasate through the leaky vasculature of tumor tissues [20].

Different platforms of paclitaxel nanoformulations have been investigated for NSCLC
treatment such as albumin-bound nanoparticles [21], solid lipid nanoparticles [22], lipid-
based nanoparticles [23], and polymeric micelle nanoparticles [24]. Poly(D,L-lactide-co-
glycolide) or PLGA is an FDA-approved copolymer widely used for producing polymeric
nanoparticles with biodegradability and biocompatibility. Over the past two decades,
PLGA nanoparticles have been used as a carrier of paclitaxel, either as a single drug or
in combination with other agents, for lung cancer treatment. Fonseca et al. prepared
paclitaxel-loaded PLGA nanoparticles by interfacial deposition method (presently known
as a nanoprecipitation method) and showed the enhancement of paclitaxel cytotoxicity in
NCI-H69 lung cancer cells, by the nanoparticles compared to free paclitaxel [25]. Recently,
Jiménez-López et al. used a modified nanoprecipitation method to prepare paclitaxel-
loaded PLGA nanoparticles and demonstrated promising results of the nanoparticles
by inhibiting the proliferation of several lung cancer cell lines with an average three-
fold reduction in paclitaxel IC50 values compared to free drug. Moreover, the paclitaxel
nanoparticles also decreased in vitro growth of cancer stem cells and tumor spheroids, as
well as resulting in the rapid accumulation of paclitaxel in various tissues including lungs
of mice after intravenous administration of paclitaxel nanoparticles, compared with free
paclitaxel [26].
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Until now, there have been few studies evaluating paclitaxel-loaded PLGA nanopar-
ticles in drug-resistant lung cancer cells. Yuan et al. used PLGA-Tween80 co-polymer to
fabricate paclitaxel-loaded PLGA-Tween80 nanoparticles which exhibited a greater effect
than paclitaxel-loaded PLGA nanoparticles for facilitating cellular up-take in paclitaxel-
resistant A549 lung cancer cells. Furthermore, the IC50 value of paclitaxel-PLGA-Tween80
nanoparticles in the resistant cell line was three-fold and eight-fold lower than IC50 values
of paclitaxel-PLGA nanoparticles and free drug, respectively, indicating that the presence
of hydrophilic part of Tween80 on the surface of PLGA-Tween80 nanoparticles effectively
improved paclitaxel delivery into the drug-resistant cells [27].

Recently, research trends suggest that PLGA-lipid hybrid nanoparticles (PLHNPs)
have a wide range of therapeutic applications. The PLHNPs consist of three parts, (i) an in-
ner PLGA core encapsulating the hydrophobic drug, (ii) a lipid monolayer shell of lecithin
coating the PLGA core, and (iii) an outer PEGylated lipid hydrophilic stealth layer of
1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(polyethylene glycol)-2000]
(DSPE-PEG-COOH) interspersed throughout the lecithin monolayer, which prolongs sys-
temic circulation of the nanoparticles by avoiding clearance by the immune system [28].
Previous studies have shown the effectiveness of PLHNP formulations for the treatment of
multiple cancers [29].

In this work, we aimed to apply PLHNPs to improve the effectiveness of the ther-
apeutic effect of paclitaxel towards anoikis-resistant lung cancer cells during metastasis.
Thus, we prepared paclitaxel-PLHNPs and demonstrated their potential for overcoming
metastasis-associated paclitaxel tolerance in A549 floating lung cancer cells.

2. Results and Discussion
2.1. Preparation and Characterization of Paclitaxel-PLHNPs

First, we investigated the effect of solvent used to dissolve the PLGA polymer for
the preparation of PLHNPs. Acetonitrile and tetrahydrofuran were chosen as organic
solvents in this study. Empty PLHNPs were prepared using a combination of PLGA and
mixed lipid through the nanoprecipitation/self-assembly method to form nanoparticles
in the nanometer-sized range with a narrow polydispersity index (PDI). As shown in
Figure 1a, the particle size of nanoparticles made with PLGA/acetonitrile was smaller than
those made with PLGA/tetrahydrofuran. The more water-miscible solvents tended to
have greater polarity which resulted in decreasing the size of nanoparticles [30]. Use of
acetonitrile as organic solvent compared with tetrahydrofuran resulted in a more highly
negative charged surface (Figure 1b). Therefore, acetonitrile has been chosen as an organic
solvent for the formulation of paclitaxel-PLHNPs since smaller particle sizes and higher
zeta potential were obtained.

The size of formulated paclitaxel-PLHNPs was 103.0 nm with uniform particle distri-
bution (PDI of 0.11). The paclitaxel-PLHNPs possessed a strong negatively charged surface
with carboxylic acid end groups of DSPE-PEG-COOH with zeta potential −52.9 mV, indi-
cating a stable nanoparticle dispersion (Table 1).

To determine the storage stability of nanoparticles, the prepared paclitaxel-PLHNPs
were kept at 4 ◦C and room temperature. As shown in Figure 2, the higher storage
temperature induced aggregation of paclitaxel-PLHNPs, causing an increase in particle size.
Paclitaxel-PLHNPs were stable in suspension when stored at 4 ◦C up to 28 days, compared
to storage under room temperature. This was consistent with a previous study reporting
that PLGA nanospheres should be stored at 4 ◦C in order to avoid the aggregation [31].

2.2. Evaluation of Anoikis Resistance

In vitro non-adherent culture using polyHEMA-coated plates has been used to obtain
floating cancer cells with an anoikis-resistant property that mimics metastasizing cells in
the blood and lymphatic circulatory system [15]. Morphological differences were found
between A549 attached cells grown as monolayers (Figure 3a) and A549 floating cells
cultivated in polyHEMA-coated plates (Figure 3b). The floating cells exhibited a round
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shape and formed aggregates similar to the aggregated floating lung cancer cells found in
lymphatic vessels of lung cancer patients [32].
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Next, we studied the activation of caspase-3 which is a hallmark of apoptotic cell
death [33]. Anoikis is defined as a type of apoptosis specifically induced by loss of cell
attachment, and caspase-3 activation has been used to detect anoikis in cancer cells [32]. We,
therefore, used an assay of caspase-3 to evaluate anoikis resistance in our floating cancer
cells. Normal epithelial cells undergo anoikis with loss of attachment. Caspase-3 activity of
HMECs cultured under non-adherent conditions was significantly increased, compared
with the attached cells (Figure 4a), indicating anoikis induction in these cells. In contrast,
there was no significant difference between the caspase-3 activities of A549 floating cells and
A549 attached cells (Figure 4b). These results demonstrated that anoikis resistance emerged
in A549 floating cells when cultured under non-adherent conditions. Taken together, the
results confirmed that the A549 floating cells in our in vitro model displayed morphology
and anoikis resistance property similar to that found in metastasizing lung cancer cells.
Therefore, this model was further used for investigating the effect of paclitaxel-PLHNPs.
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2.3. Comparison of the Cytotoxic Effect of Paclitaxel-PLHNPs and Free Drug in Anoikis-Resistant
A549 Cells

We applied the model of A549 floating cells to evaluate the potential of our formulated
paclitaxel-PLHNPs against anoikis-resistant cancer. The A549 attached and floating cells
were treated with free paclitaxel and paclitaxel-PLHNPs at concentrations equivalent to
1–1000 nM of paclitaxel for 72 h. As shown in Figure 5, both free paclitaxel and paclitaxel-
PLHNPs displayed a similar pattern of dose-dependent cytotoxicity in attached and floating
cells. The anoikis-resistant floating cells showed tolerance to free paclitaxel with 53.1-fold
resistance, compared with the attached cells (Table 2). Treatment with paclitaxel-PLHNPs
could reduce the paclitaxel tolerance of floating cells to a 10.3-fold resistance (Table 2). Our
previous studies demonstrated that the acquisition of paclitaxel tolerance in floating lung
cancer cells was not due to overexpression of drug transporters such as MDR1/P-gp, but
was associated with upregulation of βIVa-tubulin gene, a paclitaxel-resistant β-tubulin
isotype [15,34].
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Table 2. IC50 values of paclitaxel in A549 attached and A549 floating cells. * p < 0.05 compared to
free paclitaxel.

IC50 at 72 h
Fold Resistance

A549 Attached Cells A549 Floating Cells

Free paclitaxel ∗
[

7.88 ± 1.38 nM
0.11 ± 0.05 nM ∗

[
418.56 ± 194.17 nM

1.13 ± 0.57 nM
53.1

Paclitaxel-PLHNPs 10.3

Fold change in IC50 71.6-fold decreased 370.4-fold decreased

The remaining 10.3-fold resistance in A549 floating cells after paclitaxel-PLHNPs
treatment indicated the contribution of other mechanisms to the paclitaxel tolerance of
the floating cells. Several mechanisms can confer paclitaxel resistance in cancer, such as
MDR1/P-gp overexpression, altered expression or mutation of β-tubulin isotypes, changes
in expression of anti- or pro-apoptotic proteins, and equally important is that each of these
mechanisms could separately contribute to the resistance [35]. Since paclitaxel acts by
interfering with microtubule dynamics during mitosis in dividing cells, a reduction in cell
growth capability may decrease the sensitivity of cells to paclitaxel cytotoxicity. Supporting
evidence was reported from gene expression microarray analysis in paclitaxel-resistant
MCF-7 breast cancer cells exhibiting slow growth rate, where the cell doubling time and
expression of a cell cycle inhibitor gene CDKNA2/p16 were increased in the paclitaxel-
resistant cells [36]. Similarly, we observed that our A549 floating cells exhibited a slower
growth compared to the attached cells (unpublished data). Prolonging cell division reduces
the chance of paclitaxel interfering with microtubule dynamics, making the A549 floating
cells have less response to paclitaxel. This resistant mechanism could not be overcome by
increasing intracellular drug concentration, and the mechanism might contribute to the
remaining 10.3-fold resistance in A549 floating cells after paclitaxel-PLHNPs treatment.

In A549 attached cells, paclitaxel-PLHNPs showed significantly enhanced cytotoxicity
of the drug with a 71.6-fold decrease in IC50 value compared to free paclitaxel (Table 2).
Interestingly, treatment with paclitaxel-PLHNPs showed a greater cytotoxic effect in A549
floating cells compared with attached cells, as demonstrated by a 370.4-fold decrease in
IC50 value. These results indicated that the PLHNP platform markedly improved the
effectiveness of paclitaxel in anoikis-resistant lung cancer cells. This is in line with a report
by Lee et al. [37] demonstrating five-fold higher cytotoxicity of doxorubicin encapsulated in
human serum albumin nanoparticles (HSA + DOX NPs), compared with free doxorubicin,
in anoikis-resistant MDA-MB-231 breast cancer cells.

The effectiveness of paclitaxel-PLHNPs to overcome paclitaxel tolerance in A549
floating cells might be due to the ability of PLHNPs to deliver the hydrophobic drug into
the cells, leading to increased intracellular drug concentration, as proven in our previous
study for the use of PLHNPs to deliver a hydrophobic photosensitizer into multidrug-
resistant lung cancer cells [34].

3. Conclusions

This study highlights the importance of paclitaxel delivery using PLHNPs to maximize
the efficacy of the drug for overcoming paclitaxel tolerance in metastasizing lung cancer
cells. The anoikis resistance property of the A549 floating cells was confirmed by the
absence of caspase-3 activation, in contrast to the anoikis induction observed in HMEC
floating cells. The self-assembly of PLGA-core and lipid-shell hybrid nanoparticles were
formulated through a modified nanoprecipitation technique leading to an average particle
diameter of 103.0 nm and strongly negative surface charge with a zeta potential of −52.9 mV.
The paclitaxel-PLHNPs showed the ability to increase the therapeutic effect of paclitaxel in
A549 floating cells with lower IC50 values compared with free paclitaxel.

Our results suggest that the PLHNP platform has great potential for delivering hy-
drophobic drugs to treat floating cancer cells during metastasis in the circulatory systems
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of the body. Further studies in animal models are required for validating the capability of
paclitaxel-PLHNPs to reduce metastasis and recurrence.

However, the development of PLHNPs encapsulating other drugs is also necessary,
because anoikis-resistant cells of different cancer types might acquire tolerance to distinct
drugs. We also suggest that a targeted delivery system or combination with other treatments
is required to improve effectiveness for overcoming drug tolerance of anoikis-resistant
cancer cells, in order to reduce the metastatic rate and prevent cancer recurrence.

4. Materials and Methods
4.1. Materials and Chemicals

Poly(D,L-lactide-co-glycolide) (PLGA) with a 50:50 monomer ratio, soybean lecithin
consisting of 95% phosphatidylcholine, paclitaxel, 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-
2H-tetrazolium bromide (MTT), and poly(2-hydroxyethyl methacrylate) or polyHEMA
were purchased from Sigma-Aldrich (St. Louis, MO, USA). 1,2-Distearoyl-sn-glycero-3-
phosphoethanolamine-N-[carboxy(polyethylene glycol)-2000] (DSPE-PEG-COOH) was
obtained from Avanti Polar Lipids, Inc. (Alabaster, AL, USA). Roswell Park Memorial Insti-
tute (RPMI) 1640 medium, fetal bovine serum (FBS), and antibiotic–antimycotic solution
were supplied by Gibco (Grand Island, NY, USA). All other reagents were of analytical
grade and used as received without further purification. Ultrapure water purified by
Milli-Q-plus system (Millipore, MA, USA) was used throughout the study.

4.2. Nanoparticle Preparation and Characterization

PLGA-lipid hybrid nanoparticles or PLHNPs were prepared through a previously
reported nanoprecipitation method combined with self-assembly [38]. In brief, 5 mg of
PLGA polymer was dissolved in 2 mL acetonitrile. Lecithin and DSPE-PEG-COOH (3:1,
molar ratio) at 20% PLGA weight were dissolved in 10 mL of 4% ethanol. Polymer solution
was then slowly dropped into preheated lipid aqueous solution (65 ◦C) under stirring.
The mixture was subsequently stirred at room temperature for 1.5 h. Paclitaxel-PLHNPs
were formulated with a similar method where 0.5 mg of paclitaxel was added to 2 mL of
PLGA/acetonitrile solution. The resulting nanoparticles were collected and washed three
times with water through an Amicon Ultra-15 centrifugal filter, 10 kDa MWCO (Millipore,
MA, USA). The nanoparticles were filter-sterilized and stored at 4 ◦C for later use.

Hydrodynamic size and size distributions were analyzed by dynamic light scattering
(DLS). The zeta potential was determined via electrophoretic mobility. Measurements were
performed on samples appropriately diluted with using Zetasizer Nano ZS90 (Malvern
Instruments, UK). Paclitaxel content in the nanoparticles was quantified by analyzing the
absorbance of paclitaxel in nanoparticles and comparing it to the standard calibration curve
of the drug. Nanoparticle stability tests were performed to investigate the effect of storage
temperature and duration of storage on the nanoparticle stability in terms of particle size.

4.3. Cell Culture

A549 human lung adenocarcinoma cell line was obtained from the American Type
Culture Collection (ATCC, Rockville, MD, USA). Normal human mammary epithelial
cells (HMECs) were purchased from LONZA (Walkersville, MD, USA). A549 cells were
grown as monolayer cultures in RPMI 1640 supplemented with 10% (v/v) FBS and 1%
(v/v) antibiotic–antimycotic. HMEC cells were cultured in Mammary Epithelial Cell
Growth Medium (MEGM). All cells were maintained at 37 ◦C in a humidified incubator
with 5% CO2.

Floating cells were obtained by cultivating the cells under non-adherent culture condi-
tions using polyHEMA-coated culture plates which were prepared according to a previous
report with some modifications [15]. Briefly, 96-well plates were coated with a solution of
30 mg/mL polyHEMA in 95% ethanol, followed by drying at 37 ◦C for 48 h in a non-CO2
incubator for ethanol evaporation. The dried coated plates were sterilized by exposure to
UV light for 20 min prior to beginning each test.
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4.4. Caspase-3 Activity Assay

Anoikis cell death was assessed by determining caspase-3 activation using Caspase-
Glo 3/7 Assay (Promega, Medison, WI, USA). Briefly, 1 × 104 cells (100 µL/well) were
seeded into non-coated or polyHEMA-coated 96-well plates. After 24 h, Caspase-Glo 3/7
reagent (100 µL) was added to each well. Then, the plates were incubated at room tempera-
ture in the dark for 1 h. The resulting luminescence was measured with a luminescence
microplate reader (Molecular Devices, Sunnyvale, CA, USA).

4.5. Cytotoxicity Assay

A549 cells were plated into normal 96-well plates at a density of 5 × 103 cells
(100 µL/well) to obtain attached cells. The cells were plated into polyHEMA-coated 96-well
plates at a density of 1 × 104 cells (100 µL/well) to obtain floating cells. After 24 h incuba-
tion, the cells were exposed to different concentrations of paclitaxel or paclitaxel-PLHNPs
(25 µL/well) for 72 h. A modified MTT assay for non-adherent culture was employed
to determine cell viability at the end of treatment [34]. A 25 µL of fresh culture medium
containing MTT was added to each well to reach a final concentration of 0.5 mg/mL and
incubated for 4 h, followed by adding 100 µL of lysis solution (20% SDS in 10 mM HCl) to
solubilize formazan crystals produced by viable cells, then the plates were kept in the dark
for 48 h. After that, absorbance was measured at 550 nm and subtracted from a reference
wavelength at 650 nm, using a microplate reader. The cell survival rate was expressed as
percentage compared with control. Fold resistance was calculated from ratio of the IC50
value in floating cells to the IC50 value in attached cells.

4.6. Statistical Analysis

Data are expressed as mean with standard deviations (SD) of three independent
experiments. A software package PASW Statistics 18 for Windows (SPSS Inc., Chicago,
USA) was employed for statistical analysis. A p-value less than 0.05 was considered
statistically significant.
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