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Abstract: In indoor low-texture environments, the point feature-based visual SLAM system has poor
robustness and low trajectory accuracy. Therefore, we propose a visual inertial SLAM algorithm based
on point-line feature fusion. Firstly, in order to improve the quality of the extracted line segment,
a line segment extraction algorithm with adaptive threshold value is proposed. By constructing
the adjacent matrix of the line segment and judging the direction of the line segment, it can decide
whether to merge or eliminate other line segments. At the same time, geometric constraint line feature
matching is considered to improve the efficiency of processing line features. Compared with the
traditional algorithm, the processing efficiency of our proposed method is greatly improved. Then,
point, line, and inertial data are effectively fused in a sliding window to achieve high-accuracy pose
estimation. Finally, experiments on the EuRoC dataset show that the proposed PLI-VINS performs
better than the traditional visual inertial SLAM system using point features and point line features.

Keywords: visual inertial SLAM; indoor environment; point and line feature; nonlinear optimization

1. Introduction

In recent years, simultaneous localization and mapping (SLAM) has developed into a
research hotspot in the field of mobile robots. It is considered to be the core link to achieve
autonomous navigation. SLAM includes two main tasks, namely positioning and mapping
robots in an unknown environment; the pose of the robot is obtained by detecting the
surrounding features of the sensor during the movement process, and then the map of the
environment is constructed from the robot’s point of view [1,2].

Visual SLAM can be divided into direct methods and feature methods to estimate
camera motion based on the obtained images. Direct methods, such as DTAM [3], LSD-
SLAM [4] and DSO [5], estimate camera motion according to the pixel brightness informa-
tion of the image, and optimize the solution by minimizing the brightness error. However,
its prerequisite is based on the assumption of the invariant gray level, that is, the pixel gray
level of the same spatial point is fixed in successive image frames. The point feature method
mainly uses SIFT [6], ORB [7] or SURF [8] to extract and match point features. According
to the result of feature matching, incremental beam adjustment is used to minimize the
reprojection error to estimate the camera pose, such as PTAM [9] and ORB-SLAM2 [10].

However, the shortcomings of pure visual SLAM are also obvious. It is more sensitive
to situations where the movement speed is too fast, the rotation is too intense, and the
exposure is too high. The IMU inertial measurement unit can obtain more accurate motion
information because the acquisition frequency is higher than that of the camera, but the
IMU also has drift. The effective combination of the two can make up for the shortcomings
of the visual degradation of the camera and the drift of the correction IMU, so as to provide
better data information. To solve these problems, researchers combine vision and IMU and
propose a number of tightly coupled visual-inertial SLAM methods that jointly optimize
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vision and IMU information, such as MSCKF [11], VINS-Mono [12] and ORB-SLAM3 [13]
and so on. VINS-Mono, proposed by Tong Qin in 2018, is a sliding window estimator based
on nonlinear optimization. It closely integrates pre-integrated IMU measurements with
visual observation, minimizes the sum of IMU measurements and visual measurement
residuals, and obtains the maximum posteriori estimation. By solving nonlinear problems,
the attitude and deviation of the IMU can be calculated. Carlos Campos et al. proposed
ORB-SLAM3 in 2020. This system integrates IMU on the basis of ORB-SLAM2, which
greatly improves its performance. It is one of the most advanced visual-inertial SLAM
systems based on the feature point method.

In addition, there are often rich line segment features in indoor and other artificial
environments, so many researchers add line features to the data association between
images. Lu Y [14] et al. implemented visual odometry for point-line feature fusion based
on RGB-D cameras, and proved that point-line features have less motion uncertainty than
single features. For the first time, Zuo X [15] adopted the orthogonal representation of the
minimum parameterized line in SLAM, and analytically derived the Jacobian matrix of
the reprojection error relative to the line parameters, which greatly improved the SLAM
solution. Gomez O R et al. proposed the PL-SLAM [16] method based on a binocular
camera, which uses point-line features in all processes, including visual odometer, key
frame selection, and beam adjustment, and proposed a new word bag model, which
comprehensively considers the information of point-line features in the closed-loop process.
Yi Jia He et al. proposed the PL-VIO [17] method based on the VINS-Mono method,
which optimized the point-line features and IMU information in a tightly coupled manner,
superior to VIO systems based only on point-features. Li X et al. [18] added surface features
and coplanar constraints on the basis of PL-VIO to further model the environmental
topology based on the 3D grid generated by point features. However, because the LSD [19]
algorithm takes a long time to extract line features, it is difficult to run the algorithms
combined with point and line features above in real time. Qiang F et al. proposed PL-
VINS [20], which adjusted the implicit parameters of the LSD algorithm and realized
real-time operation of the LSD algorithm without affecting accuracy as much as possible.
Lee J et al. proposed another VIO system PLF-VINS [21] that integrates point-line features
in 2021. It introduces two methods of fusing point and line features. Firstly, the similarity
of the relative positions of points and lines is calculated, and then the relationship between
points and line features is judged by the position relation, and the parallel line relation is
judged in this process.

However, many SLAM systems based on multi-source information fusion still face
many challenges in indoor environments. First of all, most point-line based visual SLAM
systems do not make full use of line segment information and effectively combine with
IMU. Second, the VIO system was unable to extract enough point features from an area
with repeated textures. Although many of the above methods are committed to solving
these challenges, methods such as [16,17,20] do not fully consider the influence of different
types of line segments on camera pose estimation in indoor structural environments.

In order to solve the above problems, we propose a visual-inertial SLAM system based
on point-line feature fusion for indoor environments. The main contributions are as follows:

• In order to effectively obtain the structural information of indoor environments and
process the environment with repeated texture, an adaptive threshold line segment
extraction algorithm is proposed on the premise of point-line feature fusion, which is
used to process various redundant line segments in indoor environments to improve
the quality of line features.

• The point feature, line feature and IMU information are effectively fused in an
optimization-based sliding window to achieve high precision pose estimation. Ex-
periments on EuRoC datasets [22] show that the algorithm presented in this paper
has better performance than optical flow-based VINS-Mono and point-line based
PL-VINS.
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In the remainder of this article, the architecture of the proposed approach is described
in Section 2. Sections 3 and 4 describe in detail the work of the line segment extraction
algorithm proposed in this paper in indoor environments and the effective utilization of
point and line features and IMU in sliding windows. Section 5 describes the experimental
setup and the experimental results under a common data set. Finally, Section 6 provides
concluding observations and describes future work.

2. System Overview

The method proposed in this paper is mainly improved based on the VINS-Mono sys-
tem. The designed system block diagram is shown in Figure 1, which is mainly divided into
measurement preprocessing, local sliding window optimization and closed-loop detection.
The initialization process adopts the same strategy as that of VINS-Mono. Based on the
loose coupling strategy of visual information IMU information, the pose of all frames in the
sliding window and the inverse depth of 3D points are estimated by using the pure visual
structure from motion (SFM), and finally aligned with the result of IMU pre-integration.
The initialization parameters are solved.
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Figure 1. The system of PLI-VINS. 
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the optical flow method. For line features, the proposed adaptive threshold line segment 
extraction algorithm is used to extract line segments, LBD [24] descriptors are calculated, 
and the KNN [25] algorithm is used to match the distance between descriptor and line 
segment angle. This process is described in detail in Section 3 of this article. 

Figure 1. The system of PLI-VINS.

For feature extraction and tracking, one must firstly extract the Shi-Tomasi [23] feature
points from the input images, and then match and track feature points based on the optical
flow method. For line features, the proposed adaptive threshold line segment extraction
algorithm is used to extract line segments, LBD [24] descriptors are calculated, and the
KNN [25] algorithm is used to match the distance between descriptor and line segment
angle. This process is described in detail in Section 3 of this article.

After system initialization, the point-line feature results are sent to the sliding window
optimization section, and the sliding window optimization will pre-integrate IMU data. The
nonlinear estimator based on the sliding window model can construct the joint optimization
function according to the point-line constraints, IMU constraints and loopback constraints,
and solve the position, velocity, rotation and bias of all frames in the sliding window. The
detailed contents will be introduced in the third and fourth chapters of this paper.
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In the loop detection part, we follow the strategy of VINS-Mono. Firstly, whether to
insert key frames is determined according to the parallax between the two frames. If a key
frame is inserted, loop detection is performed through the DBoW [26] word bag model
and BRIEF [27] descriptor. If there is a loopback, the relocation process is used to maintain
alignment between the current the sliding window and the poses map of the past time, and
all the poses of the loopback is taken as a constant, and all the IMU measurements, local
visual measurements and corresponding feature values extracted from the loopback are
used to optimize the sliding window, so as to reduce the cumulative error and calculation
amount of the system. However, visual inertia information can provide roll angle and pitch
angle data, so there are only four degrees-of-freedom (DOF) errors (triaxial position error
and heading angle error). The consistency of the global trajectory can be guaranteed only
by adding key frames to the bitmap and optimizing its 4DOF.

3. Point Line Feature Processing

For point features in indoor environments, the Shi-Tomasi algorithm is used to detect
corner points in this paper, and then the KLT optical flow algorithm [28] is used to track
and match feature points, and RANSAC-based pair geometric constraints [29] are used
to identify internal and external points and eliminate outliers. For line features in indoor
scenes, an adaptive threshold line segment extraction algorithm is proposed to process line
features. Subsequently, LBD and KNN were used to describe and match the line features,
and the existing line feature outliers were identified by matching the Hamming distance
and angle of the line segment. Figure 2 shows the comparison between the traditional LSD
and KLT optical flow and the proposed algorithm in the EuRoC datasets factory scenario.
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3.1. Adaptive Threshold Line Segment Extraction Algorithm

When the traditional LSD algorithm is used in structural scenes, it is easy to produce
many short, overlapping and overlapping line segments. As shown in Figure 3b,c, these
line segments easily cause matching difficulties, resulting in the decrease in the rate and
accuracy of camera pose estimation. We propose an adaptive threshold line segment
extraction algorithm, which merges and removes the above-mentioned line segments to
further reduce redundant matching and mismatching of line features, thus improving the
robustness and accuracy of the proposed algorithm.

Firstly, length screening was carried out for the set {l1, l2, · · · lN} of all line segments
extracted by the traditional LSD algorithm; the short line segment whose lenli is less than
the length threshold lenmin is eliminated. The short lines that have great influence on
attitude estimation can be deleted by length screening. The length threshold lenmin satisfies
the following formula:

lenli ≥ lenmin, i ⊆ {1, 2, · · · , N}
lenmin = N

3N+dmax(Wk ,Hk)e
· dmin(Wk, Hk)e

(1)

where N is the number of line features extracted from the image of frame K; Wk and Hk are
the width and height of the current k frame; d•emeans round up.
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Figure 3. LSD line segment extraction effect: (a) indoor promenade scene; (b,c): LSD line segment
extraction effect.

In the case of the three common line segments as shown in Figure 4, this paper
constructs the external matrix of the line segment li after length screening, and determines
whether there are heads, tails and midpoint endpoints of other adjacent line segments in
the external matrix area. Then, the line segment features that meet the conditions are added
to the same set

{
li, li1 , li2 , · · · lin

}
. In Figure 4b, no endpoint is located in the external matrix

to be eliminated. Since each line segment in the set is characterized by a known starting
point and ending point, the main direction A=angle of the vector in the image coordinate
system can be calculated. As shown in Figure 4a,c, the main directions of line segment
li and other line segments lin in the set were calculated and the average value was taken
as the angle threshold angmin, and then the features of line segments whose angles with
line segment li were greater than the angle threshold angmin were eliminated. Finally, all
line segments that meet the conditions are extracted from the beginning and end and the
midpoint and end points, respectively, and the line segment is fitted to the point set by the
least square method.
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Compared with the single threshold set by experience in the paper [20,30–32], the
threshold set in this paper is associated with the number of line segments extracted,
image size and scene, which can more effectively adapt to the impact of different indoor
scene changes.

LBD descriptors were extracted from the filtered line segments for subsequent feature
matching. The KNN algorithm is then used for line segment matching. If the matching
distance and angle are less than the threshold value, the matching is considered successful.

3.2. Triangulation of Space Line Segments

Using homogeneous coordinates to determine a straight line through two points
will generate redundant parameters, which will bring additional computational costs in
subsequent optimization. Therefore, this paper introduces Plücker coordinates to represent
the straight line. The Plücker coordinate is determined by two different points on the
line LW .
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If one sets straight LW two endpoints of homogeneous coordinates of p1[x1, x2, x3, x4]
T

and p2[y1, y2, y3, y4]
T , the straight line LW Plücker coordinates are expressed as follows:

LW =

[
p′1 × p′2

x4 p′1 − y4 p′2

]
=

[
nw
vw

]
∈ R6 (2)

where [•]w represents the coordinates of feature points or feature line segments in the
world coordinate system; p′1 and p′2 are Cartesian coordinate representations of p1 and p2,
respectively; nw ∈ R3

is the normal vector of line LW ; vw ∈ R3
is the direction vector of

line LW .
The relationship between Plücker matrix T and Plücker coordinates can be obtained

as follows:

T = p2 pT
1 − p1 pT

2 =

[
n∧w
−vT

w

vw
0

]
(3)

where n∧w is the antisymmetric matrix of nw.
If one allows the transformation matrix of line LW from the world coordinate system

to the camera coordinate system be Hcw, then Hcw is as follows:

Hcw =

[
Rcw t∧cwRcw

0 Rcw

]
(4)

where Rcw and tcw represent the rotation matrix and translation vector of line LW trans-
formed from the world coordinate system to the camera coordinate system.

Lc is the coordinate of line LW transformed from the world coordinate system to the
camera coordinate system in space, so the formula of Plücker coordinate when representing
the coordinate change in line LW is as follows:

Lc =

[
nc
vc

]
=

[
Rcw

0
t∧cwRcw

Rcw

][
nw
vw

]
= HcwLw

Lw =

[
nw
vw

]
=

[
RT

cw
0

−RT
cwt∧cw

RT
cw

][
nc
vc

]
= H−1

cw Lc

(5)

Space line Lc projection to the plane of projection equations expressed by L1, L1
as follows:

L1 = κnc =

 fy 0 0
0 fx 0

− fycx − fxcy fx fy

nc =

 l1
l2
l3

 (6)

where κ is the projection matrix of line features.
It can be observed from the above that the Plücker coordinate is an expression form

of six parameters, and there are excessive parameterization and orthogonal constraints,
which will still cause unnecessary calculations in the optimization process. In this regard,
Bartoli [33] proposed a four-parameter orthogonal representation to address the above
problems, and this work is adopted in this paper.

Through the QR decomposition of the Plücker line coordinate LW =
[
nT

w, vT
w
]T , its

orthogonal representation (U, W) ∈ so(3)× so(2) can be obtained, where U and W are
as follows:

U =
[

nw
||nw ||

vw
||vw ||

nw×vw
||nw×vw ||

]
∈ R3×3

W =

[
cos θ − sin θ
sin θ cos θ

]
= 1√

||nw ||2+||vw ||2

[
||nw|| −||vw||
||vw|| ||nw||

]
∈ R2×2

(7)

where U and W represent the three-dimensional and two-dimensional rotation matrices,
respectively; θ is the rotation angle.
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Then, the Plücker line coordinate L′w after orthogonal representation can be expressed
as follows:

L′w =
[
cos θuT

1 , sin θuT
2

]T
(8)

where ui represents the ith column of matrix U.

3.3. Reprojection Error Model of Line Feature

As shown in Figure 5, the projection line segments of line L on the image plane are
L1, and l′1 is the observation line segment. One must let the end points of l′1 segment
X1 = [x1, y1, 1]T and X2 = [x2, y2, 1]T , and the projection segment L1 = [l1, l2, l3].
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Then, the distance between the two endpoints and the projected line segment is
as follows:

el =
[
d1 d2

]T
=

 xT
1 L1√

l2
1 + l2

2

xT
2 L1√

l2
1 + l2

2

 T

(9)

The Jacobian matrix of the camera pose increment can be solved according to the chain
rule, which is as follows:

JL =
∂el
∂δζ

=
∂el
∂L1

∂L1

∂Lc

∂Lc

∂δζ
(10)

L1 and Lc can be obtained from Equations (5) and (6), and the three items on the right
of Equation (10) are as follows:

∂el
∂L1

=


−l1XT

1 L1+x1(l2
1+l2

2)

(l2
1+l2

2)
3
2

−l1XT
2 L1+x2(l2

1+l2
2)

(l2
1+l2

2)
3
2

−l2XT
1 L1+y1(l2

1+l2
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(l2
1+l2

2)
3
2

−l2XT
1 L1+y2(l2
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2)

(l2
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2)
3
2

1√
l2
1+l2

2
1√

l2
1+l2

2


2×3

∂L1
∂Lc

= ∂(κnc)
∂Lc

=
[

κ 0] 3×6

∂Lc
∂δζ

=

[
−(Rcwncw)

∧ − (t∧cwRcwvw)
∧ −(Rcwvw)

∧

−(Rcwvw)
∧ 0

]
6×6

(11)

4. Nonlinear Optimization Based on Sliding Window

In this paper, the nonlinear optimization method based on the sliding window model
is adopted, that is, to ensure that the number of optimization variables is maintained in a
certain range, the optimization variables are dynamically added or removed through the
sliding window, and only the key frame data in the current period of time participate in
the position pose solution process.
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The complete state vector at moment i in the sliding window is defined as follows:

χ = [xn, xn+1 · · · xn+N , λm, λm · · · λm+M, Ol , Ol+1 · · ·Ol+L]

xi =
[

pωbi
, qωbi

, vωbi
, ba

bi
, bg

bi

]T
, i ∈ [n, n + N]

(12)

where xi is IMU state vector at window i, pωbi
is position information, qωbi

is pose infor-
mation, vωbi

is velocity, ba
bi

and bg
bi

are accelerometer bias and gyroscope bias, respectively;
λm represents the inverse depth of 3D points; Ol is the orthogonal representation of line
features in the world coordinate system; N is the number of key frames in the sliding
window, m is the number of point features observed by key frames in the sliding window,
and l is the number of line features observed by key frames in the sliding window.

On the basis of VINS-Mono, the residual term of line feature is added into the objective
optimization function. That is, the objective optimization function includes marginal
prior residual, IMU measurement residual, point and line residual. The specific form is
as follows:

min
χ


ρ(||rp − Hpχ||2Σp

) + ∑
k∈B

ρ

(∣∣∣∣∣∣∣∣rB(z
bk
bk+1

, χ)

∣∣∣∣|2Σbkbk+1

)
+ ∑

(i,j)∈D
ρ

(∣∣∣∣∣
∣∣∣∣∣rD(z

cj
j , χ)

∣∣∣∣∣|2pcj
j

)
+ ∑

(i,j)∈l
ρ

(∣∣∣∣∣∣∣∣rl(z
cj
L , χ)

∣∣∣∣|2pcj
L

)
 (13)

where B is the IMU measurement data set, D and l are the collection of point features and
line features observed at least twice in the image frame, respectively.

∣∣∣∣∣∣rp − Hpχ
∣∣∣|2Σp

is the

marginal prior information, Hp is the marginal prior residual Jacobian matrix; rB(z
bk
bk+1

, χ),

rD(z
cj
j , χ) and rl(z

cj
L , χ) are the residual terms of IMU, point feature and line feature, respec-

tively. ρ(·) is a Cauchy robust function for suppressing outliers.

5. Results

To verify the effectiveness of the proposed visual inertial SLAM algorithm based on
the fusion point and line features in indoor environments, experiments were carried out
using EuRoC datasets. The dataset was collected by a micro aerial vehicle (UAV) at two
different scales, industrial factory and indoor room. There are 11 sequences, including
binocular stereo (752*480) images, 200 Hz synchronous IMU information, trajectory truth,
and calibration files for external and internal parameters of different sensors. These se-
quences are classified into different levels based on lighting, texture, dynamic motion, or
motion blur.

The experimental platform was configured as Intel I7-7700HQ (8 cores @ 2.8ghz) CPU,
16GB memory, no GPU acceleration, and 64-bit Ubuntu 18 operating system.

Firstly, this paper verifies the effectiveness of the proposed improved LSD algorithm
in screening invalid line segments in indoor environments, especially in the efficiency of
line segment extraction and matching. Then, the root mean square error (RMSE) of absolute
trajectory error (ATE) is used to evaluate the effect of the improved LSD algorithm on
improving the accuracy of camera pose tracking, and the effect of the nonlinear optimization
algorithm with point and line residuals on the accuracy of camera motion trajectory.

5.1. Evaluation of Line Feature Extraction Algorithm

In this section, datasets numbered "MH_01_easy" and "MH_03_medium" are selected
from the industrial factory environment. In the indoor room environment, select datasets
V1_01_easy, V1_03_difficult, and V2_01_easy. Then ten groups of adjacent images were
randomly selected from the above datasets for line feature extraction experiment.

Figure 6 (a) shows the scenario of “MH_01_easy”, “V1_01_easy” and “V2_01_easy”;
(b) is the line segment graph extracted by the traditional LSD algorithm, in which there
are a large number of short, crossed and overlapping line segments. In the calculation of
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camera pose and position, a large number of repeated and invalid line segments occupy
the computing resources. Figure 6c shows the fixed threshold method (line segment
length > 60) adopted in PL-VINS. Compared with traditional LSD, it removes the most
useless small line segments. The comparison of Figure 6c–e shows that the method adopted
by PL-VINS also removes a large number of useful structural line segment features. As
shown in Table 1, compared with the traditional LSD and PL-VINS methods, the extraction
quantity of the PLI-VINS decreased significantly, and the average running time decreased
by 58.5% and 25.6%.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 14 
 

 

 
(a)                                           (b)                                        (c)                                          (d)                                       (e) 

Figure 6. Graph of experimental results: (a) three scenarios of EuRoC datasets; (b) traditional LSD 
algorithm; (c) LSD algorithm with fixed threshold (line feature extraction algorithm in PL-VINS); 
(d) ours (length filtering); (e) ours (length filtering and line segment merging). 

Table 1. Average line feature extraction quantity and time for different algorithms. 

Seq LSD + LBD + KNN LSD (Fixed Threshold) + LBD + KNN 
Ours + LBD + KNN 

Length Filter 
Length Filter and 

Line Merge 
 Num Time (s) Num Time (s) Num Num Time (s) 

MH_01_easy 2480 5.93 838 3.78 234 179 3.4 
MH_03_medium 2328 6.12 1135 3.58 157 132 2.13 

V1_01_easy 1562 9.87 763 2.07 128 109 3.48 
V1_03_difficult 1757 4.17 957 2.33 78 45 0.74 

V2_01_easy 1249 3.3 868 3.3 117 96 1.44 
Mean 1875 5.88 912.2 3.01 142.8 112 2.24 

By combining the data in Table 1 and the effect of Figure 6, it can be observed that 
many unstable short line segments can be screened out by the length factor, and then the 
adjacent, overlapping, and other line segments that repeatedly describe the same 
geometric feature type are merged through line segment merging. There are great 
improvements in efficient line segment representation in indoor scenes and in reducing 
algorithm running time. 

5.2. Accuracy Evaluation of Pose Trajectories 
In this subsection, the positioning accuracy analysis is performed on all sequences in 

the EuRoC datasets, and the PLI-VINS is compared with VINS-Mono, PL-VINS and PL-
VIO, respectively. The absolute trajectory errors of different algorithms under the EuRoC 
datasets are shown in Table 2, where the values with the lowest errors are in bold. In 
Figure 7, this paper shows the accuracy heatmap of VINS-Mono and our algorithm in the 
sequence MH_03_medium, V1_01_easy, V2_01_easy; the gray dotted line represents the 
true value of the trajectory, and the colored solid line represents the estimated trajectory. 
The color of the trace changes from blue to red, indicating a gradual increase in the error 
of the ATE. Each line shows the results of five methods in the same data set, and the first 
two of each line are the trajectory of VINS-Mono with no loopback and with loopback. 
The third is the method track of length filtering only in this paper (no loopback), the fourth 

Figure 6. Graph of experimental results: (a) three scenarios of EuRoC datasets; (b) traditional LSD
algorithm; (c) LSD algorithm with fixed threshold (line feature extraction algorithm in PL-VINS);
(d) ours (length filtering); (e) ours (length filtering and line segment merging).

Table 1. Average line feature extraction quantity and time for different algorithms.

Seq LSD + LBD + KNN LSD (Fixed Threshold) +
LBD + KNN

Ours + LBD + KNN

Length Filter Length Filter and
Line Merge

Num Time (s) Num Time (s) Num Num Time (s)

MH_01_easy 2480 5.93 838 3.78 234 179 3.4
MH_03_medium 2328 6.12 1135 3.58 157 132 2.13

V1_01_easy 1562 9.87 763 2.07 128 109 3.48
V1_03_difficult 1757 4.17 957 2.33 78 45 0.74

V2_01_easy 1249 3.3 868 3.3 117 96 1.44
Mean 1875 5.88 912.2 3.01 142.8 112 2.24

By combining the data in Table 1 and the effect of Figure 6, it can be observed that many
unstable short line segments can be screened out by the length factor, and then the adjacent,
overlapping, and other line segments that repeatedly describe the same geometric feature
type are merged through line segment merging. There are great improvements in efficient
line segment representation in indoor scenes and in reducing algorithm running time.

5.2. Accuracy Evaluation of Pose Trajectories

In this subsection, the positioning accuracy analysis is performed on all sequences
in the EuRoC datasets, and the PLI-VINS is compared with VINS-Mono, PL-VINS and
PL-VIO, respectively. The absolute trajectory errors of different algorithms under the
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EuRoC datasets are shown in Table 2, where the values with the lowest errors are in bold.
In Figure 7, this paper shows the accuracy heatmap of VINS-Mono and our algorithm in
the sequence MH_03_medium, V1_01_easy, V2_01_easy; the gray dotted line represents
the true value of the trajectory, and the colored solid line represents the estimated trajectory.
The color of the trace changes from blue to red, indicating a gradual increase in the error
of the ATE. Each line shows the results of five methods in the same data set, and the first
two of each line are the trajectory of VINS-Mono with no loopback and with loopback. The
third is the method track of length filtering only in this paper (no loopback), the fourth
is the complete method track of this paper (no loopback), and the last is the track of our
algorithm with loopback.

Table 2. RMSE ATE (M) comparison of VINS-Mono, PL-VINS, PL-VIO and ours (PLI-VINS).

Seq

w/o Loop w/Loop

VINS-Mono PL-VINS PL-VIO
Ours

(Length
Filter)

Ours
(Length

Filter and
Line Merge)

VINS-Mono PL-VINS Ours

MH_01_easy 0.244 0.172 0.152 0.232 0.146 0.183 0.137 0.108
MH_02_easy 0.222 0.193 0.173 0.163 0.142 0.175 0.159 0.090

MH_03_medium 0.307 0.255 0.265 0.222 0.214 0.265 0.136 0.097
MH_04_difficult 0.373 0.299 0.363 0.216 0.216 0.305 0.240 0.174
MH_05_difficult 0.421 0.384 0.277 0.255 0.253 0.346 0.369 0.222

V1_01_easy 0.161 0.069 0.098 0.075 0.074 0.145 0.056 0.067
V1_02_medium 0.110 0.140 – 0.123 0.123 0.108 0.097 0.088
V1_03_difficult 0.325 0.180 0.201 0.183 0.148 0.219 0.162 0.141

V2_01_easy 0.135 0.097 0.092 0.103 0.077 0.115 0.078 0.068
V2_02_medium 0.328 0.112 0.155 0.147 0.133 0.259 0.089 0.119
V2_03_difficult 0.370 0.214 0.294 0.136 0.188 0.303 0.160 0.152

Mean 0.272 0.192 0.210 0.169 0.156 0.220 0.153 0.120

By comparing the three groups of tracks in Figure 7, it can be observed that the
proposed method shows better accuracy and stability in the area where the camera has a
large rotation. At the same time, compared with the trajectory of VINS-Mono, the trajectory
accuracy of the proposed PLI-VINS in V2_01_easy is improved by 40.9%, then it is improved
by 53.7% in V1_01_easy, and finally reaches the highest 63.3% in MH_03_medium. The
corresponding increases in PL-VINS were only 32.2%, 61.2% and 48.6%. At the same time,
by observing the third and fourth track graphs of each group, it can be found that the
proposed method performs well in different indoor environments. By properly merging the
adjacent line segments to improve the quality of line segments again, the trajectory accuracy
of the camera can be effectively improved. Combined with Table 1 and Figure 6 and the
operation of the PLI-VINS in the three scenarios, it is not difficult to find that although
V1_01_easy and V2_01_easy are indoor scenarios with relatively single environments and
limited ability to describe the structural features of line features, this paper improves
the quality of line segments by eliminating redundant line segments and merging lines
segments; still achieved good trajectory accuracy. However, the MH_03_medium factory
scene has a large number of good structural line segment features, which is very conducive
to the PLI-VINS to improve the camera trajectory accuracy by using line features. It also
shows that the proposed PLI-VINS performs well in various indoor environments.

In terms of root mean square error of absolute trajectory error, as shown in Table 2, the
proposed method performs better in almost all EuRoC datasets scenarios. Figure 8 shows
the trajectory comparison of the three algorithms in the industrial factory scene of sequence
MH_01_easy and the indoor room scene of sequence V1_03_difficult. Compared with PL-
VINS, the trajectory accuracy in all scenarios of EuRoC datasets in this paper has smaller
errors, especially in difficult scenarios. In all easy scenarios, the RMSE of the proposed PLI-
VINS is 0.083, PL-VINS is 0.107, and VINS-Mono is 0.155, respectively, and the trajectory
accuracy is improved by 46.5% and 30.9%. However, in difficult scenarios, the trajectory
accuracy of the proposed PLI-VINS is improved by 41.3%, while PL-VINS is only 21.1%. It
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is not difficult to find by referring to the trajectory comparison diagram in Figure 8a,b that
in difficult type scenes, the trajectory accuracy of the PLI-VINS is improved more.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 14 
 

 

is the complete method track of this paper (no loopback), and the last is the track of our 
algorithm with loopback. 

Table 2. RMSE ATE (M) comparison of VINS-Mono, PL-VINS, PL-VIO and ours (PLI-VINS). 

Seq 

w/o Loop w/Loop 

VINS-Mono PL-VINS PL-VIO Ours (Length Filter) 
Ours (Length Filter 

and  
Line Merge) 

VINS-Mono PL-VINS Ours 

MH_01_easy 0.244 0.172 0.152 0.232 0.146 0.183 0.137 0.108 
MH_02_easy 0.222 0.193 0.173 0.163 0.142 0.175 0.159 0.090 

MH_03_medium 0.307 0.255 0.265 0.222 0.214 0.265 0.136 0.097 
MH_04_difficult 0.373 0.299 0.363 0.216 0.216 0.305 0.240 0.174 
MH_05_difficult 0.421 0.384 0.277 0.255 0.253 0.346 0.369 0.222 

V1_01_easy 0.161 0.069 0.098 0.075 0.074 0.145 0.056 0.067 
V1_02_medium 0.110 0.140 -- 0.123 0.123 0.108 0.097 0.088 
V1_03_difficult 0.325 0.180 0.201 0.183 0.148 0.219 0.162 0.141 

V2_01_easy 0.135 0.097 0.092 0.103 0.077 0.115 0.078 0.068 
V2_02_medium 0.328 0.112 0.155 0.147 0.133 0.259 0.089 0.119 
V2_03_difficult 0.370 0.214 0.294 0.136 0.188 0.303 0.160 0.152 

Mean 0.272 0.192 0.210 0.169 0.156 0.220 0.153 0.120 
 

     

     

     
(a) (b) (c) (d) (e) 

Figure 7. Pose error trajectory comparison of VINS-Mono and ours W/and W/O loop algorithms 
under sequence MH_03_medium, V1_01_easy and V2_01_easy. The color of the track changes from 
blue to red, and the closer the color is to red, the greater the error. The gray dotted line is the 
trajectory truth: (a) VINS-Mono w/o loop; (b) VINS-Mono; (c) ours (length gilter) w/o loop; (d) ours 
(length filter and line merge) w/o loop; (e) ours. 

By comparing the three groups of tracks in Figure 7, it can be observed that the 
proposed method shows better accuracy and stability in the area where the camera has a 

Figure 7. Pose error trajectory comparison of VINS-Mono and ours W/and W/O loop algorithms
under sequence MH_03_medium, V1_01_easy and V2_01_easy. The color of the track changes from
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truth: (a) VINS-Mono w/o loop; (b) VINS-Mono; (c) ours (length gilter) w/o loop; (d) ours (length
filter and line merge) w/o loop; (e) ours.
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scene respectively; (b) sequence V1_03_difficult scenario.
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6. Conclusions

In this paper, a visual-inertial SLAM algorithm based on point-line feature fusion
for various indoor environments is proposed. Compared with the visual inertial SLAM
algorithm based on point features, the proposed PLI-VINS uses the combination of point
and line features to increase the robustness of the visual inertial SLAM system. This PLI-
VINS is built on VINS-Mono and evaluated using EuRoC datasets. Different from the
existing work, the PLI-VINS makes use of the advantages of different features and sensors,
and effectively integrates point, line and IMU data by improving the quality of the extracted
line features, thus improving the robustness and accuracy of the system. A comparison
with the existing similar work shows that this paper can achieve the highest accuracy in
most indoor situations.

In the future, this paper will improve the system by looking for more methods to
constrain between 3D lines, and introduce line features into the initialization process,
or effectively add line features into the word bag model and dense map of point and
line features. These works will further improve the system, will be more suitable for
indoor environments, improve the accuracy of camera motion trajectory estimation and the
stability of system operation.
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