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Abstract

Motivation: Cells are deemed the basic unit of life. However, many important functions of cells as

well as their growth and reproduction are performed via the protein molecules located at their dif-

ferent organelles or locations. Facing explosive growth of protein sequences, we are challenged to

develop fast and effective method to annotate their subcellular localization. However, this is by no

means an easy task. Particularly, mounting evidences have indicated proteins have multi-label fea-

ture meaning that they may simultaneously exist at, or move between, two or more different sub-

cellular location sites. Unfortunately, most of the existing computational methods can only be used

to deal with the single-label proteins. Although the ‘iLoc-Animal’ predictor developed recently is

quite powerful that can be used to deal with the animal proteins with multiple locations as well, its

prediction quality needs to be improved, particularly in enhancing the absolute true rate and reduc-

ing the absolute false rate.

Results: Here we propose a new predictor called ‘pLoc-mAnimal’, which is superior to iLoc-Animal as

shown by the compelling facts. When tested by the most rigorous cross-validation on the same high-

quality benchmark dataset, the absolute true success rate achieved by the new predictor is 37% higher

and the absolute false rate is four times lower in comparison with the state-of-the-art predictor.

Availability and implementation: To maximize the convenience of most experimental scientists, a

user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/

pLoc-mAnimal/, by which users can easily get their desired results without the need to go through

the complicated mathematics involved.

Contact: xxiao@gordonlifescience.org or kcchou@gordonlifescience.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Called by many as a ‘building block of life’, the cell contains many

different protein molecules located at its different organelles or

locations. It is through these proteins that the cell’s growth and re-

production along with its many important functions are realized.

Consequently, the importance of knowledge about their subcellular

localization is self-evident. Unfortunately, there is a huge gap
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between the newly discovered protein sequences and their

experiment-determined location sites. To reduce the gap and to

timely use these new protein sequences for basic research and drug

development, it is highly demanded to develop computation meth-

ods in this regard. In the last 25 years or so, many prediction meth-

ods were proposed to address this problem (see (Chou and Shen,

2007b; Nakai, 2000) as well as a long list of references cited in the

two review articles).

But most of these prediction methods can only be used to deal

with the so-called single-label system where each protein has one,

and only one, subcellular location. With more experimental data

available, however, it has been found that the distribution of pro-

teins in a cell actually belongs to a multi-label system, in which

some proteins may simultaneously occur in two or more different lo-

cation sites. These proteins should not be ignored because they may

have some exceptional biological functions (Glory and Murphy,

2007) worthy of our special notice.

About 10years ago, considerable efforts have been made to study

this kind of multi-label protein systems (Chou and Shen, 2007a,

2010a,b; Chou et al., 2011, 2012; Dehzangi et al., 2015; Huang and

Yuan, 2013; Lin et al., 2013; Mei, 2012; Pacharawongsakda and

Theeramunkong, 2013; Shen and Chou, 2007a, 2009a,b, 2010a,b;

Wang et al., 2013; Wu et al., 2011, 2012; Xiao et al., 2011a). They

can be basically categorized into two series (Chou, 2015): the ‘PLoc’

series (see, e.g. (Chou and Shen, 2007a, 2010b; Shen and Chou,

2009b, 2010b)) and ‘iLoc’ series (see, e.g. (Chou et al., 2012; Lin

et al., 2013; Wu et al., 2011; Xiao et al., 2011a)).

pt?>Compared with the single-label systems, it is much more

complicated and difficult to deal with the multi-label ones, par-

ticularly in achieving a descent ‘absolute true’ success rate

(Chou, 2013). The score standard for the absolute true rate is

very harsh. According to its definition, for a protein sample that

actually simultaneously exists in the subcellular locations ‘A, B

and C’. If the predicted result is not exactly the three locations

but ‘A and B’ or ‘A, B, C and D’, its score for the ‘absolute true’

rate is zero. In other words, when and only when the predicted

result is perfectly identical to the actual situation, can its score

be counted equal to 1. For instance, among the existing pre-

dictors, the iLoc-Animal (Lin et al., 2013) is the most powerful

one for predicting the subcellular location of animal proteins.

But its reported absolute true success rate was only 45.62%

(Lin et al., 2013).

The present study was devoted to develop a new multi-label pre-

dictor that can remarkably improve the prediction quality for the

subcellular localization of animal proteins, particularly in the abso-

lute true success rate.

2 Materials and methods

According to the 5-step rule (Chou, 2011) and as done in a series of

recent publications (Chen et al., 2016b; Jia et al., 2016b; Liu et al.,

2017a; Meher et al., 2017; Qiu et al., 2016), in reporting a new stat-

istical prediction method, one should make the following five

aspects very clear: (i) benchmark dataset, (ii) sample formulation,

(iii) operation algorithm, (iv) cross-validation and (v) web-server

establishment. The advantages of doing so are: (i) repeatability,

i.e. easy for others to repeat the reported results; (ii) stimulativity,

i.e. facilitating others to develop new prediction models in various

relevant areas; and (iii) wide usage, i.e. being convenient for most

experimental scientists to use the reported predictor. Below, we are

to address the five steps one-by-one.

2.1 Benchmark dataset
In the current study, the benchmark dataset was constructed based on

the one reported in Lin et al. (2013), where a total of 5048 animal

protein sequences were categorized into 20 subsets according to their

different subcellular locations confirmed by experiments. To enhance

its quality and to reduce the redundancy and homology bias, the CD-

HIT (Fu et al., 2012) was adopted to remove those sequences from

the original benchmark dataset (Lin et al., 2013) that have�40%

pairwise sequence identity to any other in a same subset.

After such a cut-off procedure, the total number of protein se-

quences was reduced to 3919. Their protein codes and detailed se-

quences are given in Supplementary Material S1.

An overall distribution of these proteins in the 20 subcellular lo-

cations is given in Supplementary Material S2, from which we can

see that, of the 3919 different proteins, 2113 occur in one location,

1293 in two locations, 286 in three locations, 173 in four locations,

43 in five locations, 5 in six locations, 3 in seven locations, 3 in eight

locations and none in nine and more locations. When studying

multi-label systems, it is instructive to introduce the concept of

multiplicity degree (Chou, 2013) as defined by

MD ¼ NðvirÞ
N

¼
PN

k¼1 nLðkÞ
N

(1)

where MD is the abbreviation of ‘multiplicity degree’, N the total

number of protein samples with different amino acid sequences, and

N(vir) is the total number of virtual protein samples investigated. The

number of virtual proteins is calculated as follows: if a protein sample

with two different labels (or located in two different subcellular loca-

tions), it will be counted as two virtual or ‘locative’ protein samples; if

with three different labels, counted as three virtual samples; and so

forth. Thus, the total number of virtual protein samples can be derived

from the numerator of Eq. 1, where nLðkÞ is the number of different

labels (or subcellular locations) marked on the k-th protein sample. As

we can see from Eq. 1, MD¼1 means the system containing no pro-

tein belonging to more than one location, while MD>1 means some

proteins occurring in more than one location. The higher the value of

MD, the more protein samples that have multiple labels. For instance,

the multiplicity degree is 1 for most protein subcellular prediction

methods without covering the multiplex proteins; it is 1.146 for Euk-

mPLoc (Chou and Shen, 2010a) and iLoc-Euk (Chou et al., 2011),

1.185 for Hum-mPLoc (Shen and Chou, 2009b) and iLoc-Hum

(Chou et al., 2012), and 1.079 for Plant-mPLoc (Chou and Shen,

2010b) and iLoc-Plant (Wu et al., 2011).

A breakdown of the 3919 proteins according to their occurrences

in 20 different subcellular localizations is given in Table 1, from

which we can also see that the multiplicity degree of the current

benchmark dataset is ð6539=3919Þ ¼ 1:669.

The new benchmark dataset thus obtained is denoted by S,

which can be further formulated as

S ¼ S1 [ S2 [ � � � [ Su [ � � � [ S19 [ S20 (2)

where S1 only contains the protein samples from the ‘acrosome’

location (cf. Table 1), S2 only those from the ‘cell cortex’ loca-

tion, and so forth; [ denotes the symbol for ‘union’ in the set

theory.

2.2 Proteins sample formulation
For a sequence-known protein P, its most general expression is

P ¼ R1R2R3R4R5R6R7 � � �RL (3)

where L denotes its length, R1 is the 1st residue, R2 the 2nd residue,
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R3 the 3rd residue and so forth. Since all the existing machine-

learning algorithms such as SVM (Chen et al., 2016a) and Random

Forest (Jia et al., 2016a) can only handle vectors but not sequences

(Chou, 2015), we have to convert Eq. 3 into a vector.

Unfortunately, a vector defined in a discrete model might completely

lose all the sequence-pattern information. To overcome this prob-

lem, the PseAAC (Pseudo Amino Acid Composition) (Chou, 2001)

was proposed in 2001. Ever since then, the concept of PseAAC has

been rapidly used in nearly all the areas of computational prote-

omics (Chou, 2009) and many fields of genome analysis (see, e.g.

(Chen et al., 2015) as well as a long list of references cited in (Chou,

2017; Liu et al., 2017b)). According to the concept of general

PseAAC (Chou, 2011), any protein sequence can be formulated as a

PseAAC vector given by

P ¼ W1 W2 � � � Wu � � � WX½ �T (4)

where T is a transpose operator, while the subscript X is an integer

parameter and its value as well as the components Wu ðu ¼ 1; 2;

� � � ; XÞ will depend on how to extract the desired information from

the amino acid sequence of P, as elaborated below.

The information of gene ontology (GO) has been widely used to

enhance the prediction quality of predicting protein subcellular lo-

calization (see, e.g. (Chou and Cai, 2003; Shen and Chou, 2007a;

Wan et al., 2013; Wu et al., 2011; Xiao et al., 2011a,b)). The advan-

tage of using the GO approach is that proteins mapped into the GO

space (instead of Euclidean space or any other simple geometric

space) would be clustered in a manner much better for studying their

subcellular locations, as elaborated in Chou and Shen (2008). For

the rationale or justification of using the GO approach to predict the

protein subcellular localization, see an incisive discussion or analysis

given in Section VI of a comprehensive review paper (Chou, 2013).

However, the existing GO approaches (see, e.g. (Chou and Cai,

2003; Shen and Chou, 2007a; Wan et al., 2013; Wu et al., 2011;

Xiao et al., 2011a,b)) have the following shortcomings. (i) Only the

digital numbers 0 and 1 (or their simple combination) were used to

incorporate the GO information, and hence some very useful infor-

mation was missed. (ii) The dimension of the protein vectors,

namely X of Eq. 3, in the previous GO approaches was very high;

e.g. it was 1930 in Chou and Cai (2003), 3043 in Lin et al. (2013)

and 9567 in Chou and Shen (2006), and hence was prone to lead to

the high-dimension disaster problem (Wang et al., 2008).

Here, we are to propose a novel GO approach, by which not

only the dimension of protein vectors can be significantly reduced,

but the GO information incorporated can also be significantly opti-

mized. The detailed procedures are as follows.

Step 1. Use BLAST to search all the proteins in the Swiss-Prot

database for those proteins that have high homology (i.e. more than

60% pairwise sequence identity) with the protein P of Eq. 3. The

proteins thus obtained are collected into a subset, Shomo
P , called the

homology set of P. Subsequently, retrieve the GO numbers of the

protein in S
homo
P that has the highest homology with P. If it has no

GO number at all, try the 2nd highest homologous protein in S
homo
P ;

if it has no GO code either, try the 3rd highest homologous one; and

so forth. The detailed description of this step as well as its rationale

have been clearly elaborated in Chou et al., (2011, 2012), and hence

there is no need to repeat here. Eventually, suppose the homologous

protein of P has a set of GO code given by

GOP
1 GOP

2 � � � GOP
k � � � GOP

ngg
�

(5)

where GOP
k ðk ¼ 1; 2; � � � ; ngÞ is the k-th GO code for the protein

in S
homo
P that has been found with a set of GO codes according to the

aforementioned order, and ng is the total number of GO codes it

has. Suppose the N ¼ 3;919 sequence-different proteins in the

benchmark dataset S are expressed as

P1; P2; P3; � � � ;Pi; . . . ; PNg
�

(6)

and the total number of proteins in the benchmark dataset S that

have exactly the same GO code as GOP
k is NðkÞ; i.e.

N kð Þ ¼
XN

i¼1
DðPi; GOP

kÞ (7)

where

D Pi; GOP
k

� �
¼

1; if GOP
k 2 Pi

0; otherwise

(
(8)

Moreover, suppose among the N(k) proteins, n(k, u) belong(s) to the

u-th subset Su; i.e.

N kð Þ ¼
XNLoc

u¼1
nðk; uÞ (9)

where NLoc ¼ 20 is the total number of subcellular locations investi-

gated (see Eq. 2 or Table 1).

Step 2. Based on Eqs. 7 and 9, the general PseAAC vector of Eq. 4

can be defined as

Wu ¼ Max
1�k�ng

nðk; uÞ
NðkÞ

� �
u ¼ 1; 2; � � � ; X ¼ NLoc ¼ 20
� �

(10)

where the operator Max means taking the maximum value among

those with different k values. It is through such a formulation to op-

timize the GO information and reduce the dimension of PseAAC

vectors for predicting the subcellular localization of multi-label

proteins.

Table 1. Breakdown of the proteins in the benchmark dataset into

20 subsets according to their different subcellular localizations (cf.

Supplementary Material S1 and Supplementary Material S2)

Subset Subcellular location name Number of proteins

S1 Acrosome 26

S2 Cell cortex 41

S3 Cell membrane 884

S4 Centriole 22

S5 Centrosome 86

S6 Cytoplasm 1283

S7 Cytoskeleton 310

S8 Endoplasmic reticulum 455

S9 Endosome 142

S10 Extracellular space 97

S11 Golgi apparatus 317

S12 Lysosome 114

S13 Melanosome 10

S14 Microsome 57

S15 Mitochondrion 514

S16 Nucleus 1064

S17 Peroxisome 64

S18 Plasma membrane 884

S19 Spindle 103

S20 Synapse 66

Total number of virtual proteins N(vir)a 6539

Total number of proteins with different sequences N 3919

The multiplicity degree MDb 1.669

aSee the numerator of Eq. 1 and the relevant text for the definition of vir-

tual proteins.
bSee Eq. 1 for the definition of multiplicity degree.
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Listed in Supplementary Material S3 are the PseAAC vectors for-

mulated by Eq. 10 for the 3919 sequence-different proteins in the

benchmark dataset. As we can see from there, the dimension of the

current PseAAC vectors is reduced to 20, much lower than those in

the previous GO approaches (Chou and Cai, 2003; Chou and Shen,

2006; Lin et al., 2013).

2.3 Operation algorithm
In this study, the ML-GKR (multi-label Gaussian kernel regression)

classifier (Cheng et al., 2017) has been used to predict the pro-

tein subcellular localization, as described below. According to Eq. 10,

the i-th protein Pi in the benchmark dataset can be formulated as

Pi
GO ¼ Wi

1 Wi
2 Wi

3 � � � Wi
20

� �T
(11)

And its subcellular location(s) in the multi-label system can be for-

mulated as a vector Li given by

Li ¼ ‘i1 ‘i2 ‘i3 � � � ‘i20

� �T
(12)

where

‘iu ¼
þ1 if Pi 2 Su

�1 otherwise
ðu ¼ 1; 2; � � � ; 20Þ

(
(13)

Likewise, for a query protein Pq we have

Pq ¼ Wq
1 Wq

2 Wq
3 � � � Wq

20

� �T
(14)

Its subcellular location label(s) in the multi-label system should be

given by

Lq ¼ ‘
q
1 ‘

q
2 ‘

q
3 � � � ‘

q
20

� �T
(15)

where

‘qu ¼
þ1 if Du � 0

�1 otherwise
ðu ¼ 1; 2; � � � ; 20Þ

(
(16)

The Du in Eq. 16 is given by

Du ¼
XN

i¼1
‘iu � exp �kP

q � Pik2

2h2

 !" # XN

i¼1
exp �kP

q � Pik2

2h2

 !" #�1

(17)

where h is a parameter whose optimal value will be determined later,

kPq � Pik is the Euclidean distance between the query protein (Eq.

14) and the ith protein (Eq. 11) in the benchmark dataset S, as given

by Chou and Zhang (1995); i.e.

kPq
GO � Pi

GOk
2 ¼

X20

u¼1
Wq

u �Wi
u

� �2
(18)

Thus, the location label vector Lq of Eq. 15 for the query protein Pq is

well defined, and hence its subcellular location or locations can be expli-

citly predicted as well. For example: if ‘q1 ¼ ‘
q
3 ¼ ‘

q
20 ¼ þ1 while all the

other components in Eq. 15 are equal to�1, this means that the query

protein Pq is located in the 1st, 3rd and 20th subcellular locations; if ‘q2
¼ þ1 while all the others are equal to�1, meaning that the query pro-

tein is located in the 2nd subcellular location only; and so forth.

The predictor developed via the aforementioned procedures is called

pLoc-mAnimal, where ‘pLoc’ stands for ‘predict subcellular localiza-

tion’, and ‘mAnimal’ for ‘multi-label animal proteins’. A flowchart to

show how the pLoc-mAnimal predictor works is given in Figure 1.

3 Results and discussion

As mentioned in the Chou’s 5-step rule (Chou, 2011), one of the im-

portant procedures in developing a new predictor is how to object-

ively evaluate its anticipated accuracy. To address this, two issues

need to be considered. (i) What metrics should be used to quantita-

tively reflect the predictor’s quality? (ii) What test approach should

be adopted to score the metrics?

3.1 A set of five metrics for multi-label systems
Different from the metrics used to measure the prediction quality of

single-label systems, the metrics for the multi-label systems are

much more complicated. To make them more intuitive and easier to

understand for most experimental scientists, here we use the follow-

ing five metrics proposed by Chou (2013) that have recently been

widely used for studying various multi-label systems (see, e.g.

(Cheng et al., 2017; Lin and Xu, 2016; Qiu et al., 2016))

Aiming "¼ 1

Ntest

XNtest

k¼1

kLk \ L
�
kk

kL�kk

	 

; 0; 1½ �

Coverage "¼ 1

Ntest

XNtest

k¼1

kLk \ L
�
kk

kLkk

	 

; 0; 1½ �

Accuracy "¼ 1

Ntest

XNtest

k¼1

kLk \ L
�
kk

kLk [ L
�
kk

	 

; 0; 1½ �

Absolute true "¼ 1

Ntest

XNtest

k¼1
D Lk; L

�
k

� �
; 0; 1½ �

Absolute false #¼ 1

Ntest

XNtest

k¼1

kLk [ L�kk � kLk \ L
�
kk

M

	 

; 1; 0½ �

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

(19)

where Ntest is the total number of the tested samples, M is the total

number of labels for the investigated system, means the operator

acting on the set therein to count the number of its elements, [
means the symbol for the ‘union’ in the set theory, \ denotes the

Fig. 1. A flowchart to show how the pLoc-mAnimal predictor works
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symbol for the ‘intersection’, Lk denotes the subset that contains all

the labels observed by experiments forthe k-th sample, L�k represents

the subset that contains all the labels predicted for the k-th sample,

and

XNtest

k¼1

D Lk; L
�
k

� �

¼
1; if all the labels in L

�
k are identical to those in Lk

0; otherwise

8<
:

(20)

In Eq. 19, the first four metrics with an upper arrow " are called

positive metrics, meaning that the larger the rate is, the better the

prediction quality will be; the 5th metrics with a down arrow # is

called negative metrics, implying just the opposite meaning.

From Eq. 19 we can see the following: (i) the ‘Aiming’ defied by

the 1st sub-equation is for checking the rate or percentage of the cor-

rectly predicted labels over the practically predicted labels; (ii) the

‘Coverage’ defined in the 2nd sub-equation is for checking the rate

of the correctly predicted labels over the actual labels in the system

concerned; (iii) the ‘Accuracy’ in the 3rd sub-equation is for check-

ing the average ratio of correctly predicted labels over the total

labels including correctly and incorrectly predicted labels as well as

those real labels but are missed in the prediction; (iv) the ‘Absolute

true’ in the 4th sub-equation is for checking the ratio of the perfectly

or completely correct prediction events over the total prediction

events; (v) the ‘Absolute false’ in the 5th sub-equation is for check-

ing the ratio of the completely wrong prediction over the total pre-

diction events.

3.2 Jackknife test
Three cross-validation methods are often used in statistical predic-

tion. They are: (i) independent dataset test, (ii) subsampling (or

K-fold cross-validation) test and (iii) jackknife test (Chou and

Zhang, 1995). Of these three, however, the jackknife test is deemed

the least arbitrary that can always yield a unique outcome for a

given benchmark dataset as elucidated in Chou (2011). Accordingly,

the jackknife test has been widely recognized and increasingly used

by investigators to examine the quality of various predictors (see,

e.g. (Ahmad et al., 2016; Chou and Cai, 2005; Dehzangi et al.,

2015; Khan et al., 2017; Nanni et al., 2014; Shen and Chou, 2007b;

Zhou and Doctor, 2003)). Accordingly, the jackknife test was also

used in this study.

3.3 Parameter determination
Since Eq. 17 contains a parameter h, the predicted results obtained

by pLoc-mAnimal will depend on the parameter’s value. In this

study, the optimal value for h was determined by maximizing the ab-

solute true rate (see the 4th sub-equation in Eq. 19) by the jackknife

validation on the benchmark dataset. It was observed that when

h¼1/6, the absolute true rate reached its highest score. And such a

value would be used for further study.

3.4 Comparison with the state-of-the-art predictor
Listed in Table 2 are the rates obtained by the current pLoc-

mAnimal predictor via the jackknife test on the benchmark dataset

(Supplementary Material S1). For facilitating comparison, listed in

that table are also the corresponding results obtained by the iLoc-

Animal, the existing most powerful predictor for identifying the sub-

cellular localization of animal proteins with both single and multiple

sites.

As shown in Table 2, the rates for the four positive metrics by

pLoc-mAnimal are significantly higher than those by iLoc-Animal

(Lin et al., 2013), while the opposite is true for the negative metrics.

As pointed out in a comprehensive review (Chou, 2013), among the

aforementioned five metrics, the most important are ‘absolute true’

and ‘absolute false’. It is extremely difficult to increase the absolute

true rate and reduce the absolute false rate for a multi-label pre-

dictor. Therefore, in reporting the results of their various prediction

methods for multi-label systems, many investigators (see, e.g. (Chen

et al., 2012; Chou and Shen, 2007a, 2008, 2010a,b; Shen and Chou,

2007a, 2009a,b, 2010a,b) even did not mention the ‘absolute true’

and ‘absolute false’ rates. It has been demonstrated in this study,

however, that the absolute true rate obtained by the new predictor is

over 37% higher than that by iLoc-Animal (Lin et al., 2013), while

the absolute false rate by the new predictor is almost four times

lower. It is indeed a compelling fact to show the superior of the new

predictor over the existing state-of-the-art one in predicting the sub-

cellular locations of multi-label animal proteins (Lin et al., 2013).

Besides, no prediction quality was reported for each of 20 subcellular

locations in the iLoc-Animal paper (Lin et al., 2013). To in-depth ana-

lyze the corresponding prediction quality by the proposed predictor

pLoc-mAnimal for the samples in each of the 20 subsets in the

Supplementary Material S1, let us introduce the following set of metrics:

Sn ið Þ ¼ 1�Nþ�ðiÞ
NþðiÞ 0 � Sn � 1

Sp ið Þ ¼ 1�N�þðiÞ
N�ðiÞ 0 � Sp � 1

Acc ið Þ ¼ 1�
Nþ�ðiÞ þN�þðiÞ
NþðiÞ þN�ðiÞ 0 � Acc � 1

MCC ið Þ ¼
1� Nþ� ið Þ

Nþ ið Þ þ
N�þ ið Þ
N� ið Þ

	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þN�þ ið Þ �Nþ� ið Þ
Nþ ið Þ

	 

1þNþ� ið Þ �N�þ ið Þ

N� ið Þ

	 
s

� 1 � MCC � 1

ði ¼ 1; 2; � � � ; 20Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(21)

where Sn, Sp, Acc and MCC represent the sensitivity, specificity, ac-

curacy and Mathew’s correlation coefficient, respectively (Chen

Table 2. Comparison with the state-of-the-art method in predicting

animal protein subcellular localizationa

Predictor Aiming ("Þ Coverage ("Þ Accuracy ("Þ Absolute

true ("Þ
Absolute

false (#Þ

pLoc-

mAnimalb
87.96% 85.33% 84.64% 73.11% 1.650%

iLoc-

Animalc
72.45% 34.18% 42.76% 35.93% 6.330%

aThe rates listed below were derived by the jackknife test on the benchmark

dataset SS(Supplementary Material S1).
bThe predictor proposed in this paper.
cThe predictor proposed in Lin et al. (2013). Note that the rates in this

table are somewhat different with the values originally reported in Lin et al.

(2013). This is because the original values were derived based on a benchmark

dataset that contained some proteins with�40% pairwise sequence identity

to each other. See Section 2.1 for more explanation.
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et al., 2007), and i denotes the i-subcellular location in the bench-

mark dataset. Nþ ið Þ is the total number of the samples investigated

in the i-th subset, whereas Nþ�ðiÞ is the number of the samples in Nþ

ið Þ that are incorrectly predicted to be of other locations; N�ðiÞ is

the total number of samples in any location but not the i-th location,

whereas N�þðiÞ is the number of the samples in N�ðiÞ that are incor-

rectly predicted to be of the i-th location. The metrics of Eq. 21 have

been widely used to examine the quality of predictors in genome/

proteome analysis (see, e.g. (Chen et al., 2013; Lin et al., 2014,

2017a; Xu et al., 2014)) and computational biomedicine (see, e.g.

(Liu et al., 2017c,d; Qiu et al., 2017; Xu et al., 2017)).

Listed in Table 3 are the corresponding results obtained by

pLoc-mAnimal for each of the 20 subcellular locations. As we can

see from the table, the scores for each of the 20 subcellular locations

are also very high, fully consistent with its overall performance as re-

ported in Table 2.

3.5 Web server and user guide
For the convenience of most experimental scientists, the web-server

of pLoc-mAnimal predictor has been established. Moreover, to

maximize their convenience, a step-by-step guide is given below in

Supplementary Material S4.

4 Conclusion

Protein subcellular location prediction is a challenging problem, par-

ticularly when the query proteins have multi-label features meaning

that they may occur at two or more different location sites. Here,

we have developed a new predictor called pLoc-mAnimal.

Compared with iLoc-Animal (Lin et al., 2013), the existing most

powerful predictor also having the capacity to deal with the multiple

locations of animal proteins, the scores achieved by the new pre-

dictor are remarkably better in all the five metrics widely used to

check the quality of a multi-label predictor.

Why could the new predictor be so powerful? The key is that the

feature vectors used in the new predictor have been optimized via a

special general PsaAAC approach to substantially reduce their di-

mension but significantly optimize their cluster features as shown by

Eq. 10.

Since the publically accessible web-server represents the future

direction for developing practically more useful prediction method

(Chou and Shen, 2009), the web-server for pLoc-Animal has been

established and its user guide is given in Supplementary Material S4.

It is anticipated that pLoc-Animal will become a very useful high

throughput tool for annotating the subcellular location(s) of animal

proteins.
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