
PLR: A Software Approach to Transient Fault
Tolerance for Multicore Architectures

Alex Shye, Student Member, IEEE, Joseph Blomstedt, Student Member, IEEE, Tipp Moseley,

Vijay Janapa Reddi, Student Member, IEEE, and Daniel A. Connors, Member, IEEE

Abstract—Transient faults are emerging as a critical concern in the reliability of general-purpose microprocessors. As architectural

trends point toward multicore designs, there is substantial interest in adapting such parallel hardware resources for transient fault

tolerance. This paper presents process-level redundancy (PLR), a software technique for transient fault tolerance, which leverages

multiple cores for low overhead. PLR creates a set of redundant processes per application process and systematically compares the

processes to guarantee correct execution. Redundancy at the process level allows the operating system to freely schedule the

processes across all available hardware resources. PLR uses a software-centric approach to transient fault tolerance, which shifts the

focus from ensuring correct hardware execution to ensuring correct software execution. As a result, many benign faults that do not

propagate to affect program correctness can be safely ignored. A real prototype is presented that is designed to be transparent to the

application and can run on general-purpose single-threaded programs without modifications to the program, operating system, or

underlying hardware. The system is evaluated for fault coverage and performance on a four-way SMP machine and provides improved

performance over existing software transient fault tolerance techniques with a 16.9 percent overhead for fault detection on a set of

optimized SPEC2000 binaries.

Index Terms—Fault tolerance, reliability, transient faults, soft errors, process-level redundancy.

Ç

1 INTRODUCTION

TRANSIENT faults, also known as soft errors, are emerging
as a critical concern in the reliability of computer

systems [1], [2]. A transient fault occurs when an event
(e.g., cosmic particle strikes, power supply noise, device
coupling) causes the deposit or removal of enough charge to
invert the state of a transistor. The inverted value may
propagate to cause an error in program execution.

Current trends in process technology indicate that the
future error rate of a single transistor will remain relatively
constant [3], [4]. As the number of available transistors per
chip continues to grow exponentially, the error rate for
an entire chip is expected to increase dramatically. These
trends indicate that to ensure correct operation of systems,
all general-purpose microprocessors and memories must
employ reliability techniques.

Transient faults have historically been a design concern in
specific computing environments (e.g., spacecrafts, high-
availability server machines) in which the key system

characteristics are reliability, dependability, and availability.
While memory is easily protected with error-correcting code
(ECC) and parity, protecting the complex logicwithin a high-
performance microprocessor presents a significant chal-
lenge. Custom hardware designs have added 20 percent to
30 percent additional logic to add redundancy to mainframe
processors and cover upward of 200,000 latches [5], [6]. Other
approaches include specialized machines with custom
hardware and software redundancy [7], [8].

However, the same customized techniques cannot be

directly adopted for the general-purpose computing domain.

Compared to the ultrareliable computing environments,

general-purpose systems are driven by a different, and often

conflicting, set of factors. These factors include:

. Application specific constraints. In ultrareliable
environments, such as spacecraft systems, the result
of a transient error can be the difference between life
and death. For general-purpose computing, the
consequences of faulty execution may greatly vary.
While a fault during the execution of bank transaction
softwarewould be disastrous, there aremany cases in
which the result of a fault is much less severe. For
instance, in graphics processing or audio decode and
playback, a fault results in a mere glitch, which may
not even be noticed by the user. Thus, the focus for
reliability shifts from providing a bulletproof system
to improving reliability to meet user expectations of
failure rates.

. Design time and cost constraints. In the general-
purpose computing market, low cost and a quick
time to market are paramount. The design and
verification of new redundant hardware is costly
and may not be feasible in cost-sensitive markets. In

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2009 135

. A. Shye is with the Technological Institute L458, 2145 Sheridan Road,
Evanston, IL 60208. E-mail: shye@northwestern.edu.

. J. Blomstedt is with the Department of Computer Science, University of
Colorado, Campus Box 430, Boulder, CO 80309.
E-mail: Joseph.Blomstedt@colorado.edu.

. T. Moseley is with the Deptartment of Computer Science, University of
Colorado, 430 UCB, Boulder, CO 80309-0430.
E-mail: tipp.moseley@colorado.edu.

. V.J. Reddi is with the Electrical Engineering and Computer Science
Department, Harvard University, 345 Harvard St. Apt. 1D, Cambridge,
MA 02138. E-mail: vj@eecs.harvard.edu.

. D.A. Connors is with the Department of Electrical and Computer
Engineering, University of Colorado, Campus Box 425, Boulder, CO
80309. E-mail: dconnors@colorado.edu.

Manuscript received 27 May 2008; accepted 24 Sept. 2008; published online
29 Oct. 2008.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-2008-05-0089.
Digital Object Identifier no. 10.1109/TDSC.2008.62.

1545-5971/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

addition, the inclusion of redundant design elements
may negatively impact the design and product
cycles of systems.

. Post-design environment techniques. A system’s
susceptibility to transient faults is often unplanned for
and appears after design and fabrication. For exam-
ple, during the deployment of the ASC Q super-
computer, the scientists at the Los Alamos National
Laboratory documented a high incidence of failures
due to transient faults [2]. Also, Sun Microsystems
documented a case in which faults to unprotected
memories have caused system crashes at customer
sites [1]. It is not difficult to imagine history repeating
itself with unforeseen problems during hardware
design manifesting themselves after deployment.
Likewise, conditions such as altitude, temperature,
and age can cause higher fault rates [9]. In these cases,
it is necessary to employ reliability techniques, which
are able to augment systems after deployment.

With such pressures driving general-purpose computing,
software reliability techniques are an attractive solution for
improving reliability in the face of transient faults. While
software techniques cannot provide a level of reliability
comparable to hardware techniques, they significantly lower
costs (zero hardware design cost) and are very flexible in
deployment. Existing software transient fault tolerant ap-
proachesuse the compiler to insert redundant instructions for
checking computation [10], control flow [11], or both [12]. The
compiler-based software techniques suffer from a few
limitations. First, the execution of the inserted instructions
and assertions decreases performance (� 1:4� slowdown
[12] for fault detection). Second, a compiler approach requires
recompilation of all applications. Not only is it inconvenient
to recompile all applications and libraries, but the source code
for legacy programs is often unavailable.

This paper presents the process-level redundancy (PLR), a
software-implemented technique for transient fault toler-
ance. PLR creates a set of redundant processes per original
application process and compares their output to ensure
correct execution. The redundant processes can be freely
scheduled by the operating system (OS) to available parallel
hardware resources. PLR scales with the architectural trend
toward large many-core machines and leverages available
hardware parallelism to improve performance without any
additional redundant hardware structures or modifications
to the system. In computing environments, which are not
throughput constrained, PLR provides an alternate method
of leveraging the hardware resources for transient fault
tolerance.

This paper makes the following contributions:

. Introduces a software-centric paradigm of transient
fault tolerance that views the system as software
layers, which must execute correctly. In contrast, the
typical hardware-centric paradigm views the system
as a collection of hardware that must be protected.
We differentiate between software-centric and hard-
ware-centric views using the commonly accepted
sphere of replication (SoR) concept.

. Demonstrates the benefits of a software-centric
approach. In particular, we show how register errors

propagate through software. We show that many of
the errors result in benign faults and many detected
faults propagate through hundreds or thousands of
instructions. A software-centric approach is able to
ignore many of these benign faults.

. Presents a real prototype PLR system that operates
transparently to the application and leverages multi-
ple general-purpose microprocessor cores for tran-
sient fault tolerance. We evaluate the fault coverage
and performance of the prototype and find that it
runs a set of the SPEC2000 benchmark suite with
only a 16.9 percent overhead on a four-way SMP
system. This represents a significant performance
improvement over previous software-implemented
transient fault tolerance techniques.

. Maintaining determinism between redundant pro-
cesses is the biggest challenge in implementing
PLR. We present and evaluate software-only ap-
proaches for deterministically handling asynchro-
nous signals and shared memory accesses across
the redundant processes. We also evaluate the
performance impact of using these techniques for
maintaining determinism.

The rest of this paper is organized as follows: Section 2
provides background on transient fault tolerance. Section 3
describes the software-centric fault detection model, and
Section 4 describes the PLR architecture. Section 5 shows
results from the PLR prototype. Section 6 discusses related
work. Section 7 concludes this paper.

2 BACKGROUND

In general, a fault can be classified by its effect on system
execution into the following categories [13]:

. Benign fault. A transient fault that does not
propagate to affect the correctness of an application
is considered a benign fault. A benign fault can occur
for a number of reasons. Examples include a fault
to an idle functional unit, a fault to a performance-
enhancing instruction (i.e., a prefetch instruction),
data masking, and Y-branches [14]. Wang et al. [15]
shows that less than 15 percent of faults injected into
a register transfer level (RTL) model of a processor
result in software visible errors indicating that many
transient faults are benign faults.

. Silent data corruption (SDC). A transient fault that
is undetected and propagates to corrupt program
output is considered an SDC. This is the worst case
scenario where an application appears to execute
correctly but silently produces incorrect output.

. Detected unrecoverable error (DUE). A transient
fault that is detected without the possibility of
recovery is considered a DUE. DUEs can be split into
two categories. A true DUE occurs when a fault that
would propagate to incorrect execution is detected. A
false DUE occurs when a benign fault is detected as a
fault. Without recovery, a false DUE will cause the
system to unnecessarily halt execution, and with
recovery, a false DUE will cause unwarranted
invocations to the recovery mechanism.

136 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2009

A transient fault in a system without transient fault
tolerance will result in a benign fault, SDC, or true DUE (e.g.,
error detectedby raising a trap).A systemwith onlydetection
attempts to detect all of the true DUEs and SDCs. However,
the system may inadvertently convert some of the benign
faults into false DUEs and unnecessarily halt execution.
Finally, a systemwith both detection and recoverywill detect
and recover fromall faultswithout SDCs or any formofDUE.
In this case, faults that would be false DUEs may cause
unwarranted invocations to the recovery mechanism.

3 SOFTWARE-CENTRIC FAULT DETECTION

The SoR [16] is a commonly accepted concept for
describing a technique’s logical domain of redundancy
and specifying the boundary for fault detection and
containment. Any data that enters the SoR is replicated
and all executions within the SoR are redundant in some
form. Before leaving the SoR, all output data is compared to
ensure correctness. All execution outside of the SoR is not
covered by the particular transient fault techniques and
must be protected by other means. Faults are contained
within the SoR boundaries and detected in any data leaving
the SoR.

The original concept of the SoR is used for defining the
boundary of reliability in redundant hardware design. We
call this traditional model a hardware-centric fault detection
model that uses a hardware-centric SoR. The hardware-
centric model views the system as a collection of hardware
components, which must be protected from transient faults.
In this model, the hardware-centric SoR is placed around
specific hardware units. All inputs are replicated, execution
is redundant, and output is compared.

While the hardware-centric model is appropriate for
hardware-implemented techniques, it is awkward to apply
the same approach to software. The reason is that software
naturally operates at a different level and does not have
full visibility into the hardware. Nevertheless, previous
compiler-based approaches attempt to imitate a hardware-
centric SoR. For example, SWIFT [12] places its SoR around
the processor, as shown in Fig. 1a. Without the ability to
control duplication of hardware, SWIFT duplicates at the
instruction level. Each load is performed twice for input
replication and all computation is performed twice on the
replicated inputs. Output comparison is accomplished by
checking the data of each store instruction prior to

executing the store instruction. This particular approach
works because it is possible to emulate processor redun-
dancy with redundant instructions. However, other hard-
ware-centric SoRs would be impossible to emulate with
software. For example, software alone cannot implement
an SoR around hardware caches.

Software-centric fault detection is a paradigm in which the
system is viewed as the software layers that must execute
correctly. A software-centric model uses a software-centric
SoR that is placed around software layers, instead of
hardware components. Defining the SoR in terms of
software provides software-implemented technique with
more natural boundaries for fault detection. Also, the
software-centric mode makes this key insight: although
faults occur at the hardware level, the only faults that matter
are the faults that affect software correctness. By changing the
boundaries of output comparison to software, a software-
centric model shifts the focus from ensuring correct
hardware execution to ensuring correct software execution.
Benign faults are safely ignored. A software-centric system
with only detection covers errors that would propagate into
incorrect software output as DUEs. A software-centric
system with both detection and recovery will not need to
invoke the recovery mechanism for faults that do not affect
correctness.

Fig. 1b shows an example of software-centric SoR, which
is placed around the user space application and libraries (as
used by PLR). A software-centric SoR acts exactly the same
as the hardware-centric SoR except that it acts on the
software instead of the hardware. Again, all inputs are
replicated, execution within the SoR is redundant, and data
leaving the SoR are compared.

While software has limited visibility into hardware, it is
able to view a fault at a broader scope and determine its
effect on software execution. Thus, software-implemented
approaches that are hardware-centric are ignoring the
potential strengths of a software approach. In Section 5.1,
we demonstrate PLR’s ability to ignore many benign faults
through a fault injection campaign.

4 PROCESS-LEVEL REDUNDANCY (PLR)

PLR is a software approach to transient fault tolerance
that is designed to run transparently on general-purpose
applications without modifications to the application, OS,
or underlying hardware. These specific characteristics are
described in detail below:

. Transparency. PLR operates transparently to the
user and the application. Even though PLR creates
multiple redundant processes per original applica-
tion process, it maintains all user-expected process
semantics. The application is also unaware of PLR
and does not need to be modified or recompiled to
run with PLR.

. Software-implemented. PLR is implemented en-
tirely in software and runs in user space under the
application. In this manner, PLR is able to provide
transient fault tolerance without requiring modifica-
tions to the OS or underlying hardware. In addition,
software implementation makes PLR extremely

SHYE ET AL.: PLR: A SOFTWARE APPROACH TO TRANSIENT FAULT TOLERANCE FOR MULTICORE ARCHITECTURES 137

Fig. 1. Hardware-centric and software-centric transient fault detection

models. A software-centric model (e.g., PLR) views the system as the

software layers and places the sphere of influence around particular

software layers. (a) Hardware-centric. (b) Software-centric.

flexible. Applications that must be reliable can be run
with PLR, while other applications run regularly.

. Software-centric. PLR uses a software-centric ap-
proach to fault detection with an SoR around the
user-space application and its associated shared
libraries. All user-space executions are redundant
and faults are only detected if they result in incorrect
data exiting user space. This extends the checking
boundaries for fault detection as compared to most
other transient fault tolerance techniques and allows
PLR to ignore many benign faults.

. Replica-based. PLR uses process replicas to provide
redundancy. PLR replicates the entire process virtual
address space as well as the process metadata such
as file descriptors. In addition, PLR automatically
creates and coordinates among the redundant pro-
cesses to maintain determinism among the processes,
detect transient faults, and recover from detected
faults. Operating at the process level has a distinct
advantage in that processes are also a basic abstrac-
tion of the OS. Therefore, PLR can leverage multiple
hardware resources such as extra hardware threads
or cores by simply allowing the OS to schedule the
replicas across all available hardware resources.

4.1 PLR Overview

An overview of the PLR system is shown in Fig. 2. PLR
gains control of an application before it begins to execute
and begins its initialization phase. First, PLR creates a
monitor process and then initializes metadata including a
shared memory segment used for interprocess communica-
tion. Then, PLR forks the application N times, with N ¼ 2

as the minimum for fault detection and N ¼ 3 as the
minimum for fault detection and fault recovery. These
processes are the redundant processes, which actually per-
form the execution of the application. One of the redundant
processes is labeled the master process and the others are
labeled the slave processes. During execution of the
redundant processes, the system call emulation unit coordi-
nates system I/O among the redundant processes. In
general, the master process is allowed to perform system
I/O while the slave processes emulate system I/O. The
system call emulation unit also enforces the software-
centric fault detection model and implements transient

fault detection and recovery. A watchdog timer is attached to
the system call emulation unit, which is used to detect cases
in which a fault causes one of the redundant processes to
hang indefinitely. After initialization and the redundant
processes are created, the original process becomes a
figurehead process. The figurehead process does not do any
real work. It only waits for the redundant processes to
finish execution and forwards signals to the redundant
processes.

The following sections describe the PLR system in further
detail and discuss issues with transparency, maintaining
determinism among process replicas, and transient fault
detection and recovery. While describing the implementa-
tion details and challenges, we attempt to stay as general as
possible, but because of our specific system implementation,
we often use IA32-specific and Linux-specific features and
terminology. However, other OSs and computer architec-
tures typically have their own equivalents and we believe
our experience can mostly be translated to other systems.

4.2 Maintaining Process Semantics

PLR creates an entire group of processes per original
application process. However, it is important to maintain
the process semantics expected by the user and other
applications in the case of interprocess communication.
Specifically, we are interested in maintaining the following
expected process semantics when running an application:

1. When an application is invoked, it is given a specific
process identifier (pid). The pid exists during the
entire duration of the application and is relinquished
to the OS afterward.

2. When the application exits, it returns with the
correct exit code of the program.

3. A signal that sent a valid pid will have the intended
effects. For example, a SIGKILL will kill the process.

In a previous version of PLR, we simply fork the
application multiple times and compare execution behavior
using the system call emulation unit [17]. However, when
assessing the transparency of such an approach, we quickly
realized that it violates process semantics. Suppose an
original application begins with a pid of 100 and we fork
twice for redundant processes with pids of 101 and 102. If a
transient fault causes the original pid of 100 to die, it is
impossible to maintain process semantics; although execu-
tion of the application continues in pids of 101 and 102, the
original pid of 100 does not exist during execution, does not
return the correct return code, and is impossible to signal.

In order to maintain process semantics, PLR uses a
figurehead process. After creating the redundant processes,
the original process is relegated to a figurehead process.
The figurehead performs three functions, which match the
three rules of expected process semantics listed above.
First, it sleeps and waits on the redundant processes to
complete execution. Second, upon completion, it receives
the application’s exit value from the system call emulation
unit and exits properly. Third, it performs signal forwarding.
Because every signal intended for the application reaches
the figurehead process (it has the correct pid), the figure-
head process needs to forward the signals to the children.
Thus, a SIGTERM will cause the figurehead process, as

138 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2009

Fig. 2. Overview of the PLR system architecture with three redundant

processes.

well as the redundant processes to all terminate execution
and ensure the third rule in maintaining process semantics.

There is one complication on Linux systems with the
signal forwarding in the figurehead process; the SIGKILL
and SIGSTOP signals cannot be caught with a signal
handler. Therefore, with just a figurehead process, a
SIGKILL would kill the figurehead process but leave the
redundant processes running. To handle this, PLR uses a
monitor process, which intermittently polls the state of the
figurehead process. If the process does not exist, it assumes
a SIGKILL and kills itself, along with the rest of the
redundant processes. If the parent is in a stopped state, it
issues a SIGSTOP to all the redundant processes to emulate
the effect of a SIGSTOP signal within the application. The
figurehead and monitor processes introduce a delay in
receiving signals. However, signals are mostly asynchro-
nous by nature and a slight delay is not a problem.

It should be noted that maintaining process semantics
helps with transparency from the user perspective and from
the perspective of other applications that may interact with
the target application via interprocess communication. PLR
does not maintain any transparency from the system
perspective. For example, a listing of the active system
processes will produce figurehead process, as well as the
monitor process and redundant processes.

4.3 Process Replicas

PLR is a technique that uses the software-centric model of
transient fault detection. As shown in Fig. 1b, PLR places
its SoR around the user address space by providing
redundancy at the process level. PLR replicates the
application and library code, global data, heap, stack, file
descriptor table, and so forth. Everything outside of the
SoR, namely the OS, must be protected by other means.
Any data that enter the SoR via the system call interface
must be replicated and all output data must be compared
to verify correctness.

Providing redundancy at the process level is natural as it
is the most basic abstraction of any OS. The OS views any
hardware thread or core as a logical processor and then
schedules processes to the available logical processors. PLR
leverages the OS to schedule the redundant processes to
take advantage of hardware resources. With massive
multicore architectures on the horizon, there will be a
tremendous amount of hardware parallelism available in
future general-purpose machines. In computing environ-
ments where throughput is not the primary concern, PLR
provides a way of utilizing the extra hardware resources for
transient fault tolerance.

During execution, one of the redundant processes is
logically labeled the master process and the others are
labeled the slave processes. At each system call, the system
call emulation unit is invoked. The system call emulation unit
performs the input replication, output comparison, and
recovery. The emulation unit also ensures that the following
requirements are maintained in order for PLR to operate
correctly:

. The execution of the redundant processes must be
transparent to the system environment with the
redundant processes interacting with the system as

if only the original process is executing. System calls
that alter any system state are only executed once by
the master process. The slave processes emulate the
system call.

. Execution among the redundant processes must be
deterministic. System calls that return nondetermi-
nistic data, such as a request for system time or
resources, must be emulated to ensure all redun-
dant processes use the same data for computation.
Other sources of determinism such as asynchro-
nous interrupts and shared memory accesses must
also be intercepted and emulated.

. All redundant processes must be identical in address
space and any other process-specific data, such as
the file descriptor table. At any time, a transient fault
could render one of the redundant processes useless.
With identical processes, any of the processes can be
logically labeled the master process at any given
invocation of the emulation unit.

On occasion, a transient fault will cause the program to
suspend or hang. The watchdog alarm is employed by the
emulation unit to detect such faults. Upon entrance to the
system call emulation unit, a timer begins. If the redundant
processes do not all enter the emulation unit in a user-
specified amount of time, the watchdog alarm times out,
signaling an error in execution.

4.4 Input Replication

As the SoR model dictates, any data that enters the SoR
must be replicated to ensure that all data is redundant
within the SoR. Any data that passes into the processes is
received once by the master process and then passed to the
slave processes. During system call emulation, any read
data (such as a read from a file descriptor) is replicated and
copied to the slave processes. Also, the return value from all
system calls is considered as input data and is also
replicated.

4.5 Output Comparison

All data that exit the redundant processes must be
compared for correctness before proceeding out of the
SoR. If the output data do not match, a transient fault is
detected and a recovery routine is invoked. During system
call emulation, any write buffers that will be passed outside
of the SoR must be compared. Also, any data passed as a
system call parameter can be considered an output event
that leaves the SoR and must also be checked to verify
program correctness.

Most output comparisons deal with small amounts of
data and are accomplished by simply copying the data to a
shared memory segment and comparing the bytes. For
larger write buffers, such as the write buffer when checking
the write() system call, a 32-bit CRC is computed locally,
and then the CRC value is compared through shared
memory. The local CRC computation avoids copying large
chunks of memory through shared memory, which can
significantly increase overhead.

4.6 Emulating System Calls

The emulation unit is responsible for the input replication,
output comparison, and system call emulation. The data

SHYE ET AL.: PLR: A SOFTWARE APPROACH TO TRANSIENT FAULT TOLERANCE FOR MULTICORE ARCHITECTURES 139

transfer during input replication and output comparison is
accomplished through a shared memory segment between
all of the redundant processes.

At the beginning of each call to the emulation unit during
the output comparison of the system call parameters, the
type of system call is also compared to ensure that all
redundant processes are at a common system call. If not, a
fault is assumed, which caused an error in control flow to
call an errant system call.

Depending upon the system call, the system call
emulation unit will perform different tasks. System calls
that modify any system state, such file renaming and
linking, are only executed once by the master process. In
other cases, the system call will be actually called by all
processes; once by the master process in its original state,
and once by each redundant process to emulate the
operation. For example, in emulating a system call to open
a new file, the master process will create and open the new
file, while the redundant processes will simply open the file
without creating it.

4.7 Shared Memory

Shared memory accesses present a source of potential
nondeterminism between redundant processes. A read
from shared memory represents input data that should be
replicated, and a write to shared memory represents output
data that should be compared for correctness. The problem
is that shared memory accesses masquerade as arbitrary
load and/or store instructions. Therefore, only handling
system I/O through the system call interface will not
suffice. Memory-mapped device I/O shares the same
problem as shared memory accesses.

PLR handles shared memory I/O by borrowing the trap-
and-emulate technique from virtual machines and dynamic
binary optimizers. Virtual machines trap on the execution
of privileged instructions and defer to a virtual machine
monitor to emulate the privileged instruction [18]. Dy-
namic binary optimizers, which interpret/recompile the
application and execute out of a code cache, use the same
technique for detecting self-modifying code. In this case,
the text section is marked read-only and any self-modifying
code will cause an immediate trap to notify the dynamic
binary optimizer [19]. Along these lines, there are two ways
to handle shared memory accesses:

. Trap-and-emulate. PLR treats any system calls
regarding shared memory regions as a special case.
These include shared memory calls such as shmat()
or shared memory mapping functions such as
mmap() called with the MAP_SHARED flag. While
emulating these system calls, PLR also performs two
extra functions. First, PLR updates a shared memory
map (SMM), which includes all of the shared memory
regions including metadata such as the protection
mode of the pages. Second, PLR switches the
protection of all of the shared memory pages to
disallow both reading and writing. Upon a read or
write to one of the shared memory regions, a trap
will occur. The trap handler in PLR decodes and
begins to emulate the instruction at which the trap
occurred. If the instruction accesses data within the
SMM, the emulation continues along with the correct

input replication and/or output comparison. If not,
the original trap handler is invoked.

. Trap-and-emulate-and-probe. The trap-and-emulate
approach incurs a high overhead by requiring a trap
to the OS on every read or write instruction to a
shared memory region. The trap-and-emulate-and-
probe approach avoids this overhead by placing a
probe at the offending instruction after a trap and
emulation of a specific instruction. A probe is simply
a branch instruction that overwrites the original
instruction and branches to emulation code. Emula-
tion begins by using the memory access address to
look up into the SMM. If the instruction accesses a
shared memory region, it is emulated appropriately
with input replication and output comparison. If not,
a copy of the original instruction is executed and
control branches back to the original program after
the probe. Trap-and-emulate-and-probe pays a one-
time cost of a trap and then avoids the trap on
subsequent executions of the same instruction.

4.8 Asynchronous Signals

Asynchronous signals present another form of potential
nondeterminism among the redundant processes. The
figurehead process takes care of the first part of signal
processing; it provides the correct pid to signal and then
forwards all of the signals it receives to the redundant
processes. However, there is still a problem during execu-
tion of the signal handlers in the redundant processes. The
problem is that signal handlers are called asynchronously
and may read or write any data in the process’s address
space. If the redundant processes do not all call the signal
handlers at precisely the same point in their dynamic
instruction streams, they may become nondeterministic.

To handle asynchronous signals, PLR inserts probes
and marks specific points in the code as epoch boundaries
[20], [21]. An epoch is a timeslice of a program in which
the start and end points are known and identical across
the redundant processes. Each redundant process main-
tains a local epoch counter, which stores the number of
epoch boundaries passed during execution. Signal hand-
ling is deferred and handled at epoch boundaries.

Specifically, signal handling proceeds as follows:

1. The figurehead process represents the entire group
of processes (it has the correct pid) and receives the
asynchronous signal.

2. The figurehead process sends a SIGSTOP to all the
redundant processes to temporarily stop their
execution.

3. The figurehead inspects the epoch counter of each
redundant process. A pending signal is set up to be
serviced at an epoch count equal to the largest
current epoch counter plus one.

4. The figurehead processes resume the execution of all
redundant processes.

5. The redundant processes execute and, at each epoch
boundary, check if there is a pending signal to be
handled. If there is a pending signal, and the current
epoch count matches the epoch count set for signal
handling, then the redundant process transfers
control to the signal handler.

140 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2009

There exists a tradeoff between program overhead and
the timeliness of signal handling. For example, if epoch
boundaries are placed at each instruction, signals will be
handled immediately, but performance will significantly
degrade due the checking instructions at epoch boundaries.
On the other hand, if epochs are too large, performance
impact will be negligible, but the delay until signal handling
may not meet user expectations.

We have implemented three policies for the placement of
epoch boundaries; at each system call (SYSCALL), function
call (FUNC), or backward branch (BACK_BRANCH). Differ-
ent policies will be suitable for different application types.
For example, the SYSCALL policy will work well for an
application that frequently uses system calls. Applications
that have many function calls, such as programs developed
with object-oriented languages, would work well with the
FUNC policy. Compute-intensive programs that execute in
tight kernels within a function will need a fine-grained
approach such as the BACK_BRANCH approach. The three
policies are managed with a command line switch specify-
ing the policy to use.

4.9 Transient Fault Detection

A transient fault is detected in one of three ways:

1. Output mismatch. A transient fault that propagates
to cause incorrect output will be detected with the
output comparison within the emulation unit at the
point that the data are about to exit the SoR. An
output mismatch may occur during system call
emulation or during the handling of an instruction
that accesses shared memory.

2. Watchdog time-out. There are two scenarios in
which the watchdog timer will time out. The first
case is when a fault causes an error in control
flow, which calls an errant system call. The faulty
process will cause an entrance into the emulation
unit, which will begin waiting for the other
processes. If the other processes enter the emula-
tion unit, an error will be detected if the system
calls mismatch or if there is a mismatch in data. If
the other processes continue execution, a time-out
will occur. The second case is when a transient
fault causes a process to hang indefinitely (e.g., an
infinite loop). In this case, during the next system
call, all the processes except the hanging process
will enter the emulation unit and eventually cause
a watchdog time-out. A drawback to the watchdog
alarm is that a time-out period exists in which the
application does not make any progress. In our
experience, on an unloaded system, a time-out of
1-2 seconds is sufficient. The time-out value is user
specified and can be increased on a loaded system.
On a loaded system, spurious time-outs will not
affect application correctness but will cause un-
necessary calls to the recovery unit.

3. Program failure. Finally, a transient fault may cause
a program failure due to an illegal operation such as
a segmentation violation, bus error, illegal instruc-
tion, and so forth. Signals handlers are set up to
catch the corresponding signals and an error is
flagged. The next time the emulation unit is called, it
can immediately begin the recovery process.

4.10 Transient Fault Recovery

Transient fault recovery mechanisms typically fit into two
broad categories: checkpoint and repair and fault masking.
Checkpoint and repair techniques involve the periodic
checkpointing of execution state. When a fault is detected,
execution is rolled back to the previous checkpoint. Fault
masking involves using multiple copies of execution to vote
on the correct output.

PLR supports both types of fault recovery. If checkpoint
and repair functionality already exists, then PLR only needs
to use two processes for detection and can defer recovery
to the repair mechanism. Otherwise, fault masking can be
accomplished by using at least three processes for a majority
vote. If fault masking is used, the following schemes are
used for recovery (the examples use an assumption of three
redundant processes).

1. Output mismatch. If an output data mismatch
occurs, the remaining processes are compared to
ensure correctness of the output data. If a majority
of processes agree upon the value of the output
data, it is assumed to be correct. The processes with
incorrect data are immediately killed and replaced
by duplicating a correct process (e.g., using the
fork() system call in Linux).

2. Watchdog time-out. As mentioned in Section 4.1,
there are two cases for a watchdog time-out. In the
first case, where a faulty process is calling the
emulation unit while the other processes continue
executing, there will only be one process in the
emulation unit during time-out. The process in the
emulation unit is killed and recovery occurs during
the next system call. In the second case, where a
faulty process hangs, all processes except one will be
in the emulation unit during time-out. The hanging
process is killed and replaced by duplicating a
correct process.

3. Program failure. In the case of program failure, the
incorrect process is already dead. The emulation unit
simply replaces the missing process by duplicating
one of the remaining processes.

We assume the single event upset (SEU) fault model in
which a single transient fault occurs at a time. However,
PLR can support simultaneous faults by simply scaling the
number of redundant processes and the majority vote logic.

4.11 Windows of Vulnerability

A fault during execution of PLR code may cause an
unrecoverable error. Also, a fault that causes an erroneous
branch into PLR code could result in undefined behavior.
Finally, PLR is not meant to protect the OS and any fault
during OS execution may cause failure. The first and third
windows of vulnerability can be mitigated by compiling the
OS and/or PLR code with compiler-based fault tolerance
solutions.

To maintain process semantics, it is critical that the
figurehead stays alive throughout program execution.
Although it represents a single point of failure, the figure-
head performs almost no real work and the probability of a
transient fault affecting its execution is very low. A single
monitor process also represents a single point of failure.

SHYE ET AL.: PLR: A SOFTWARE APPROACH TO TRANSIENT FAULT TOLERANCE FOR MULTICORE ARCHITECTURES 141

However, if the monitor process is a concern, it can easily be
replicated.

All fault tolerance techniques have windows of vulner-
ability,which areusually associatedwith faults to the checker
mechanism. Although not completely reliable, partial re-
dundancy [22], [23] may be sufficient to improve reliability
enough to meet user or vendor reliability standards.

5 EXPERIMENTAL RESULTS

This paper presents and evaluates a PLR prototype built
using the Intel Pin dynamic binary instrumentation system
[24]. The tool uses Pin to dynamically create redundant
processes and uses PinProbes (a dynamic code patching
system for program binaries) to intercept system calls.

The prototype is evaluated running a set of the
SPEC2000 benchmarks compiled with gcc v3.4.6 and ifort
v9.0. Fault coverage is evaluated using a fault injection
campaign similar to [12]. One thousand runs are executed
per benchmark. To maintain manageable runtimes, the test
inputs are used for fault injection and fault propagation
experiments. For each run, a dynamic instruction execution
count profile of the application is used to randomly choose
a specific invocation of an instruction to fault. For the
selected instruction, a random bit is selected from the
source or destination general-purpose registers. To inject a
simulated transient error, Pin tool instrumentation is used
to change the random bit during the specified dynamic
execution count of the instruction. The specdiff utility
included within the SPEC2000 harness is used to determine
the correctness of program output.

PLR performance is evaluated using the SPEC2000
reference inputs. Performance is measured by running the
prototype with both two and three redundant processes
without fault injection on a four-processor SMP system;
specifically, the system has four 3.00-GHz Intel Xeon MP
processors, each with 4,096-Kbyte L3 cache, has 6 Gbytes of
systemwide memory, and is running Red Hat Enterprise
Linux AS release 4.

5.1 Fault Injection Results

A fault injection study is performed to illustrate the
effectiveness of PLR as well as the benefits of using a

software-centric model of fault detection. Fig. 3 shows the

results of a fault injection campaign with the left bar in each

cluster showing the outcomes with just fault injection and

the right bar showing the outcomes when detecting faults

with PLR. The possible outcomes are given as follows:

1. Correct. A benign fault that does not affect program
correctness.

2. Incorrect. An SDC where the program executes
completely and returns with correct return code, but
the output is incorrect.

3. Abort. A DUE in which the program returns with an
invalid return code.

4. Failed. A DUE in which the program terminates
(e.g., segmentation violation).

5. Mismatch. Occurs when running PLR. In this case,
a mismatch is detected during PLR output
comparison.

6. SigHandler. Occurs when running PLR. In this case,
a PLR signal handler detects program termination.

Time-outs of the watchdog alarm are ignored because
they occur very infrequently (� 0.05 percent of the time).

PLR is able to successfully eliminate all of the Failed,
Abort, and Incorrect outcomes. In general, the output
comparison detects the Incorrect and Abort cases and turns
each error into detected Mismatch cases. Similarly, PLR
detects the Failed cases turning them into SigHandler cases.
Occasionally, a small fraction of the Failed cases are detected
asMismatch under PLR. This indicates cases in which PLR is
able to detect a mismatch of output data before a failure
occurs.

The software-centric approach of PLR is very effective at

detecting faults based on their effect on software execution.

Faults that do not affect correctness are generally not

detected in PLR, thereby avoiding false positives. In

contrast, SWIFT [12], which is currently the most advanced

compiler-based approach, detects roughly � 70 percent of

the Correct outcomes as faults.
However, not all of the Correct cases during fault

injection remain Correct with PLR detection as the soft-

ware-centric model would suggest. This mainly occurs with

the SPECfp benchmarks. In particular, 168.wupwise,

142 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2009

Fig. 3. Results of the fault injection campaign. The left bar in each cluster shows the outcomes with just fault injection and the right bar shows the

breakdown of how PLR detects the faults.

172.mgrid, and 178.galgel show that many of the original

Correct cases during fault injection become detected as

Mismatch. In these cases, the injected fault causes the output

data to be different than data from regular runs. However,

the output difference occurs in the printing of floating point

numbers to a log file. specdiff allows for a certain tolerance in

floating point calculations and considers the difference

within acceptable bounds. PLR compares the raw bytes of

output and detects a fault because the data does not match.

This issue has less to do with the effectiveness of a PLR, or a

software-centric model, and is more related to the definition

of an application’s correctness.

5.2 Fault Propagation

Fig. 4 shows the number of instructions executed between

fault injection and detection. Runs are shown as stacked

bars showing the breakdown of instructions executed

before the fault was detected. The leftmost bar labeled M

shows the breakdowns for the Mismatch runs shown in

Fig. 3. The middle bar (S) shows the breakdown for the

SigHandler runs and the left bar (A) shows all of the detected

faults including both Mismatch and SigHandler.
In general, the Mismatch runs tend to be detected much

later than the point of fault injection with fault propagation

instruction counts of over 10,000 instructions for nearly all

of the benchmarks. On the other hand, the SigHandler runs

have a higher probability of being detected early. Across all

of the detected runs, there is a wide variety in amounts of

fault propagation ranging from 254.gap, which has a low

amount of fault propagation, to 191.fma3d, which has an

even distribution of runs among the various categories.
The software-centric model delays the detection of a

fault until an error is certain via program failure or

incorrect data exiting the SoR. However, the delayed

detection also means that a fault may remain latent during

execution for an unbounded period of time. Future work

remains in characterizing fault propagation as well as

exploring methods for bounding the time in which faults

remain undetected. However, these issues are outside the

scope of this paper.

5.3 Performance Results

Performance is evaluated using two redundant processes
for fault detection (PLR2) and three processes to support
recovery (PLR3). Fig. 5 shows PLR performance on bench-
marks compiled with both -O0 and -O2 compiler flags.
Performance is normalized to native execution time. PLR
provides transient fault tolerance on -O0 programs with an
average overhead of 8.1 percent overhead for PLR2 and
15.2 percent overhead for PLR3. On -O2 programs, PLR2
incurs a 16.9 percent overhead for PLR2 and 41.1 percent
overhead for PLR3. Overhead in PLR is due to the fact that
multiple redundant processes are contending for system
resources. Programs that place higher demands on system
resources result in a higher PLR overhead. Optimized
binaries stress the system more than unoptimized binaries
(e.g., higher L3 cache miss rate) and, therefore, have a
higher overhead. As the number of redundant processes
increases, there is an increasing burden placed upon the
system memory controller, bus, as well as cache coherency
implementation. Similarly, as the emulation is called with
more processes, the increased synchronization with sema-
phores and the usage and shared memory may decrease
performance. At certain points, the system resources will be
saturated and performance will be severely impacted.
These cases can be observed in 181.mcf and 171.swim when
running PLR3 with -O2 binaries. PLR overhead and system
resource saturation points are explained in more detail in
Section 5.4.

5.4 PLR Overhead Breakdown

The performance overhead of PLR consists of contention
overhead and emulation overhead, shown as stacked bars in
Fig. 5. Contention overhead is the overhead from simulta-
neously running the redundant processes and contending
for shared resources such as the memory and system bus.
The contention overhead is measured by running the
application multiple times independently and comparing
the overhead to the execution of a single run. This roughly
simulates running the redundant processes without PLR’s
synchronization and emulation. Note that this overhead is
purely from the redundant processes. The figurehead and
monitor processes perform little computation and their

SHYE ET AL.: PLR: A SOFTWARE APPROACH TO TRANSIENT FAULT TOLERANCE FOR MULTICORE ARCHITECTURES 143

Fig. 4. Distribution of the number of executed instructions between the injection and detection of a fault. Percentages are normalized to all the runs

that are detected via output mismatch (M), program failure (S), or both combined (A).

performance overhead is negligible. The rest of the over-

head is considered emulation overhead. Emulation over-

head is due to the synchronization, system call emulation,

and mechanisms for fault detection incurred by PLR.
For the set of benchmarks, contention overhead is

significantly higher than emulation overhead. Benchmarks
such as 181.mcf and 189.lucas have relatively high cache
miss rates leading to a high contention overhead with
increased memory and bus utilization. On the other hand,
176.gcc and 187.facerec substantially utilize the emulation
unit and result in a high PLR overhead.

5.4.1 Contention Overhead

Contention overhead mainly stems from the sharing of

memory bandwidth between the multiple redundant

processes. To study the effects of contention overhead,

we construct a program to generate memory requests by

periodically missing in the L3 cache. Fig. 6 shows the

effect of L3 cache miss rate on contention overhead when

running with PLR. For both PLR2 and PLR3, the L3 cache

miss rate has a substantial effect on the contention

overhead. With less than 5 million L3 cache misses per

second, the contention overhead is minimal. However,
beyond that point, the contention overhead increases
greatly. At 10 million L3 cache misses per second, PL2
incurs a 13 percent overhead and PLR3 incurs a 25 percent
overhead. These results indicate that the total overhead for
using PLR is highly impacted by the applications cache
memory behavior. CPU-bound applications can be pro-
tected from transient faults with a very low overhead
while memory-bound applications may suffer from high
overheads.

5.4.2 Emulation Overhead

Emulation overhead mainly consists of the synchronization
overhead and the overhead from transferring and compar-
ing data in shared memory. To examine each aspect of
emulation overhead, two synthetic programs were de-
signed and run with PLR. The first program calls the
times() system call at a user-controlled rate. times() is
one of the simpler system calls supported by PLR and is
used to measure the emulation overhead from the barrier
synchronizations within the emulation unit. The second test
program calls the write() system call 10 times a second
and writes a user-specified number of bytes per system call.
For each write() call, the emulation unit transfers and
compares the write data in shared memory.

Fig. 7 shows the effect of synchronization on the PLR
overhead. Synchronization overhead is minimal up until
about 300-400 emulation unit calls per second with less than
5 percent overhead for using PLR with both two and three
redundant processes. Afterward, the emulation overhead
increases quickly. Overall, these results indicate that the
PLR technique might be best deployed for specific applica-
tion domains without significant system call functionality.

Fig. 8 illustrates the effect of write data bandwidth on
emulation overhead. The experiment evaluates the amount
of data at each system call that must be compared between
redundant process techniques. Thewrite data bandwidthhas
similar characteristics as system call synchronization, achiev-
ing low overhead until a cut-off point. In this case, for the
experimental machines evaluated, the overhead is minimal
when the write data rate stays less than 1 Mbyte/second but
then increases substantially after that point for both PLR2
and PLR3.

144 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2009

Fig. 6. PLR contention overhead for varying L3 cache miss rates.

Fig. 5. Overhead of running PLR on a set of both unoptimized and optimized SPEC2000 benchmarks. The combinations of runs include

-O0 compiled binaries with PLR2 (A), -O0 with PLR3 (B), -O2 with PLR2 (C), and -O2 with PLR3 (D).

5.5 Shared Memory Support

To measure the performance of supporting shared memory,
we have developed a synthetic benchmark that periodically
writes to a sharedmemory region. Fig. 9 shows the additional
performance overhead when running the synthetic bench-
mark at various shared memory write rates for PLR running
with two redundant processes using trap-and-emulate and
trap-and-emulate-and-probe. With a very low rate of shared
memory accesses, lower than 1,000 accesses per second, the
performance is negligible. As the shared memory access rate
increases to 10,000 accesses per second, the overhead
increases to a reasonable 5 percent overhead. Higher access
rates result in a large increase in performance overhead. It
should be noted that the overhead shown here is purely the
overhead due to supporting shared memory. In addition, as
shared memory write rates increase, the trap-and-emulate-
and-probe approach outperforms the trap-and-emulate
approach. Overhead is mostly dominated by the synchroni-
zation and interprocess communication, but the use of the
probe is able to reduce the trapping overhead.

5.6 Supporting Asynchronous Signals

PLR handles asynchronous signals by deferring signal
handling within the redundant processes until epoch
boundaries. This approach introduces a delay between

receiving and handling asynchronous signals. Because
these signals are asynchronous by nature, a slight delay is
manageable. However, we would like to avoid large delays
until signal handling, which may greatly impact the
performance/behavior of the application.

To provide an idea of the delay period before signal
handling, we study the number of instructions executed
between various epochs within our benchmarks. Fig. 10
shows a breakdown of the number of instructions between
epochs using the SYSCALL, FUNC, and BACK_BRANCH
policies described in Section 4.8. SYSCALL is not a good
policy in general. While 176.gcc executes the most system
calls, the majority of epochs still are larger than 1 billion
instructions. FUNC performs much better, reducing most of
the epochs to within a manageable range. However, a few
of the benchmarks, such as 171.swim and 172.mgrid, still
have a significant amount of large epochs. The reason is that
these benchmarks execute long running loops within
function and do not hit epoch boundaries often. Moving
to the BACK_BRANCH policy removes this limitation and
provides epochs within 1,000 instructions consistently.

We then analyze the additional performance overhead
of handling signals on a set of our benchmarks with two
redundant processes in Fig. 11. The graph shows the
normalized overhead when using our three policies. Over-
all, the SYSCALL and FUNC policies incur a negligible
overhead across all of the applications. The BACK_BRANCH
policy incurs a higher overhead that varies across applica-
tions depending on the rate of backward branches per
application. For example, a branch-intensive application
such as 176.gcc has nearly two times overhead. The other
applications vary greatly with 300.twolf incurring almost
negligible overhead. Overall, the FUNC policy is the most
attractive policy with the ability to handle signals within
100,000 instructions for most applications and with negli-
gible performance overhead.

6 RELATED WORK

PLR is similar to a software version of the hardware SMT
and CMP extensions for transient fault tolerance [25], [26],
[27], [16], [28]. PLR aims to provide the same functionality in
software. Wang et al. [29] proposes a compiler infrastruc-
ture for software redundant multithreading, which achieves

SHYE ET AL.: PLR: A SOFTWARE APPROACH TO TRANSIENT FAULT TOLERANCE FOR MULTICORE ARCHITECTURES 145

Fig. 8. PLR overhead for various data bandwidths demonstrating the
overhead of comparing shared memory during output comparison.

Fig. 9. Additional PLR overhead for supporting shared memory

accesses.

Fig. 7. PLR overhead for varying system call rates demonstrating the

synchronization and emulation overhead for a simple system call.

19 percent overhead with the addition of a special hardware
communication queue. PLR attains similar overhead and
only relies on the fact that multiple processors exist. In
addition, PLR does not require a source code to operate.

Executable assertions [30], [31] and other software
detectors [32] explore the placement of assertions within
software. Other schemes explicitly check control flow during
execution [33], [11]. The software-centric approach provides
a different model for transient fault tolerance using a
software equivalent to the commonly accepted SoR model.
Thepi bit [13] anddependence-based checking [34] havebeen
explored asmethods to follow the propagation of faults in an
attempt to only detect faults that affect program behavior.
The software-centric model accomplishes the same task on a
larger scale.

The PLR approach is similar to a body of fault tolerant
work, which explores the use of replicas for fault tolerance
[35], [20], [21], [36], [37], [8]. This body of work targets
hard faults (such as hardware or power failures) and
assumes fail-stop execution [38] in which the processor
stops in the event of failure. For transient faults, this
assumption does not hold. As far as we know, we provide
the first performance evaluation, and overhead break-
down, of using redundant processes on general-purpose
multicore systems.

More recently, process replicas have been proposed for
general-purpose systems to provide services other than
fault tolerance. DieHard [39] proposes using replica
machines for tolerating memory errors and Exterminator

[40] uses process replicas to probabilistically detect memory
errors. DieHard and Exterminator briefly mention using
process replicas and do not elaborate on the challenges of
nondeterministic events. Shadow profiling [41] and Super-
Pin [42] propose using process replicas to parallelize
dynamic binary instrumentation. Using process replicas
for profiling has the advantage that correctness is not
necessary for profiling—if the profile information correctly
follows execution trends, it is good enough. As a result, they
can get away with not completely handling nondeterminis-
tic events. Other projects such as FT-MPI [43] and MPI/FT
[44] have extended MPI to implement process replicas on
MPI applications for hard faults. PLR applies replicas for
transient fault tolerance on general-purpose multicore
machines. To the best of our knowledge, PLR is the most
robust software implementation of general-purpose process
replicas with the ability to deterministically handle shared
memory accesses and asynchronous signals.

There have been a number of previous approaches to
program replication. N-version programming [45] uses
three different versions of an application for tolerating
software errors. Aidemark uses a time redundant technique,
which executes an application multiple times and uses
majority voting [46]. Virtual duplex systems combine both
N-version programming and time redundancy [47], [48]. The
TandemNonstop Cyclone [7] is a custom system designed to
use process replicas for transaction processing workloads.

Chameleon [49] is an infrastructure designed for dis-
tributed systems using various ARMOR processes to

146 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2009

Fig. 10. The number of dynamic instructions executed between epochs of the three policies for supporting asynchronous signals: SYSCALL (S),

FUNC (F), and BACK_BRANCH (B).

Fig. 11. Additional normalized PLR overhead incurred for supporting asynchronous system calls using epochs at the three policies: SYSCALL (S),

FUNC (F), and BACK_BRANCH (B).

implement adaptive fault tolerance. The figurehead process
is similar in some respects to the fault tolerant manager, the
monitor process is similar to the heartbeat ARMOR, and the
redundant processes are similar to the execution ARMORs.
However, the systems are designed with different goals in
mind. While Chameleon is for providing an adaptive and
configurable fault tolerance on distributed systems, PLR is
designed to provide transient fault tolerance on general-
purpose multicore systems.

7 CONCLUSION

This paper has motivated the necessity for software
transient fault tolerance for general-purpose microproces-
sors and proposed PLR as an attractive alternative in
emerging multicore processors. By providing redundancy
at the process level, PLR leverages the OS to freely schedule
the processes to all available hardware resources. In
addition, PLR can be deployed without modifications to
the application, OS, or underlying hardware. A real PLR
prototype supporting single-threaded applications is pre-
sented and evaluated for fault coverage and performance.
Fault injection experiments prove that PLR’s software-
centric fault detection model effectively detects faults that
safely ignoring benign faults. Experimental results show
that when running an optimized set of SPEC2000 bench-
marks on a four-way SMP machine, PLR provides fault
detection with a 16.9 percent overhead. PLR performance
improves upon existing software transient fault tolerance
techniques and takes a step toward enabling software fault
tolerant solutions with comparable performance to hard-
ware techniques.

ACKNOWLEDGMENTS

This work was supported by Intel. The authors would like to
thank the anonymous IEEE TDSC reviewers and the
anonymous reviewers at DSN for their comments on the
preliminary work presented in this paper. The authors
would also like to thank Robert Cohn, Manish Vachharajani,
Rahul Saxena, and the rest of the DRACO Architecture
Research Group for their insightful comments and helpful
discussion.

REFERENCES

[1] R.C. Baumann, “Soft Errors in Commercial Semiconductor
Technology: Overview and Scaling Trends,” IEEE 2002
Reliability Physics Tutorial Notes, Reliability Fundamentals,
pp. 121_01.1-121_01.14, Apr. 2002.

[2] S.E. Michalak et al., “Predicting the Number of Fatal Soft Errors in
Los Alamos National Laboratory’s ASC Q Supercomputer,” IEEE
Trans. Device and Materials Reliability, vol. 5, no. 3, pp. 329-335,
Sept. 2005.

[3] S. Hareland et al., “Impact of CMOS Scaling and SOI on Software
Error Rates of Logic Processes,” VLSI Technology Digest of Technical
Papers, 2001.

[4] T. Karnik et al., “Scaling Trends of Cosmic Rays Induced Soft
Errors in Static Latches beyond 0.18�,” VLSI Circuit Digest of
Technical Papers, 2001.

[5] T.J. Slegel et al., “IBM’s S/390 G5 Microprocessor Design,” IEEE
Micro, vol. 19, no. 2, pp. 12-23, Mar./Apr. 1999.

[6] H. Ando et al., “A 1.3 GHz Fifth Generation Sparc64
Microprocessor,” Proc. 40th Conf. Design Automation (DAC ’03),
pp. 702-705, 2003.

[7] R.W. Horst et al., “Multiple Instruction Issue in the Nonstop
Cyclone Processor,” Proc. 17th Ann. Int’l Symp. Computer Archi-
tecture (ISCA), 1990.

[8] Y. Yeh, “Triple-Triple Redundant 777 Primary Flight Computer,”
Proc. 1996 IEEE Aerospace Applications Conf., vol. 1, pp. 293-307,
Feb. 1996.

[9] J. Ziegler et al., “IBM Experiments in Soft Fails in Computer
Electronics (1978-1994),” IBM J. Research and Development, vol. 40,
no. 1, pp. 3-18, Jan. 1996.

[10] N. Oh et al., “Error Detection by Duplicated Instructions in Super-
Scalar Processors,” IEEE Trans. Reliability, vol. 51, no. 1, Mar. 2002.

[11] N. Oh et al., “Control-Flow Checking by Software Signatures,”
IEEE Trans. Reliability, vol. 51, no. 1, Mar. 2002.

[12] G.A. Reis et al., “SWIFT: Software Implemented Fault Tolerance,”
Proc. Int’l Symp. Code Generation and Optimization (CGO), 2005.

[13] C. Weaver et al., “Techniques to Reduce the Soft Error Rate of
a High-Performance Microprocessor,” Proc. 31st Int’l Symp.
Computer Architecture (ISCA), 2004.

[14] N. Wang et al., “Y-Branches: When You Come to a Fork in the
Road, Take It,” Proc. 12th Int’l Conf. Parallel Architectures and
Compilation Techniques (PACT), 2003.

[15] N.J. Wang, J. Quek, T.M. Rafacz, and S.J. Patel, “Characterizing
the Effects of Transient Faults on a High-Performance Processor
Pipeline,” Proc. 2004 Int’l Conf. Dependable Systems and Networks
(DSN ’04), pp. 61-72, June 2004.

[16] S.K. Reinhardt and S.S. Mukherjee, “Transient Fault Detection via
Simultaneous Multithreading,” Proc. 27th Ann. Int’l Symp. Com-
puter Architecture (ISCA), 2000.

[17] A. Shye, T. Moseley, V.J. Reddi, J. Blomstedt, and D.A. Connors,
“Using Process-Level Redundancy to Exploit Multiple Cores for
Transient Fault Tolerance,” Proc. 37th Int’l Conf. Dependable
Systems and Networks (DSN ’07), June 2007.

[18] J. Smith and R. Nair, Virtual Machines: Versatile Platforms for
Systems and Processes. Morgan Kaufmann, 2005.

[19] D. Bruening and S. Amarasinghe, “Maintaining Consistency and
Bounding Capacity of Software Code Caches,” Proc. Int’l Symp.
Code Generation and Optimization (CGO ’05), Mar. 2005.

[20] T.C. Bressoud and F.B. Schneider, “Hypervisor-Based Fault-
Tolerance,” Proc. 15th ACM Symp. Operating System Principles
(SOSP), 1995.

[21] T.C. Bressoud, “TFT: A Software System for Application-
Transparent Fault-Tolerance,” Proc. Int’l Conf. Fault-Tolerant
Computing, 1998.

[22] M. Gomaa and T.N. Vijaykumar, “Opportunistic Transient-Fault
Detection,” Proc. 32nd Int’l Symp. Computer Architecture (ISCA),
2005.

[23] K. Sundaramoorthy, Z. Purser, and E. Rotenburg, “Slipstream
Processors: Improving Both Performance and Fault Tolerance,”
Proc. Ninth Int’l Conf. Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2000.

[24] C.-K. Luk et al., “Pin: Building Customized Program Analysis
Tools with Dynamic Instrumentation,” Proc. ACM SIGPLAN Conf.
Programming Language Design and Implementation (PLDI), 2005.

[25] M. Gomaa et al., “Transient-Fault Recovery for Chip Multi-
processors,” Proc. 30th Int’l Symp. Computer Architecture (ISCA),
2003.

[26] S.S. Mukherjee et al., “Detailed Design and Evaluation of
Redundant Multithreading Alternatives,” Proc. 29th Int’l Symp.
Computer Architecture (ISCA), 2002.

[27] Z. Purser, K. Sundaramoorthy, and E. Rotenberg, “A Study of
Slipstream Processors,” Proc. 33rd Ann. ACM/IEEE Int’l Symp.
Microarchitecture (MICRO ’00), pp. 269-280, 2000.

[28] E. Rotenberg, “AR-SMT: A Microarchitectural Approach to Fault
Tolerance,” Proc. 29th Ann. Int’l Symp. Fault-Tolerant Computing
(FTCS-29 ’99), pp. 84-95, 1999.

[29] C. Wang, H. seop Kim, Y. Wu, and V. Ying, “Compiler-Managed
Software-Based Redundant Multi-Threading for Transient Fault
Detection,” Proc. Int’l Symp. Code Generation and Optimization
(CGO), 2007.

[30] M. Hiller, “Executable Assertions for Detecting Data Errors in
Embedded Control Systems,” Proc. Int’l Conf. Dependable Systems
and Networks (DSN), 2000.

[31] M. Hiller et al., “On the Placement of Software Mechanisms for
Detection of Data Errors,” Proc. Int’l Conf. Dependable Systems and
Networks (DSN), 2002.

SHYE ET AL.: PLR: A SOFTWARE APPROACH TO TRANSIENT FAULT TOLERANCE FOR MULTICORE ARCHITECTURES 147

[32] K. Pattabiraman, Z. Kalbarczyk, and R.K. Iyer, “Application-
Based Metrics for Strategic Placement of Detectors,” Proc. 11th Int’l
Symp. Pacific Rim Dependable Computing (PRDC), 2005.

[33] M.A. Schuette, J.P. Shen, D.P. Siewiorek, and Y.K. Zhu, “Experi-
mental Evaluation of Two Concurrent Error Detection Schemes,”
Proc. Int’l Symp. Fault-Tolerant Computing (FTCS-16), 1986.

[34] T.N. Vijaykumar, I. Pomeranz, and K. Cheng, “Transient-Fault
Recovery Using Simultaneous Multithreading,” Proc. 29th Int’l
Symp. Computer Architecture (ISCA), 2002.

[35] A. Borg, W. Blau, W. Graetcsh, F. Herrmann, and W. Oberle,
“Fault Tolerance under Unix,” ACM Trans. Computer Systems,
vol. 7, no. 1, pp. 1-24, Feb. 1989.

[36] P. Murray, R. Fleming, P. Harry, and P. Vickers, “Somersault:
Software Fault-Tolerance,” technical report, HP Labs White Paper,
Palo Alto, CA, 1998.

[37] J.H. Wensley et al., “SIFT: Design and Analysis of a Fault-Tolerant
Computer for Aircraft Control,” Proc. IEEE, vol. 66, no. 10,
pp. 1240-1255, Oct. 1978.

[38] R.D. Schlichting and F.B. Schneider, “Fail-Stop Processors: An
Approach to Designing Fault-Tolerant Computing Systems,” ACM
Trans. Computing Systems, vol. 1, no. 3, pp. 222-238, Aug. 1983.

[39] E.D. Berger and B.G. Zorn, “DieHard: Probabilistic Memory
Safety for Unsafe Languages,” Proc. ACM SIGPLAN Conf.
Programming Language Design and Implementation (PLDI), 2006.

[40] G. Novark, E.D. Berger, and B.G. Zorn, “Exterminator: Auto-
matically Correcting Memory Errors,” Proc. ACM SIGPLAN
Conf. Programming Language Design and Implementation (PLDI ’07),
June 2007.

[41] T. Moseley, A. Shye, V.J. Reddi, D. Grunwald, and R.V. Peri,
“Shadow Profiling: Hiding Instrumentation Costs with Paral-
lelism,” Proc. Int’l Symp. Code Generation and Optimization
(CGO), 2007.

[42] S. Wallace and K. Hazelwood, “Superpin: Parallelizing Dynamic
Instrumentation for Real-Time Performance,” Proc. Int’l Symp.
Code Generation and Optimization (CGO ’07), Mar. 2007.

[43] G.E. Fagg, E. Gabriel, Z. Chen, T. Angskun, G. Bosilca,
J. Pjesivac-Grbovic, and J.J. Dongarra, “Process Fault-Tolerance:
Semantics, Design and Applications for High Performance
Computing,” Int’l J. High Performance Applications and Super-
computing, vol. 19, no. 4, pp. 465-478, 2005.

[44] R. Batchu, Y. Dandass, A. Skjellum, and M. Beddhu, “MPI/
FT: A Model-Based Approach to Low-Overhead Fault Tolerant
Message-Passing Middleware,” Cluster Computing, 2004.

[45] A. Avizeinis, “The N-Version Approach to Fault-Tolerance
Software,” IEEE Trans. Software Engineering, vol. 11, no. 12,
pp. 1491-1501, Dec. 1985.

[46] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson, “Experi-
mental Evaluation of Time-Redundant Execution for a Brake-by-
Wire Application,” Proc. Int’l Conf. Dependable Systems and
Networks (DSN), 2002.

[47] K. Echtle, B. Hinz, and T. Nikolov, “On Hardware Fault Diagnosis
by Diverse Software,” Proc. Int’l Conf. Fault-Tolerant Systems and
Diagnostics (FTSD), 1990.

[48] T. Lovric, “Dynamic Double Virtual Duplex Systems: A Cost-
Efficient Approach to Fault-Tolerance,” Proc. Int’l Working Conf.
Dependable Computing for Critical Applications (DCCA), 1995.

[49] Z. Kalbarczyk, R.K. Iyer, S. Bagchi, and K. Whisnant, “Chameleon:
A Software Infrastructure for Adaptive Fault Tolerance,” IEEE
Trans. Parallel and Distributed Systems, vol. 10, no. 6, pp. 560-579,
June 1999.

Alex Shye received the BS degree in computer
engineering from the University of Illinois and
the MS degree in computer engineering from
the University of Colorado. He is currently a
PhD candidate in the Electrical Engineering and
Computer Science Department, Northwestern
University. His research interests include relia-
bility, dynamic optimization, and user-aware
computer architectures. He is a student member
of the IEEE.

Joseph Blomstedt received the BS degree in
computer engineering from the University of
Washington and the MS degree in electrical and
computer engineering from the University of
Colorado. He is currently a PhD candidate in the
Department of Computer Science, University of
Colorado. His research interests include system
reliability, dynamic optimization, and assisted
software parallelization. He is a student member
of the IEEE.

Tipp Moseley received the BS degree in
computer science from Georgia Institute of
Technology. He is currently a PhD candidate in
the Department of Computer Science, University
of Colorado. His research interests include
reliability, profiling, and optimization.

Vijay Janapa Reddi received the BS degree in
computer engineering from Santa Clara Univer-
sity and the MS degree in computer engineering
from the University of Colorado. He is currently a
PhD candidate in the Electrical Engineering and
Computer Science Department, Harvard Uni-
versity. His research interests include virtual
machines for program introspection and optimi-
zation. He is a student member of the IEEE.

Daniel A. Connors received the PhD degree in
electrical engineering from the University of
Illinois, Urbana-Champaign. He is a professor
in the Department of Electrical and Computer
Engineering, University of Colorado. His re-
search interests are in the areas of architec-
ture, software for high-performance computer
systems, dynamic optimization, fault-tolerant
computing, and advanced compiler optimiza-
tion. He is the director of the DRACO Research

Group. For his contributions in teaching, he has been nominated for
the Eta Kappa Nu C. Holmes MacDonald Outstanding Young Teacher
Award for Young Electrical and Computer Engineering Professors. He
is a member of the IEEE and the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

148 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2009

