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Abstract Partial least squares (PLS) approach is proposed for linear discri-
minant analysis (LDA) when predictors are data of functional type (curves).
Based on the equivalence between LDA and the multiple linear regression
(binary response) and LDA and the canonical correlation analysis (more than
two groups), the PLS regression on functional data is used to estimate the dis-
criminant coefficient functions. A simulation study as well as an application
to kneading data compare the PLS model results with those given by other
methods.
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1 Introduction

Statistical methods for data representing functions or curves have received
much attention in recent years and classical tools from the finite multivariate
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data analysis are adapted to this kind of data. Examples of functional data can
be found in several application domains such as medicine, economics, chemo-
metrics and many others (for an overview, see Ramsay and Silverman 2002). A
well accepted model for functional data is to consider it as paths of a stochastic
process X = {Xt}t∈T taking values in a Hilbert space of functions on some set T.
For example, for T ∈ R+, a second order stochastic process X = {Xt}t∈[0,T] L2–
continuous with sample paths in L2([0, T]) can be used as model for describing
the behavior of some quantitative parameter associated to a process observed
on a time interval of length T. A major interest when dealing with functional
data is to develop regression models, in particular, linear models. In this case,
the multicolinearity feature of the predictor (the Xt’s are highly correlated, the
covariance operator being, in general, degenerated) produces inconsistency of
the classical model estimation. The dimension of the space the observations
belong (in general, infinite) with respect to the sample size represents also a
difficulty for fitting the model. Depending on the nature of the response variable,
several solutions are proposed in literature. Thus, generalized linear regression
models are developed in James (2002) and more recently by Cardot and Sarda
(2005) and Müler and StadtMüler (2005). Different linear approaches based
on decomposition of the underlying stochastic process are proposed : principal
component regression (Aguilera et al. 1997; Cardot et al. 1999), partial least
squares regression (PLS)(Preda and Saporta 2002). Ferraty and Vieu (2004)
and Preda (2007) propose non-parametric models for regression on functional
data using classical kernel estimators both for scalar and categorical response.

In this paper we are interested in linear discrimination analysis (LDA) when
the predictor X is data of functional type (generally, curves or real functions of
time) and the response is a categorical variable Y defining K groups, K ≥ 2.
As an extension of the classical multivariate approach, the aim of linear dis-
criminant analysis for functional data is to find linear combinations �(X) =
∫ T

0 Xtβ(t)dt, β ∈ L2([0, T]) such that the between class variance is maximized
with respect to the total variance, i.e.,

max
β∈L2[0,T]

V(E(�(X)|Y))

V(�(X))
. (1)

Due to infinite dimension of the predictor, the estimation of β is in general
an ill–posed problem. For K = 2 is well known that the optimization problem
(1) is equivalent to find the regression coefficients of the linear regression of
Y (after a convenient encoding) on the stochastic process X. Solutions based
on regularization (principal components, for example) and projection (spline
basis) techniques have been developed. A linear discriminant analysis model
for functional data is proposed by James and Hastie (2001) providing also solu-
tions to the problem of sparse data. Nonparametric approaches are proposed
in Biau et al. (2005) and Ferraty and Vieu (2003) for analyzing spectrometric
data. Logistic regression using projection methods (splines), respectively the
principal component regularization technique is developed in Escabias et al.
(2005), respectively in Escabias et al. (2004) with applications to environmental
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problems. Ratcliffe et al. (2002) develop functional regression models for foetal
heart data in order to predict the probability of high risk birth outcome.

The connection between PLS and LDA is presented in Barker and Rayens
(2003) for the finite dimensional, PLS being defined under orthogonal con-
straints for the vectors giving the PLS scores. It is shown that PLS is to be
preferred over PCA when discrimination is the goal and dimension reduction
is needed. That is the case for functional data. Our PLS approach is different
in that sense we look for uncorrelated PLS components (scores) instead the
orthogonality of coefficient functions giving the PLS scores.

We propose to use the PLS regression approach developed in Preda and
Saporta (2002) in order to perform LDA on functional data. We derive ele-
ments from the structure of the predictor and the response variable (PLS com-
ponents), which allow to estimate the discriminant coefficient functions and to
compute discriminant scores. In Sect. 2 we recall some results on PLS regression
on functional data and show how to use it for the discrimination problem. A
simulation study as well as an application to kneading data are presented in
Sect. 3.

2 PLS regression and LDA for functional data

Let us suppose the functional data is represented by sample paths of a stochastic
process X = {Xt}t∈[0,T], T > 0. We assume that X is a second order stochastic
process L2–continuous with sample paths in L2[0, T] and E(Xt) = 0, ∀t ∈ [0, T].
These hypothesis ensure, for example, the covariance of X is a Hilbert–Schmidt
operator, and thus, linear analysis of the process is possible. Also, they are not
too restrictive from practical point of view, the results presented being still valid
if the process is L2–continuous except a finite set of time points (see for details
Saporta 1981).

2.1 PLS regression

Let Y = (Y1, . . . , Yp) be a real random vector defined on the same proba-
bility space as X. It is well known that the estimation of the linear model
Y = 〈β, X〉 + ε under least squares criterion is an ill-posed problem in the
context of functional data (Cardot et al. 1999).

Dimension reduction is one solution to this problem and principal compo-
nent regression (PCR) is a typical choice (Aguilera et al. 1997). Replacing the
least squares criterion with that of maximal covariance between X and Y, the
PLS regression offers a good alternative to PCR (Preda and Saporta 2002).

The basic idea of PLS approach is to construct a set of uncorrelated random
variables {ti}i≥1 (PLS components) in the linear space spanned by X, taking into
account the correlation between Y and X. We recall here the main results.
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Let WX , respectively WY , be the Escoufier’s operators (Escoufier 1970)
associated to X, respectively to Y, defined by:

WXZ =
T∫

0

E(XtZ)Xtdt, WYZ =
p∑

i=1

E(YiZ)Yi, ∀Z r.v.

Notice that the eigenvectors of WX , respectively WY , are the principal com-
ponents of X, respectively of Y. From practical point of view, if X1, . . . , Xn is
a sample of X then, an estimator of WX is the matrix ŴX of size n × n with
entries ŵi,j = 〈Xi, Xj〉L2([0,T]).

Proposition 1 (Tucker criterion)

max
w, c

w ∈ L2([0, T]), ‖w‖ = 1
c ∈ Rp, ‖c‖ = 1

Cov2

⎛

⎝
T∫

0

Xtw(t)dt,
p∑

i=1

ciYi

⎞

⎠ (2)

is reached for w, respectively c, the eigenvectors associated to the largest eigen-
value of UX = CXY ◦ CYX, respectively of UY = CYX ◦ CXY, where CYX and
CXY are the cross-covariance operators.

As noted by Frank and Friedman (1993), PLS can be considered as penalized
canonical correlation analysis with penalties provided by PCA in X, respectively
in Y.

The random variable t =
T∫

0

Xtw(t)dt is called PLS component. A simple way

to find t is given by the following proposition.

Proposition 2 t is the eigenvector associated to the largest eigenvalue of WXWY.

PLS iteration The PLS regression is an iterative method.
Let X0 = X and Y0 = Y. For q ≥ 1 we define the qth PLS component, tq,

by the eigenvector associated to the largest eigenvalue of WX
q−1WY

q−1, where

WX
q−1, respectively WY

q−1, are the Escoufier’s operators associated to Xq−1,
respectively to Yq−1. The PLS step is completed by the ordinary linear regres-
sion of Xq−1 and Yq−1 on tq. Let Xq, and Yq be the random variables which
represent the residual of these regressions : for each t ∈ [0, T] and i ∈ {1 . . . p},
Xq,t = Xq−1,t − pq(t)tq and Yq,i = Yq−1,i − cq,itq.

Then,

Proposition 3 For each q ≥ 1:

(a) {ti}i=1,...q forms an orthogonal system in L2(X),
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(b) Yi = c1,it1 + c2,it2 + · · · + cq,itq + Yq,i, i = 1, . . . , p,
(c) Xt = p1(t)t1 + p2(t)t2 + · · · + pq(t)tq + Xq,t, t ∈ [0, T].

Thus, the PLS approximation of Y by X at step q, q ≥ 1, is given by:

Ŷi = c1,it1 + · · · + cq,itq, ci,j ∈ R
p, i = 1, . . . , p, j = 1, . . . , q,

=
T∫

0

βi,PLS(t)Xtdt, βi,PLS ∈ L2([0, T]).
(3)

In practice, the number of PLS components to be considered for regression
is given by cross validation. For a training sample of size n, let PRESS(q) be the
prediction error sum of squares using q components, defined by PRESS(q) =
∑n

i=1

(
Yi−Ŷ(−i)

)2
and RSS(q) be the residual sum of squares defined by

RSS(q) =
∑n

i=1

(
Yi − Ŷi

)2
. Then, the PLS component tq, q ≥ 2, is retained

for regression, if PRESS(q) ≤ (1 − α)RSS(q − 1), for some α ∈ (0, 1). In our
applications we choose α = 0.05 (see for details Tenenhaus 2002).

Remark 1 (Computational aspects)

(i) For each step q, q ≥ 2, the cross validation requires to repeat n times the
PLS procedure with samples of size n − 1.

(ii) Provided that the process X is observed for each t ∈ [0, T], numerical
approximation is necessary in order to compute the PLS components.
A quadrature method is in general sufficient in order to compute the
entries of the matrix Ŵ. Discretizing the time interval, one obtains also
an approximation for βPLS.

(iii) If X is observed only in a finite number of time points, then it is neces-
sary to approximate, for each observation, the true form of the corre-
sponding curve. The interpolation procedure is appropriate if data are
observed without error. Otherwise, one common method is to choose a
finite dimensional basis of functions and to project each observation onto
this basis. The coefficients of basis functions could be computed using,
for example, a penalized version of the least squares criterion. See for
example Ramsay and Silverman (1997), Chap. 3.

The connection between linear regression and LDA is well known in finite
dimension. For binary response, the coefficient vector giving the discrimi-
nant score is obtained by linear regression after a convenient encoding of the
response. In the next section we show that is also true for functional data, but
LDA can not be applied directly because of the infinite dimension of the predic-
tor. Then, in a natural way, we propose the PLS regression in order to estimate
the discriminant coefficient function.



228 C. Preda et al.

2.2 LDA and linear regression

LDA can not be directly applied to infinite dimensional data such the functional
data. A functional linear discriminant analysis (FLDA) model is developed by
James and Hastie (2001) for irregularly sampled curves using natural cubic
spline basis to represent data and the corresponding coefficients for classifica-
tion.

Here we are interested to the optimization problem stated in (1), which is
the formulation given by Fisher in 1936 for LDA (Fisher 1936).

Let us consider for instance the case of binary response, Y ∈ {0, 1}.
Denote by p0 = P(Y = 0), p1 = 1−p0 = P(Y = 1) and µ0(t) = E(Xt|Y = 0),

µ1(t) = E(Xt|Y = 1), t ∈ [0, T].
Since E(Xt) = 0, it follows that p0µ0(t) + p1µ1(t) = 0, ∀t ∈ [0, T]. Let also C

be the covariance operator associated to the process X defined on L2[0, T] by

f
C	−→ g, g(t) =

T∫

0

C(t, s)f (s)ds,

where C(t, s) = E(XtXs). Let B be the operator on L2[0, T] defined by

f
B	−→ g, g(t) =

T∫

0

B(t, s)f (s)ds,

where B(t, s) = p0µ0(t)µ0(s)+p1µ1(s)µ1(t) = p0p1(µ0(t)−µ1(t))(µ0(s)−µ1(s)).
Denoting by φ = √

p0p1(µ0 − µ1), it follows that

B = φ ⊗ φ,

where φ ⊗ φ(g) = φ〈φ, g〉L2[0,1], g ∈ L2[0, T].
As in the finite dimensional setting, the discriminant coefficient function,

β ∈ L2[0, T], which satisfies the criterion given in (1), corresponds to the larg-
est λ, λ ∈ R, such that

Bβ = λCβ, with 〈β, Cβ〉L2[0,T] = 1. (4)

Let us recode Y by 0 �
√

p1
p0

and 1 � −
√

p0
p1

. If β is a solution of (4) then

λ = 〈φ, β〉2
L2[0,T] and β is also solution of the equation

E(YZt) =
T∫

0

E(ZtZs)β(s)ds, (5)

where Zt = √
λXt, t ∈ [0, T]. The Wiener-Hopf equation (5) is equivalent

to the least squares criterion for the linear regression of Y on the process
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Z = {Zt}t∈[0,T]. Thus, the discriminant coefficient function β is, up to a constant,
the regression coefficient function of the linear regression of Y on X. Con-
versely, any solution of (5), up to a constant, is also solution for (1). But Eq. (5)
has an unique solution in L2([0, T)] if and only if convergence of series imply-
ing eigenvalues and eigenvectors of the covariance operator C is ensured (see
Picard theorem in Saporta 1981, p. 158). These conditions are rarely satisfied,
the problem stated in (5), and so in (1), being, in general, ill-posed.

This connection between LDA and linear regression shows that, in general,
one cannot write the discriminant score �(X) as linear combination of vari-
ables X, �(X) = ∫ T

0 Xtβ(t)dt, with β ∈ L2([0, T]). The discriminant score is
the orthogonal projection of Y (after appropriate encoding) on the linear space
spanned by {Xt, t ∈ [0, T]}. Then, regularized techniques for linear regression
can be used in order to derive an approximation for the discriminant score.
If the goal of LDA is the classification, the coefficient regression function so
obtained allows to predict for new observations the discriminant score.

If the response has more than two categories (K > 2) then LDA is equiva-
lent to canonical correlation analysis (Saporta 1981). However, as for the binary
response case, the canonical factor for X (which is also the discriminant coeffi-
cient function) is solution of an equation of type (5). Considered as a penalized
canonical correlation analysis, PLS approach provides a regularization method
for LDA by using the PLS components as predictors.

Using the same arguments as in Barker and Rayens (2003) (Sect. 3.2) in the
context of functional data, one can consider that the PLS approach is a natural
alternative to PCA, and is to be preferred especially when dimension reduction
is necessary and the within–groups variability dominates the among–groups
variability. In addition, de Jong (1993) shows that PLS fits closer than the linear
regression on principal components and thus, at least for K = 2, it is clear that
PLS discriminant model is to be preferred to the principal components one.

In view of the above considerations, we propose the following methodology
for LDA when PLS regularization is used. The obtained model will be quoted
by PLS_FLDA.

PLS classification methodology for functional data Let Y be a categorical
response taking values in {1, . . . , K}.
Case 1: K = 2. The discriminant function β is the coefficient function of the

linear regression of Y on X, where Y is encoded by 0 �
√

p1
p0

and

1 � −
√

p0
p1

, with (p0, p1) the probability distribution of Y. The PLS

regression of Y on X provides an approximation for the discrimi-
nant variable (score) given by �PLS(X) = α + ∫ T

0 XtβPLS(t)dt, where

α = − ∫ T
0 βPLS(t)µ(t)dt, µ(t) = E(Xt), t ∈ [0, T].

Case 2: K > 2. Let {Yi}i=1,...,K−1 be the dummy variables associated to Y,
Yi ∈ {0, 1}. We propose as functional discriminant analysis PLS model
for Y and X, the model obtained by performing the classical LDA of
Y and the set of PLS components {tj}j=1,...,q obtained from the PLS
regression of the vector {Y1, . . . , YK−1} on X. One obtains, for each
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category i of Y, the coefficient discriminant function β i
PLS which allow

to compute the associated score, �i
PLS(X) = αi+

∫ T
0 Xtβ

i
PLS(t)dt, with

αi ∈ R, i = 1, . . . , K.

Therefore, given a new observation of X, prediction for Y is made in the
classical way. The predictive capacity of the method is then measured using
either the misclassification rate or the area under the ROC curve (for K = 2).

3 Numerical applications

We present a simulation study as well as an application to kneading data and
compare the results of the functional discriminant PLS approach with those
given by other methods. Thus, we quoted by

• PC_FLDA : the model obtained by regularization using principal compo-
nents. The principal components in the model are ordered by their explained
variance rate from the most explicative to the least one. Their number is
determined by cross validation procedure, as presented in the Remark of
Sect. 2.1.

• K-NN(k) : the K-NN rule classification with k neighbors and L1 distance.
The number of neighbors in the K-NN procedure is such that it ensures
minimum error rate classification among all values from a predefined set
(Lévéder et al. 2004).

• Gaussian(σ ) : the non-parametric model developed in Preda (2007) using
reproducing kernel Hilbert space (RKHS) methods with Gaussian kernel
of parameter σ .

• LDA : the model built using the predictors given by a finite discretization
of time interval and a stepwise procedure for predictor’s selection (SAS
procedure).

For PLS_FLDA, PC_FLDA and RKHS models we developed software
implemented in C language.

3.1 Simulation study

The simulated data we consider correspond to a binary response for which the
predictor has the following form :

Class {Y = 0} : X(t) = Uh1(t) + (1 − U)h2(t) + ε(t),

Class {Y = 1} : X(t) = Uh1(t) + (1 − U)h3(t) + ε(t),

where U is a r.v. uniformly distributed on [0, 1], ε(t) are uncorrelated standard
normal r.v.’s and h1(t) = max{6−|t−11|, 0}, h2(t) = h1(t−4) and h3(t) = h1(t+4).
As in Ferraty and Vieu (2003), we consider the observed predictor is a discret-
ized curve with 101 equidistant points {t = 1, 1.2, 1.4, . . . , 21}. Figure 1 displays
a sample of 100 simulated curves for each class.
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Fig. 1 Sample of 100 curves for each class

Table 1 Error rate averaged over 100 test samples

Model PLS_FLDA K-NN(15) PC_FLDA Gaussian(6) LDA

Error rate 0.0286 0.0265 0.0332 0.0255 0.0813

As in Preda (2007), we consider 100 simulated samples of size 1000, with
500 observations in each class. Each sample is randomly divided into a training
sample of size 800 and a test sample of size 200, each class having the same
number of observations in both samples.

The principal components of the process {Xt}t∈[1,21], as well as the PLS com-
ponents are computed using linear interpolation and the trapezoidal integration
method.

Table 1 presents the error rates averaged over the 100 test samples given by
different models.

All models give good results with respect to the classification error rate crite-
rion. PLS approach gives the best results among the considered linear models.

3.2 Application to kneading data

PLS approach is applied to predict the quality of cookies from curves repre-
senting the resistance (density) of dough observed during the kneading pro-
cess. For a given flour, the resistance of dough is recorded during the first
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Fig. 2 Kneading data : 115 flours observed during 480 s. Left observed data. Right smoothed data
using cubic B-splines

480 s of the kneading process. For 115 different flours we have 115 curves
which can be considered as sample paths of a L2-continuous stochastic process,
X = {Xt, t ∈ [0, 480]}. Each curve is observed in 240 equispaced time points of
the interval time [0, 480]. Thus, a kneading curve is represented by the set of
241 points {(ti, Xti), i = 0, . . . , 240}.

After kneading, the dough is processed to obtain cookies. For each flour we
have the quality (Y) of cookies which can be Good, Adjustable and Bad. Our
sample contains 50 observations for Y = Good, 25 for Y = Adjustable and 40
for Y = Bad (Fig. 2). Due to measuring errors, each curve is smoothed using
cubic B-spline functions with the following 16 knots (Lévéder et al. 2004) : {10,
42, 84, 88, 108, 134, 148, 200, 216, 284, 286, 328, 334, 380, 388, 478} (right side in
Fig. 2).
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Table 2 Error rate averaged over 100 test samples

Model PLS_FLDA K-NN(13) PC_FLDA Gaussian(6) LDA

Error rate 0.112 0.103 0.142 0.108 0.154

Table 3 Misclassified rate for three categories : average over 100 test samples

Model PLS_FLDA K-NN(13) PC_FLDA Gaussian(6) LDA

Error rate 0.258 0.245 0.262 0.247 0.282

0 100 200 300 400 500
4e004

3e004

2e004

1e004

0e+000

1e004
PLS  discriminant coefficient function

time

B
e
t
a

Fig. 3 Discriminant coefficient function β̂PLS given by PLS approach

Let us consider Y ∈ {Good, Bad}. The sample of 90 flours is randomly divided
into a learning sample of size 60 and a test sample of size 30. In the test sam-
ple the two classes have the same number of observations. The PLS and the
principal components are computed from smoothed data using the trapezoidal
integration method with the 241 equidistant time points.

Table 2 presents the error classification rates averaged over 100 test samples.
It is useful to study the set of observations for which Y = Adjustable : with a

small effort, some of these flours could be adjusted to become Good. Therefore,
for a flour with quality Adjustable is important to decide if it is closer to Good
or to Bad quality. For this purpose, we consider the set of Adjustable flours as
test sample and predict for each one the group membership, Y ∈ {Good, Bad},
using the discriminant coefficient function (Fig. 3) given by the PLS approach
on the 90 flours. The discriminant score is �(X) = −1.46 + ∫ 480

0 Xtβ̂PLS(t)dt.
For a given x, if �(x) > 0 then Ŷ = Good, else Ŷ = Bad.

One obtains for the 25 Adjustable flours, 12 flours for which the prediction
gives them closer to class Good.

For Y ∈ {Good, Adjustable, Bad}, the results given by the multivariate PLS
discrimination model (Sect. 2.2, case 2) are presented in Table 3. The comparison
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criterion is the averaged error classification rate over 100 test samples of size
35.

4 Conclusion

PLS regression is used for linear discriminant analysis when the predictors are
curves or functions. PLS approach is a simple and interesting alternative to
classical linear methods based on principal components, giving in general bet-
ter results. The proposed PLS methodology is studied on simulated and real
data.
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