
Chapter 2
PLS Path Modeling: From Foundations
to Recent Developments and Open Issues
for Model Assessment and Improvement

Vincenzo Esposito Vinzi, Laura Trinchera, and Silvano Amato

Abstract In this chapter the authors first present the basic algorithm of PLS Path
Modeling by discussing some recently proposed estimation options. Namely, they
introduce the development of new estimation modes and schemes for multidimen-
sional (formative) constructs, i.e. the use of PLS Regression for formative indicators,
and the use of path analysis on latent variable scores to estimate path coefficients
Furthermore, they focus on the quality indexes classically used to assess the perfor-
mance of the model in terms of explained variances. They also present some recent
developments in PLS Path Modeling framework for model assessment and improve-
ment, including a non-parametric GoF-based procedure for assessing the statistical
significance of path coefficients. Finally, they discuss the REBUS-PLS algorithm
that enables to improve the prediction performance of the model by capturing unob-
served heterogeneity. The chapter ends with a brief sketch of open issues in the area
that, in the Authors’ opinion, currently represent major research challenges.

2.1 Introduction

Structural Equation Models (SEM) (Bollen 1989; Kaplan 2000) include a number
of statistical methodologies meant to estimate a network of causal relationships,
defined according to a theoretical model, linking two or more latent complex
concepts, each measured through a number of observable indicators. The basic idea
is that complexity inside a system can be studied taking into account a causality
network among latent concepts, called Latent Variables (LV), each measured by
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several observed indicators usually defined as Manifest Variables (MV). It is in this
sense that Structural Equation Models represent a joint-point between Path Analy-
sis (Tukey 1964; Alwin and Hauser 1975) and Confirmatory Factor Analysis (CFA)
(Thurstone 1931).

The PLS (Partial Least Squares) approach to Structural Equation Models, also
known as PLS Path Modeling (PLS-PM) has been proposed as a component-based
estimation procedure different from the classical covariance-based LISREL-type
approach. In Wold’s (1975a) seminal paper, the main principles of partial least
squares for principal component analysis (Wold 1966) were extended to situations
with more than one block of variables. Other presentations of PLS Path Modeling
given by Wold appeared in the same year (Wold 1975b, c). Wold (1980) provides
a discussion on the theory and the application of Partial Least Squares for path
models in econometrics. The specific stages of the algorithm are well described in
Wold (1982) and in Wold (1985). Extensive reviews on the PLS approach to Struc-
tural Equation Models with further developments are given in Chin (1998) and in
Tenenhaus et al. (2005).

PLS Path Modeling is a component-based estimation method (Tenenhaus 2008a).
It is an iterative algorithm that separately solves out the blocks of the measurement
model and then, in a second step, estimates the path coefficients in the structural
model. Therefore, PLS-PM is claimed to explain at best the residual variance of
the latent variables and, potentially, also of the manifest variables in any regression
run in the model (Fornell and Bookstein 1982). That is why PLS Path Modeling is
considered more as an exploratory approach than as a confirmatory one. Unlike the
classical covariance-based approach, PLS-PM does not aim at reproducing the sam-
ple covariance matrix. PLS-PM is considered as a soft modeling approach where
no strong assumptions (with respect to the distributions, the sample size and the
measurement scale) are required. This is a very interesting feature especially in
those application fields where such assumptions are not tenable, at least in full. On
the other side, this implies a lack of the classical parametric inferential framework
that is replaced by empirical confidence intervals and hypothesis testing procedures
based on resampling methods (Chin 1998; Tenenhaus et al. 2005) such as jackknife
and bootstrap. It also leads to less ambitious statistical properties for the esti-
mates, e.g. coefficients are known to be biased but consistent at large (Cassel et al.
1999, 2000). Finally, PLS-PM is more oriented to optimizing predictions (explained
variances) than statistical accuracy of the estimates.

In the following, we will first present the basic algorithm of PLS-PM by dis-
cussing some recently proposed estimation options and by focusing on the quality
indexes classically used to assess the performance (usually in terms of explained
variances) of the model (Sect. 2.2). Then, we will present a non-parametric GoF-
based procedure for assessing the statistical significance of path coefficients
(Sect. 2.3.1). Finally, we will present the REBUS-PLS algorithm that enables to
improve the prediction performance of the model in presence of unobserved hetero-
geneity (Sect. 2.4). This chapter ends with a brief sketch of open issues in the area
that, in our opinion, currently represent major research challenges (Sect. 2.5).
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2.2 PLS Path Modeling: Basic Algorithm and Quality Indexes

2.2.1 The Algorithm

PLS Path Modeling aims to estimate the relationships among Q (q D 1; : : : ; Q)
blocks of variables, which are expression of unobservable constructs. Essentially,
PLS-PM is made of a system of interdependent equations based on simple and mul-
tiple regressions. Such a system estimates the network of relations among the latent
variables as well as the links between the manifest variables and their own latent
variables.

Formally, let us assume P variables (p D 1; : : : ; P ) observed on N units (n D
1; : : : ; N ). The resulting data (xnpq) are collected in a partitioned data table X :

X D �
X1; : : : ; X q; : : : ; XQ

	

where Xq is the generic q-th block made of Pq variables.
As well known, each Structural Equation Model is composed by two sub-models:

the measurement model and the structural model. The first one takes into account the
relationships between each latent variable and the corresponding manifest variables,
while the structural model takes into account the relationships among the latent
variables.

In the PLS Path Modeling framework, the structural model can be written as:

�j D ˇ0j C
X

qW�q!�j

ˇqj �q C �j (2.1)

where �j .j D 1; : : : ; J / is the generic endogenous latent variable, ˇqj is the generic
path coefficient interrelating the q-th exogenous latent variable to the
j -th endogenous one, and �j is the error in the inner relation (i.e. disturbance term
in the prediction of the j -th endogenous latent variable from its explanatory latent
variables).

The measurement model formulation depends on the direction of the relation-
ships between the latent variables and the corresponding manifest variables (Fornell
and Bookstein 1982). As a matter of fact, different types of measurement model are
available: the reflective model (or outwards directed model), the formative model
(or inwards directed model) and the MIMIC model (a mixture of the two previous
models).

In a reflective model the block of manifest variables related to a latent variable is
assumed to measure a unique underlying concept. Each manifest variable reflects (is
an effect of) the corresponding latent variable and plays a role of endogenous vari-
able in the block specific measurement model. In the reflective measurement model,
indicators linked to the same latent variable should covary: changes in one indicator
imply changes in the others. Moreover, internal consistency has to be checked, i.e.
each block is assumed to be homogeneous and unidimensional. It is important to
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notice that for the reflective models, the measurement model reproduces the fac-
tor analysis model, in which each variable is a function of the underlying factor.
In more formal terms, in a reflective model each manifest variable is related to the
corresponding latent variable by a simple regression model, i.e.:

xpq D �p0 C �pq�q C �pq (2.2)

where �pq is the loading associated to the p-th manifest variable in the q-th block
and the error term �pq represents the imprecision in the measurement process. Stan-
dardized loadings are often preferred for interpretation purposes as they represent
correlations between each manifest variable and the corresponding latent variable.

An assumption behind this model is that the error �pq has a zero mean and is
uncorrelated with the latent variable of the same block:

E.xpq j�q/ D �p0 C �pq�q: (2.3)

This assumption, defined as predictor specification, assures desirable estimation
properties in classical Ordinary Least Squares (OLS) modeling.

As the reflective block reflects the (unique) latent construct, it should be homoge-
neous and unidimensional. Hence, the manifest variables in a block are assumed to
measure the same unique underlying concept. There exist several tools for checking
the block homogeneity and unidimensionality:

(a) Cronbach’s alpha: this is a classical index in reliability analysis and represents
a strong tradition in the SEM community as a measure of internal consistency.
A block is considered homogenous if this index is larger than 0:7 for confirma-
tory studies. Among several alternative and equivalent formulas, this index can
be expressed as:

˛ D
P

p¤p0 cor.xpq ; xp0q/

Pq CP
p¤p0 cor.xpq ; xp0q/

� Pq

Pq � 1
(2.4)

where Pq is the number of manifest variables in the q-th block.
(b) Dillon-Goldstein’s (or Jöreskog’s) rho (Wertz et al. 1974) better known as

composite reliability: a block is considered homogenous if this index is larger
than 0:7

� D .
PPq

pD1 �pq/2

.
PPq

pD1 �pq/2 CPPq

pD1.1 � �2
pq/

: (2.5)

(c) Principal component analysis of a block: a block may be considered unidi-
mensional if the first eigenvalue of its correlation matrix is higher than 1,
while the others are smaller (Kaiser’s rule). A bootstrap procedure can be
implemented to assess whether the eigenvalue structure is significant or rather
due to sampling fluctuations. In case unidimensionality is rejected, eventual
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groups of unidimensional sub-blocks can be identified by referring to patterns
of variable-factor correlations displayed on the loading plots.

According to Chin (1998), Dillon-Goldstein’s rho is considered to be a better indica-
tor than Cronbach’s alpha. Indeed, the latter assumes the so-called tau equivalence
(or parallelity) of the manifest variables, i.e. each manifest variable is assumed to
be equally important in defining the latent variable. Dillon-Goldstein’s rho does not
make this assumption as it is based on the results from the model (i.e. the loadings)
rather than the correlations observed between the manifest variables in the dataset.
Cronbach’s alpha actually provides a lower bound estimate of reliability.

In the formative model , each manifest variable or each sub-block of manifest
variables represents a different dimension of the underlying concept. Therefore,
unlike the reflective model, the formative model does not assume homogeneity nor
unidimensionality of the block. The latent variable is defined as a linear combination
of the corresponding manifest variables, thus each manifest variable is an exogenous
variable in the measurement model. These indicators need not to covary: changes in
one indicator do not imply changes in the others and internal consistency is no more
an issue. Thus the measurement model could be expressed as:

�q D
PqX

pD1

!pqxpq C ıq (2.6)

where !pq is the coefficient linking each manifest variable to the corresponding
latent variable and the error term ıq represents the fraction of the corresponding
latent variable not accounted for by the block of manifest variables. The assumption
behind this model is the following predictor specification:

E.�qjxpq/ D
PqX

pD1

!pqxpq : (2.7)

Finally, the MIMIC model is a mixture of both the reflective and the formative
models within the same block of manifest variables.

Independently from the type of measurement model, upon convergence of the
algorithm, the standardized latent variable scores ( O�q) associated to the q-th latent
variable (�q) are computed as a linear combination of its own block of manifest
variables by means of the so-called weight relation defined as:

O�q D
PqX

pD1

wpqxpq (2.8)

where the variables xpq are centred and wpq are the outer weights. These weights
are yielded upon convergence of the algorithm and then transformed so as to pro-
duce standardized latent variable scores. However, when all manifest variables are
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observed on the same measurement scale and all outer weights are positive, it is
interesting and feasible to express these scores in the original scale (Fornel 1992).
This is achieved by using normalized weights Qwpq defined as:

Qwpq D wpq
PPq

pD1 wpq

with
PqX

pD1

Qwpq D 1 8q W Pq > 1: (2.9)

It is very important not to confound the weight relation defined in (2.8) with
a formative model. The weight relation only implies that, in PLS Path Modeling,
any latent variable is defined as a weighted sum of its own manifest variables. It
does not affect the direction of the relationship between the latent variable and its
own manifest variables in the outer model. Such a direction (inwards or outwards)
determines how the weights used in (2.8) are estimated.

In PLS Path Modeling an iterative procedure permits to estimate the outer
weights (wpq) and the latent variable scores (b�q). The estimation procedure is
named partial since it solves blocks one at a time by means of alternating single
and multiple linear regressions. The path coefficients (ˇqj ) are estimated afterwards
by means of a regular regression between the estimated latent variable scores in
accordance with the specified network of structural relations. Taking into account
the regression framework of PLS Path Modeling, we prefer to think of such a
network as defining a predictive path model for the endogenous latent variables
rather than a causality network. Indeed, the emphasis is more on the accuracy of
predictions than on the accuracy of estimation.

The estimation of the outer weights is achieved through the alternation of the
outer and the inner estimation steps, iterated till convergence. It is important to
underline that no formal proof of convergence of this algorithm has been pro-
vided until now for models with more than two blocks. Nevertheless, empirical
convergence is usually observed in practice.

The procedure works on centred (or standardized) manifest variables and starts
by choosing arbitrary initial weights wpq . Then, in the outer estimation stage, each
latent variable is estimated as a linear combination of its own manifest variables:

�q / ˙
PqX

pD1

wpqxpq D ˙Xqwq (2.10)

where �q is the standardized (zero mean and unitary standard deviation) outer esti-
mate of the q-th latent variable �q , the symbol / means that the left side of the
equation corresponds to the standardized right side and the “˙” sign shows the sign
ambiguity. This ambiguity is usually solved by choosing the sign making the outer
estimate positively correlated to a majority of its manifest variables. Anyhow, the
user is allowed to invert the signs of the weights for a whole block in order to make
them coherent with the definition of the latent variable.
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In the inner estimation stage, each latent variable is estimated by considering its
links with the other Q0 adjacent latent variables:

#q /
Q0

X

q0D1

eqq0�q0 (2.11)

where #q is the standardized inner estimate of the q-th latent variable �q and
each inner weight (eqq0) is equal (in the so-called centroid scheme) to the sign of
the correlation between the outer estimate �q of the q-th latent variable and the
outer estimate of the q0 latent variable �q0 connected with �q . Inner weights can be
obtained also by means of other schemes than the centroid one. Namely, the three
following schemes are available:

1. Centroid scheme (the Wold’s original scheme): take the sign of the correlation
between the outer estimate �q of the q-th latent variable and the outer estimate
�q0 connected with �q .

2. Factorial scheme (proposed by Lohmöller): take the correlation between the
outer estimate �q of the q-th latent variable and the outer estimate �q0 connected
with �q .

3. Structural or path weighting scheme: take the regression coefficient between �q

and the �q0 connected with �q if �q plays the role of dependent variable in
the specific structural equation, or take the correlation coefficient in case it is
a predictor.

Even though the path weighting scheme seems the most coherent with the direction
of the structural relations between latent variables, the centroid scheme is very often
used as it adapts well to cases where the manifest variables in a block are strongly
correlated to each other. The factorial scheme, instead, is better suited to cases where
such correlations are weaker. In spite of different common practices, we strongly
advice to use the path weighting scheme. Indeed, this is the only estimation scheme
that explicitly considers the direction of relationships as specified in the predictive
path model.

Once a first estimate of the latent variables is obtained, the algorithm goes on by
updating the outer weights wpq .

Two different modes are available to update the outer weights. They are closely
related to, but do not coincide with, the formative and the reflective modes:

� Mode A : each outer weight wpq is updated as the regression coefficient in the
simple regression of the p-th manifest variable of the q-th block (xpq) on the
inner estimate of the q-th latent variable #q . As a matter of fact, since #q is
standardized, the generic outer weight wpq is obtained as:

wpq D cov
�
xpq; #q

�
(2.12)

i.e. the regression coefficient reduces to the covariance between each manifest
variable and the corresponding inner estimate of the latent variable. In case the
manifest variables have been also standardized, such a covariance becomes a
correlation.
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� Mode B : the vector wq of the weights wpq associated to the manifest variables
of the q-th block is updated as the vector of the regression coefficients in the
multiple regression of the inner estimate of the q-th latent variable #q on the
manifest variables in Xq:

wq D �
X 0

qXq

��1
X 0

q#q (2.13)

where Xq comprises the Pq manifest variables xpq previously centred and
scaled by

p
1=N .

As already said, the choice of the outer weight estimation mode is strictly related
to the nature of the measurement model. For a reflective (outwards directed) model
the Mode A is more appropriate, while Mode B is better for a formative (inwards
directed) model. Furthermore, Mode A is suggested for endogenous latent variables,
while Mode B for the exogenous ones.

In case of a one-block PLS model, Mode A leads to the same results (i.e. outer
weights, loadings and latent variable scores) as for the first standardized principal
component in a Principal Component Analysis (PCA). This reveals the reflective
nature of PCA that is known to look for components (weighted sums) explaining
the corresponding manifest variables at best. Instead, Mode B coherently provides an
indeterminate solution when applied to a one-block PLS model. Indeed, without an
inner model, any linear combination of the manifest variables is perfectly explained
by the manifest variables themselves.

It is worth noticing that Mode B may be affected by multicollinearity between
manifest variables belonging to the same block. If this happens, PLS regression
(Tenenhaus 1998; Wold et al. 1983) may be used as a more stable and better inter-
pretable alternative to OLS regression to estimate outer weights in a formative
model, thus defining a Mode PLS (Esposito Vinzi 2008, 2009; Esposito Vinzi and
Russolillo 2010). This mode is available in the PLSPM module of the XLSTAT
software 1 (Addinsoft 2009). As a matter of fact, it may be noticed that Mode A
consists in taking the first component from a PLS regression, while Mode B takes
all PLS regression components (and thus coincides with OLS multiple regression).
Therefore, running a PLS regression and retaining a certain number (that may be
different for each block) of significant PLS components is meant as an intermediate

1 XLSTAT-PLSPM is the ultimate PLS Path Modeling software implemented in XLSTAT (http://
www.xlstat.com/en/products/xlstat-plspm/), a data analysis and statistical solution for Microsoft
Excel. XLSTAT allows using the PLS approach (both PLS Path modeling and PLS regression)
without leaving Microsoft Excel. Thanks to an intuitive and flexible interface, XLSTAT-PLSPM
permits to build the graphical representation of the model, then to fit the model, to display the
results in Excel either as tables or graphical views. As XLSTAT-PLSPM is totally integrated
with the XLSTAT suite, it is possible to further analyze the results with the other XLSTAT
features. Apart from the classical and fundamental options of PLS Path Modeling, XLSTAT-
PLSPM comprises several advanced features and implements the most recent methodological
developments.

http://www.xlstat.com/en/products/xlstat-plspm/
http://www.xlstat.com/en/products/xlstat-plspm/
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mode between Mode A and Mode B. This new Mode PLS adapts well to formative
models where the blocks are multidimensional but with fewer dimensions than the
number of manifest variables.

The PLS Path Modeling algorithm alternates the outer and the inner estimation
stages by iterating till convergence. Up to now convergence has been proved only
for path diagrams with one or two blocks (Lyttkens et al. 1975). However, for multi-
block models, convergence is practically always encountered in practice.

Upon convergence, the estimates of the latent variable scores are obtained
according to 2.8. Thus, PLS Path Modeling provides a direct estimate of the latent
variable individual scores as aggregates of manifest variables that naturally involve
measurement error. The price of obtaining these scores is the inconsistency of the
estimates.

Finally, structural (or path) coefficients are estimated through OLS multiple/
simple regressions among the estimated latent variable scores. PLS regression can
nicely replace OLS regression for estimating path coefficients whenever one or more
of the following problems occur: missing latent variable scores, strongly correlated
latent variables, a limited number of units as compared to the number of predictors
in the most complex structural equation. A PLS regression option for path coeffi-
cients is implemented in the PLSPM module of the XLSTAT software (Addinsoft
2009). This option permits to choose a specific number of PLS components for each
endogenous latent variable.

A schematic description of the PLS Path Modeling algorithm by Löhmoller
(with specific options for the sake of brevity) is provided in Algorithm 1. This
is the best known procedure for the computation of latent variable scores and it
is the one implemented in the PLSPM module of the XLSTAT software. There
exists a second and less known procedure initially proposed in Wold (1985). The
Löhmoller’s procedure is more advantageous and easier to implement. However,
the Wold’s procedure seems to be more interesting for proving convergence proper-
ties of the PLS algorithm as it is monotonically convergent (Hanafi 2007). Indeed, at
present PLS Path Modeling is often blamed not to optimize a well identified global
scalar function. However, very promising researches on this topic are on going and
interesting results are expected soon (Tenenhaus 2008b; Tenenhaus and Tenenhaus
2009).

In Lohmöller (1987) and in Lohmöller (1989) Wold’s original algorithm was
further developed in terms of options and mathematical proprieties. Moreover, in
Tenenhaus and Esposito Vinzi (2005) new options for computing both inner and
outer estimates were implemented together with a specific treatment for missing
data and multicollinearity while enhancing the data analysis flavour of the PLS
approach and its presentation as a general framework to the analysis of multiple
tables.

A comprehensive application of the PLS Path Modeling algorithm to real data
will be presented in Sect. 2.4.2 after dealing with the problem of capturing unob-
served heterogeneity for improving the model prediction performance.
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Algorithm 1 : PLS Path Modeling based on Löhmoller’s algorithm with the follow-
ing options: centroid scheme, standardized latent variable scores, OLS regressions
Input: X D ŒX 1; : : : ; Xq ; : : : ; XQ�, i.e. Q blocks of centred manifest variables;

Output: wq , O�q , ˇj ;
1: for all q D 1; : : : ; Q do
2: initialize wq

3: �q / ˙PPq

pD1 wpqxpq D ˙X qwq

4: eqq0 D sign
�
cor

�
�q; �q0

�	
following the centroid scheme

5: # q / PQ0

q0
D1 eqq0 �q0

6: update wq W
(a) wpq D cov.xpq; #q/ for Mode A (outwards directed model)

(b) wq D



X 0

q Xq

N

��1 
X 0

q#q

N

�
for Mode B (inwards directed model)

7: end for
8: Steps 1–7 are repeated until convergence on the outer weights is achieved, i.e. until:

maxfwpq;current iteration � wpq;previous iterationg < �

where � is a convergence tolerance usually set at 0:0001 or less
9: Upon convergence:

(1) for each block the standardized latent variable scores are computed as weighted
aggregates of manifest variables:

O�q / X qwq;

(2) for each endogenous latent variable �j (j D 1; : : : ; J ), the vector of path coefficients is
estimated by means of OLS regression as:

ˇj D

 O„0 O„

�
�1 O„0 O�j ;

where O„ includes the scores of the latent variables that explain the j -th endogenous latent
variable �j , and O�j is the latent variable score of the j -th endogenous latent variable

2.2.2 The Quality Indexes

PLS Path Modeling lacks a well identified global optimization criterion so that there
is no global fitting function to assess the goodness of the model. Furthermore, it
is a variance-based model strongly oriented to prediction. Thus, model validation
mainly focuses on the model predictive capability. According to PLS-PM structure,
each part of the model needs to be validated: the measurement model, the structural
model and the overall model. That is why, PLS Path Modeling provides three differ-
ent fit indexes: the communality index, the redundancy index and the Goodness of
Fit (GoF) index.
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For each q-th block in the model with more than one manifest variable (i.e. for
each block with Pq > 1) the quality of the measurement model is assessed by means
of the communality index:

Comq D 1

Pq

PqX

pD1

cor2


xpq ; O�q

�
8q W Pq > 1: (2.14)

This index measures how much of the manifest variables variability in the q-th
block is explained by their own latent variable scores O�q . Moreover, the commu-
nality index for the q-th block is nothing but the average of the squared correlations
(squared loadings in case of standardized manifest variables) between each manifest
variable in the q-th block and the corresponding latent variable scores.

It is possible to assess the quality of the whole measurement model by means of
the average communality index, i.e:

Com D 1
P

qWPq>1 Pq

X

qWPq>1

PqComq: (2.15)

This is a weighted average of all the Q block-specific communality indexes
(see (2.14)) with weights equal to the number of manifest variables in each block.
Moreover, since the communality index for the q-th block is nothing but the average
of the squared correlation in the block, then the average communality is the average
of all the squared correlations between each manifest variable and the corresponding
latent variable scores in the model, i.e.:

Com D 1
P

qWPq>1 Pq

X

qWPq>1

PqX

pD1

cor2


xpq ; O�q

�
: (2.16)

Let us focus now on the structural model. Although the quality of each structural
equation is measured by a simple evaluation of the R2 fit index, this is not sufficient
to evaluate the whole structural model. Specifically, since the structural equations
are estimated once the convergence is achieved and he latent variable scores are esti-
mated, then the R2 values only take into account the fit of each regression equation
in the structural model.

It would be a wise choice to replace this current practice by a path analysis on the
latent variable scores considering all structural equations simultaneously rather than
as independent regressions. We see two advantages in this proposal: the path coef-
ficients would be estimated by optimizing a single discrepancy function based on
the difference between the observed covariance matrix of the latent variable scores
and the same covariance matrix implied by the model; the structural model could be
assessed as a whole in terms of a chi-square test related to the optimized discrepancy
function. We have noticed, through several applications, that such a procedure does
not actually change the prediction performance of the model in terms of explained
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variances for the endogenous latent variables. Up to now, no available software has
implemented the path analysis option in a PLS-PM framework.

In view of linking the prediction performance of the measurement model to
the structural one, the redundancy index computed for the j -th endogenous block,
measures the portion of variability of the manifest variables connected to the j -th
endogenous latent variable explained by the latent variables directly connected to
the block, i.e.:

Redj D Comj � R2

 O�j ; O�qW�q!�j

�
: (2.17)

A global quality measure of the structural model is also provided by the average
redundancy index, computed as:

Red D 1

J

JX

j D1

Redj (2.18)

where J is the total number of endogenous latent variables in the model.
As aforementioned, there is no overall fit index in PLS Path Modeling. Never-

theless, a global criterion of goodness of fit has been proposed by Tenenhaus et al.
(2004): the GoF index. Such an index has been developed in order to take into
account the model performance in both the measurement and the structural model
and thus provide a single measure for the overall prediction performance of the
model. For this reason the GoF index is obtained as the geometric mean of the
average communality index and the average R2 value:

GoF D
p

Com � R2 (2.19)

where the average R2 value is obtained as:

R2 D 1

J
R2

 O�j ; O�qW�q!�j

�
: (2.20)

As it is partly based on average communality, the GoF index is conceptually
appropriate whenever measurement models are reflective. However, communalities
may be also computed and interpreted in case of formative models knowing that, in
such a case, we expect lower communalities but higher R2 as compared to reflective
models. Therefore, for practical purposes, the GoF index can be interpreted also
with formative models as it still provides a measure of overall fit.

According to (2.16) and (2.20) the GoF index can be rewritten as:

GoF D

v
u
u
u
t

P
qWPq>1

PPq

pD1 Cor2



xpq; O�q

�

P
qWPq >1 Pq

�
PJ

jD1 R2


O�j ; O�qW�q !�j

�

J
:

(2.21)
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A normalized version is obtained by relating each term in (2.21) to the corre-
sponding maximum value. In particular, it is well known that in principal component
analysis the best rank one approximation of a set of variables X is given by the
eigenvector associated to the largest eigenvalue of the X 0X matrix. Furthermore,
the sum of the squared correlations between each variable and the first principal
component of X is a maximum.

Therefore, if data are mean centred and with unit variance, the left term under

the square root in (2.21) is such that
PPq

pD1 cor2


xpq ; O�q

�
� �1

.q/
, where �1

.q/
is

the first eigenvalue obtained by performing a Principal Component Analysis on the
q-th block of manifest variables. Thus, the normalized version of the first term of
the GoF is obtained as:

T1 D 1
P

qWPq>1 Pq

X

qWPq>1

PPq
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xpq ; O�q

�

�1
.q/

: (2.22)

In other words, here the sum of the communalities in each block is divided by
the first eigenvalue of the block itself.

As concerning the right term under the square root in (2.19), the normalized
version is obtained as:

T2 D 1
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JX
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 O�j ; O�qW�q!�j

�

�2
j

(2.23)

where �j is the first canonical correlation of the canonical analysis between Xj

containing the manifest variables associated to the j -th endogenous latent variable,
and a matrix containing the manifest variables associated to all the latent variables
explaining �j .

Thus, according to (2.21), (2.22) and (2.23), the relative GoF index is:
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(2.24)

This index is bounded between 0 and 1. Both the GoF and the relative GoF are
descriptive indexes, i.e. there is no inference-based threshold to judge the statistical
significance of their values. As a rule of thumb, a value of the relative GoF equal to
or higher than 0:90 clearly speaks in favour of the model.

As PLS Path Modeling is a soft modeling approach with no distributional
assumptions, it is possible to estimate the significance of the parameters trough
cross-validation methods like jack-knife and bootstrap (Efron and Tibshirani 1993).
Moreover, it is possible to build a cross-validated version of all the quality indexes
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(i.e. of the communality index, of the redundancy index, and of the GoF index) by
means of a blindfolding procedure (Chin 1998; Lohmöller 1989).

Bootstrap confidence intervals for both the absolute and the relative Goodness of
Fit Indexes can be computed. In both cases the inverse cumulative distribution func-
tion (cdf) of the GoF (ΦGoF ) is approximated using a bootstrap-based procedure. B

(usually > 100/ re-samples are drawn from the initial dataset of N units defining the
bootstrap population. For each of the B re-samples, the GoF b index is computed,
with b D 1 � � � B . The values of GoF b are then used for computing the Monte Carlo
approximation of the inverse cdf, ΦB

GoF . Thus, it is possible to compute the bounds
of the empirical confidence interval from the bootstrap distribution at the .1 � ˛/

confidence level by using the percentiles as:

h
ΦB

GoF .˛=2/ ; ΦB
GoF .1 � ˛=2/

i
: (2.25)

Several applications have shown that the variability of the GoF values is mainly
due to the inner model while the outer model contribution to GoF is very stable
across the different bootstrap re-samples.

2.3 Prediction-Based Model Assessment

In this section we present a non-parametric GoF -based bootstrap validation proce-
dure for assessing the statistical significance of path coefficients (individually or by
sub-sets).

In order to simplify the discussion we will refer to a very simple model with only
three latent variables: �1; �2 and �3 (see Fig. 2.1). The structural relations defined
in Fig. 2.1 are formalized by the following equations:

�2 D ˇ02 C ˇ12�1 C �2

�3 D ˇ03 C ˇ13�1 C ˇ23�2 C �3

(2.26)

where ˇqj (q D 1; 2 and j D 2; 3) stands for the path coefficient linking the
q-th latent variable to the j -th endogenous latent variable, and �j is the error term
associated to each endogenous latent variable in the model.

Fig. 2.1 Path diagram of the
structural model specified in
(2.26)

β13
ξ1

ξ2

ξ3β12
β23
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Equation (2.26) defines a structural model with only three latent variables and
with three structural paths. In the following, first we present a non-parametric infer-
ential procedure based on the GoF index to assess the statistical significance of a
single path coefficient (Sect. 2.3.1). Then, we discuss the case of an omnibus test on
all the path coefficients or on sub-sets of theirs (Sect. 2.3.2).

2.3.1 Hypothesis Testing on One Path Coefficient

Here we want to test if a generic path coefficient ˇqj is different from 0, i.e.

H0 W ˇqj D 0

H1 W ˇqj ¤ 0
(2.27)

The null hypothesis of ˇqj D 0 is tested against the alternative hypothesis that
ˇqj ¤ 0, thus a two-tailed test is performed.

In order to perform this hypotesis testing procedure, we need to define a proper
test statistic and the corresponding distribution under the null hypothesis. In par-
ticular, the GoF index will be used to test the hypotheses set in (2.27), while the
corresponding distribution under the null hypothesis will be obtained by using a
bootstrap procedure.

Let GoFH0
be the GoF value under the null hypothesis, Φ be the inverse cumu-

lative distribution function (cdf ) of the GoFH0
, F be the cdf of X , and Φ.B/ be

the B-sample bootstrap approximation of Φ. In order to approximate Φ by means of
Φ.B/ we need to define a B-sample bootstrap estimate of F under the null hypoth-
esis ( OF

H0
.b/), i.e. such that the null hypothesis is true. Remembering that X is the

partitioned matrix of the manifest variables, the sample estimates of F are defined
on the basis of p.x0

n/ D 1
N

, where n D 1; 2; : : : ; N and p.x0
n/ is the probability to

extract the n-th observation from the matrix X .
Suppose we want to test the null hypothesis that no linear relationship exists

between �2 and �3. In other words, we want to test the null hypothesis that the
coefficient ˇ23 linking �2 to �3 is equal to 0:

H0 W ˇ23 D 0

H1 W ˇ23 ¤ 0
(2.28)

In order to reproduce the model under H0 the matrix of the manifest variables asso-
ciated to �3, i.e. X3, can be deflated by removing the linear effect of X 2, where X2

is the block of manifest variables associated to �2. In particular, the deflated matrix
X3.2/ is obtained as:

X3.2/ D X3 � X2

�
X 0

2X2

��1
X 0

2X3: (2.29)

Thus, the estimate of F under the null hypothesis is OFŒX1;X2;X3.2/�.



62 V. Esposito Vinzi et al.

Once the estimate of cdf of X under the null hypothesis is defined, the B-sample
bootstrap approximation Φ.B/ of Φ is obtained by repeating B times the following
procedure.

For each b: b D 1; 2 : : : ; B:

1. Draw a random sample from OFŒX1;X2;X3.2/�.
2. Estimate the model under the null hypothesis for the sample obtained at the

previous step.
3. Compute the GoF value, GoF

.b/
H0

.

The choice of B depends on several aspects such as: the sample size, the number
of manifest variables and the complexity of the structural model. Usually, we prefer
to choose B � 1000.

The decision on the null hypothesis is taken by referring to the inverse cdf of
GoFH0

. In particular, the test is performed at a nominal size ˛, by comparing the
GoF value for the model defined in (2.26), computed on the original data, to the
.1 � ˛/th percentile of Φ.B/. If GoF > Φ

.B/

.1�˛/
, then we reject the null hypothesis.

A schematic representation of the procedure to perform a non-parametric Boot-
strap GoF -based test on a single path-coefficient is given in Algorithm 2.

Algorithm 2 : Non-parametric Bootstrap GoF-based test of a path-coefficient
Hypotheses on the coefficient ˇqj :

H0 W ˇqj D 0

H1 W ˇqj ¤ 0
(2.30)

1: Estimate the specified structural model on the original dataset (bootstrap population) and
compute the GoF index.

2: Deflate the endogenous block of manifest variable X j : X j.q/ D X j �X q



X 0

qX q

�
�1

X 0

qX j .

3: Define B large enough.
4: for all b D 1; : : : ; B do
5: Draw a sample from OFŒX1;X2;X3.2/ �.
6: Estimate the model under the null hypothesis.
7: Compute the GoF value named GoFHb

0
.

8: end for
9: By comparing the original GoF index to the inverse cdf of GoFH0 accept or reject H0.

2.3.2 Hypothesis Testing on the Whole Set of Path Coefficients

The procedure described in Sect. 2.3.1 can be easily generalized in order to test a
sub-set of path coefficients or all of them at the same time. If the path coefficients are
tested simultaneously, then this omnibus test can be used for an overall assessment
of the model. This test is performed by comparing the default model specified by the
user to the so-called baseline models, i.e the saturated model and the independence
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or null model. The saturated model is the least restrictive model where all the struc-
tural relations are allowed (i.e. all path coefficients are free parameters). The null
model is the most restrictive model with no relations among latent variables (i.e.
all path coefficients are constrained to be 0). Following the structure of the model
defined in figure 2.1, the null model is the model where W ˇ12 D ˇ13 D ˇ23 D 0,
while the saturated model coincides with the one in figure 2.1. More formally:

H0 W ˇ12 D ˇ13 D ˇ23 D 0

H1 W At least one ˇqj ¤ 0
(2.31)

As for the simple case described in Sect. 2.3.1 we need to properly deflate X in
order to estimate Φ.B/. In particular, each endogenous block X j has to be deflated
according to the specified structural relations by means of orthogonal projection
operators. In the model defined by (2.26), the block of manifest variables linked
to �2 (X2) has to be deflated by removing the linear effect of �1 on �2, while the
block of the manifest variables linked to �3 (X3) has to be deflated by removing the
linear effect of both �1 and �2. However, since �2 is an endogenous latent variable,
the deflated block X2.1/ has to be taken into account when deflating X3. In other
words, the deflation of the block X2 is obtained as:

X2.1/ D X2 � X1

�
X 0

1X1

��1
X 0

1X 2

while, the deflation of the block X3 is obtained as:

X3.1;2/ D X3 � �
X1; X2.1/

	 
�
X1; X 2.1/

	0 �
X1; X2.1/

	��1 �
X1; X2.1/

	0
X3:

As we deal with a recursive model, it is always possible to build blocks that verify
the null hypothesis by means of a proper sequence of deflations.

The algorithm described in Sect. 2.3.1 and in Algorithm 2 can be applied to
OFŒX1;X2.1/;X3.1;2/� in order to construct an inverse cdf of Φ.B/ such that H0 is

true. The test is performed at a nominal confidence level ˛, by comparing the GoF

value for the model defined in (2.26) to the .1 � ˛/th percentile of Φ.B/ built upon
OFŒX1;X2.1/;X3.1;2/�. If GoF > Φ

.B/

.1�˛/
, then the null hypothesis is rejected. By com-

paring the GoF value obtained for the default model on the bootstrap population
with the GoF

.b/

H0
obtained from bootstrap samples (b D 1; 2; : : : ; B), an empirical

p-value can be computed as:

p-value D
PB

bD1 Ib

B
(2.32)

where

Ib D
(

1 if GoF
.b/

H0
� GoF

0 otherwise
(2.33)

and B is the number of Bootstrap re-samples.
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As stated in (2.31), the above procedure tests the null hypothesis that all path
coefficients are equal to zero against the alternative hypothesis that at least one of
the coefficients is different from zero. By defining a proper deflation strategy, tests
on any sub-set of path coefficients can be performed. Stepwise procedures can also
be defined in order to identify a set of significant coefficients.

2.3.3 Application to Simulated Data

In this subsection we apply the procedures for testing path coefficients to simulated
data.

Data have been generated according to the basic model defined in Fig. 2.2. This
model is a simplified version of the one defined in Fig. 2.1.

According to Fig. 2.2, the structural model is specified by the equation:

�3 D ˇ03 C ˇ13�1 C ˇ23�2 C �3 (2.34)

Three different tests have been performed on the simulated data-set. In particular,
we perform a test:

1. On the whole model:
H0 W ˇ13 D ˇ23 D 0

H1 W At least one ˇqj ¤ 0
(2.35)

2. On the coefficient ˇ13

H0 W ˇ13 D 0

H1 W ˇ13 ¤ 0
(2.36)

3. On the coefficient ˇ23

H0 W ˇ23 D 0

H1 W ˇ23 ¤ 0
(2.37)

2.3.3.1 Simulation Scheme

The following procedure has been used in order to simulate the manifest variables
for the model in Fig. 2.2 with a sample size of 50 units:

Fig. 2.2 Path diagram of the
structural model specified by
(2.34)

β13
ξ1

ξ2

ξ3

β23
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1. For each exogenous block, three manifest variables have been randomly gener-
ated according to a multivariate normal distribution. In particular, the manifest
variables linked to the latent variable �1 come from a multivariate normal dis-
tribution with means equal to 2 and standard deviations equal to 1:5 for every
manifest variable. The manifest variables of block 2 come from a multivariate
normal distribution with means equal to 0 and standard deviations equal to 1 for
every manifest variable.

2. The exogenous latent variables �1 and �2 have been computed as a standardized
aggregate of the manifest variables obtained in the first step. An error term (from
a normal distribution with zero mean and standard deviation equal to 1=4 of the
manifest variables’ standard deviation) has been added to both exogenous latent
variables.

3. The manifest variables corresponding to the endogenous latent variable �3 have
been generated as a standardized aggregate of �1 and �2 plus an error term (from
a normal distribution with zero mean and standard deviation equal to 0:25).

2.3.3.2 Results

Table 2.1 reports the path coefficients and the GoF values obtained by running the
PLS-PM algorithm on the simulated dataset.

According to the procedure described in Sect. 2.3.2 we need to deflate the data
in different ways in order to perform the three different types of tests. Namely, in
order to perform the first test (H0 W ˇ13 D ˇ23 D 0) we need to deflate the block
X3 with regards to X2 and X1 (Test 1), while the second test (H0 W ˇ13 D 0) is
performed by deflating the block X3 only with regards to X1 (Test 2) and the last
test (H0 W ˇ23 D 0) is performed by deflating the block X3 with regards to X2

(Test 3).
Under each null hypothesis, bootstrap resampling has been performed to obtain

the bootstrap approximation Φ.B/ of Φ. Bootstrap distributions have been approxi-
mated by 1,000 pseudo-random samples.

The histograms of the bootstrap approximations of the GoF distributions under
the null hypotheses for Test 1, Test 2 and Test 3 are shown in Figs. 2.3–2.5,
respectively. These histograms seem to reveal fairly normal distributions.

Table 2.2 reports the values of the critical thresholds computed for test sizes
˛ D 0:10 and ˛ D 0:05 on the bootstrap distribution for the three different tests.
The p � values, computed according to the formula in (2.32), are also shown. On
this basis, the null hypotheses for Test 1 and Test 2 have been correctly rejected by
the proposed procedure. Nevertheless, the proposed test accepts the null hypothesis
for Test 3 even if this hypothesis is false. This is due to the very weak value for the
corresponding path coefficient, i.e. ˇ23 D 0:05.

Table 2.1 Results from the
simulated data-set

ˇ13 0.94
ˇ23 0.05

GoF (Absolute) 0.69
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Fig. 2.3 Histogram of the
bootstrap approximation of
the GoF distribution under the
null hypothesis in Test 1
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Fig. 2.4 Histogram of the
bootstrap approximation of
the GoF distribution under the
null hypothesis in Test 2
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Fig. 2.5 Histogram of the
bootstrap approximation of
the GoF distribution under the
null hypothesis in Test 3
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Table 2.2 Thresholds and
p-values from bootstrap
distributions (1,000
re-samples)

˛ D 0:10 ˛ D 0:05 p-value

Test 1 0.46 0.49 0
Test 2 0.47 0.50 0
Test 3 0.74 0.77 0.27

Further researches are needed to investigate features of the GoF distribution as
well as the statistical power of the proposed tests and their sensitivity with respect
to the size of the coefficients, the sample size and the complexity of the structural
model.

2.4 Heterogeneity in PLS Path Modeling

In this section we discuss how to improve the prediction performance and the
interpretability of the model by allowing for unobserved heterogeneity.

Indeed, heterogeneity among units is an important issue in statistical analysis.
Treating the sample as homogeneous, when it is not, may seriously affect the quality
of the results and lead to biased interpretation. Since human behaviors are complex,
looking at groups or classes of units having similar behaviors will be particularly
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hard. Heterogeneity can hardly be detected using external information, i.e. using
a priori clustering approach, especially in social, economic and marketing areas.
Moreover, in several application fields (e.g. marketing) more attention is being
given to clustering methods able to detect groups that are homogeneous in terms of
their responses (Wedel and Kamakura 2000). Therefore, response-based clustering
techniques are becoming more and more important in statistical literature.

Two types of heterogeneity could be affecting the data: observed and unobserved
heterogeneity (Tenenhaus et al. 2010; Hensler and Fassott 2010; Chin and Dibbern
2007). In the first case the composition of classes is known a priori, while in the
second case information on the number of classes or on their composition is not
available.

So far in this paper we have assumed homogeneity over the observed set of units.
In other words, all units are supposed to be well represented by a unique model
estimated on the whole sample, i.e. the global model.

In a Structural Equation Model, the two cases of observed and unobserved het-
erogeneity match with the presence of a discrete moderating factor that, in the first
case is manifest, i.e. an observed variable, while in the second case is latent, i.e. an
unobserved variable (Chin and Dibbern 2007).

Usually heterogeneity in Structural Equation Models is handled by first forming
classes on the basis of external variables or on the basis of standard clustering tech-
niques applied to manifest and/or latent variables, and then by using the multi-group
analysis introduced by Jöreskog (1971) and Sörbom (1974). However, heterogeneity
in the models may not be necessarily captured by well-known observed variables
playing the role of moderating variables (Hahn et al. 2002). Moreover, post-hoc
clustering techniques on manifest variables, or on latent variable scores, do not take
at all into account the model itself. Hence, while the local models obtained by cluster
analysis on the latent variable scores will lead to differences in the group averages
of the latent variables but not necessarily to different models, the same method per-
formed on the manifest variables is unlikely to lead to different and well-separated
models. This is true for both the model parameters and the means of latent vari-
able scores. In addition, a priori unit clustering in Structural Equation Models is
not conceptually acceptable since no structural relationship among the variables is
postulated: when information concerning the relationships among variables is avail-
able (as it is in the theoretical causality network), classes should be looked for while
taking into account this important piece of information. Finally, even in Structural
Equation Models, the need is pre-eminent for a response-based clustering method,
where the obtained classes are homogeneous with respect to the postulated model.
Dealing with heterogeneity in PLS Path Models implies looking for local models
characterized by class-specific model parameters.

Recently, several methods have been proposed to deal with unobserved hetero-
geneity in PLS-PM framework (Hahn et al. 2002; Ringle et al. 2005; Squillacciotti
2005; Trinchera and Esposito Vinzi 2006; Trinchera et al. 2006; Sanchez and
Aluja 2006, 2007; Esposito Vinzi et al. 2008; Trinchera 2007). To our best knowl-
edge, five approaches exist to handle heterogeneity in PLS Path Modeling: the
Finite Mixture PLS, proposed by Hahn et al. (2002) and modified by Ringle et al.
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(2010) (see Chap. 8 of this Handbook), the PLS Typological Path Model pre-
sented by Squillacciotti (2005) (see Chap. 10 of this Handbook) and modified by
Trinchera and Esposito Vinzi (2006) and Trinchera et al. (2006), the PATHMOX by
Sanchez and Aluja (2006), the PLS-PM based Clustering (PLS-PMC) by Ringle and
Schlittgen (2007) and the Response Based Unit Segmentation in PLS Path Modeling
(REBUS-PLS) proposed by Trinchera (2007) and Esposito Vinzi et al. (2008).

In the following we will discuss the REBUS-PLS approach in detail.

2.4.1 The REBUS-PLS Algorithm

A new method for unobserved heterogeneity detection in PLS-PM framework was
recently presented by Trinchera (2007) and Esposito Vinzi et al. (2008). REBUS-
PLS is an iterative algorithm that permits to estimate at the same time both the unit
membership to latent classes and the class specific parameters of the local models.
The core of the algorithm is a so-called closeness measure (CM ) between units
and models based on residuals (2.38). The idea behind the definition of this new
measure is that if latent classes exist, units belonging to the same latent class will
have similar local models. Moreover, if a unit is assigned to the correct latent class,
its performance in the local model computed for that specific class will be better
than the performance of the same unit considered as supplementary in the other
local models.

The CM used in the REBUS-PLS algorithm represents an extension of the dis-
tance used in PLS-TPM by Trinchera et al. (2006), aiming at taking into account
both the measurement and the structural models in the clustering procedure. In
order to obtain local models that fit better than the global model, the chosen close-
ness measure is defined according to the structure of the Goodness of Fit (GoF )
index, the only available measure of global fit for a PLS Path Model. According to
the DmodY distance used in PLS Regression (Tenenhaus 1998) and the distance
used by Esposito Vinzi and Lauro (2003) in PLS Typological Regression all the
computed residuals are weighted by quality indexes: the importance of residuals
increases while the quality index decreases. That is why the communality index and
the R2 values are included in the CM computation.

In a more formal terms, the closeness measure (CM ) of the n-th unit to the
k-th local model, i.e. to the latent model corresponding to the k-th latent class, is
defined as:
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where:
Com

�
xpq; �qk

�
is the communality index for the p-th manifest variable of the q-th

block in the k-th latent class;
enpqk is the measurement model residual for the n-th unit in the k-th latent class,
corresponding to the p-th manifest variable in the q-th block, i.e. the communality
residuals;
fnjk is the structural model residual for the n-th unit in the k-th latent class, corre-
sponding to the j -th endogenous block;
N is the total number of units;
tk is the number of extracted components. Since all blocks are supposed to be
reflective, the value of tk will always be equal to 1.

As for the GoF index, the left-side term of the product in (2.38) refers to the
measurement models for all the Q blocks in the model, while the right-side term
refers to the structural model. It is important to notice that both the measurement and
the structural residuals are computed for each unit with respect to each local model
regardless of the membership of the units to the specific latent class. In computing
the residual from the k-th latent model, we expect that units belonging to the k-th
latent class show smaller residuals than units belonging to the other .K � 1/ latent
classes.

As already said, two kinds of residuals are used to evaluate the closeness between
a unit and a model: the measurement or communality residuals and the struc-
tural residuals. For a thorough description of the REBUS-PLS algorithm and the
computation of the communality and the structural residuals, refer to the original
REBUS-PLS papers (Trinchera 2007; Esposito Vinzi et al. 2008).

The choice of the closeness measure in (2.38) as a criterion for assigning units
to classes has two major advantages. First, unobserved heterogeneity can now be
detected in both the measurement and the structural models. If two models show
identical structural coefficients, but differ with respect to one or more outer weights
in the exogenous blocks, REBUS-PLS is able to identify this source of heterogene-
ity, which might be of major importance in practical applications. Moreover, since
the closeness measure is defined according to the structure of the Goodness of Fit
(GoF ) index, the identified local models will show a better prediction performance.

The CM expressed by (2.38) is only the core of an iterative algorithm allowing
us to obtain a response-based clustering of the units.

As a matter of fact, REBUS-PLS is an iterative algorithm (see Fig. 2.6). The first
step of the REBUS-PLS algorithm involves estimating the global model on all the
observed units, by performing a simple PLS Path Modeling analysis. In the sec-
ond step, the communality and the structural residuals of each unit from the global
model are obtained. The number of classes (K) to be taken into account during
the successive iterations and the initial composition of the classes are obtained by
performing a hierarchical cluster analysis on the computed residuals (both from the
measurement and the structural models). Once the number of classes and their initial
composition are obtained, a PLS Path Modeling analysis is performed on each class
and K provisional local models are estimated. The group-specific parameters com-
puted at the previous step are used to compute the communality and the structural
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Fig. 2.6 A schematic representation of the REBUS-PLS algorithm

residuals of each unit from each local model. Then the CM of each unit from each
local model is obtained according to (2.38). Each unit is, therefore, assigned to the
closest local model, i.e. to the model from which it shows the smallest CM value.
Once the composition of the classes is updated, K new local models are estimated.
The algorithm goes on until the threshold of a stopping rule is achieved.

Stability on class composition from one iteration to the other is considered as
a stopping rule. The authors suggest using the threshold of less than 5% of units
changing class from one iteration to the other as a stopping rule. Indeed, REBUS-
PLS usually assures convergence in a small number of iterations (i.e. less than 15).
It is also possible not to define a threshold as a stopping rule and run the algorithm
until the same groups are formed in successive iterations. In fact, if no stopping
rule is imposed once the “best” model is obtained in the REBUS-PLS viewpoint,
i.e. once each unit is correctly assigned to the closest local model, the algorithm
provides the same partition of the units at successive iterations.

If the sample size is large, it is possible to have such boundary units that change
classes time after time at successive iterations. This leads to obtaining a series of
partitions (i.e. of local model estimates) that repeat themselves in successive iter-
ations. In order to avoid the “boundary” unit problem the authors suggest always
defining a stopping rule.

Once the stability on class composition is reached, the final local models are
estimated. The class-specific coefficients and indexes are then compared in order
to explain differences between detected latent classes. Moreover the quality of the
obtained partition can be evaluated through a new index (i.e. the Group Quality
Index - GQI ) developed by Trinchera (2007). This index is a reformulation of the
Goodness of Fit index in a multi-group perspective, and it is also based on residuals.
A detailed presentation of the GQI , as well as a simulation study aiming at assess-
ing GQI properties, can be found in Trinchera (2007). The GQI index is equal to
the GoF in the case of a unique class, i.e. when K D 1 and n1 D N . In other words,
the Group Quality Index computed for the whole sample as a unique class is equal to
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the GoF index computed for the global model. Instead, if local models performing
better than the global one are detected, the GQI index will be higher than the GoF

value computed for the global model.
Trinchera (2007) performed a simulation study to assess GQI features. In par-

ticular, it is suggested that a relative improvement of the GQI index from the
global model to the detected local models higher than 25% can be considered as
a satisfactory threshold to prefer the detected unit partition to the aggregate data
solution. Finally, the quality of the detected partition can be assessed by a permu-
tation test (Edgington 1987) involving T random replications of the unit partition
(keeping constant the group proportions as detected by REBUS-PLS) so as to yield
an empirical distribution of the GQI index.

The GQI obtained for the REBUS-PLS partition is compared to the percentiles
of the empirical distribution to decide whether local models are performing sig-
nificantly better than the global one. Trinchera (2007) has shown that, in case
of unobserved heterogeneity and apart from the outlier solutions, the GQI index
computed for the aggregate level is the minimum value obtained for the empirical
distribution of the GQI .

If external concomitant variables are available, an ex-post analysis on the detected
classes can be performed so as to characterize the detected latent classes and
improve interpretability of their composition.

So far, REBUS-PLS is limited to reflective measurement models because the
measurement residuals come from the simple regressions between each manifest
variable in a block and the corresponding latent variable. Developments of the
REBUS-PLS algorithm to the formative measurement models are on going.

2.4.2 Application to Real Data

Here, we present a simple and clear example to show the REBUS-PLS ability to cap-
ture unobserved heterogeneity on empirical data. We use the same data as in Ringle
et al. (2010). This dataset comes from the Gruner&Jahr’s Brigitte Communication
Analysis performed in 2002 that specifically concerns the Benetton fashion brand.
REBUS-PLS has been performed using a SAS-IML macro developed by Trinchera
(2007).

The Benetton dataset is composed of ten manifest variables observed on 444
German women. Each manifest variable is a question in the Gruner&Jahr’s Brigitte
Communication Analysis of 2002. The women had to answer each question using a
four-point scale from “low” to “high”.

The structural model for Benetton’s brand preference, as used by Ringle et al.
(2010), consists of one latent endogenous Brand Preference variable, and two latent
exogenous variables, Image and Character. All manifest variables are linked to
the corresponding latent variable via a reflective measurement model. Figure 2.7
illustrates the path diagram with the latent variables and the employed manifest
variables. A list of the used manifest variables with the corresponding meanings is
shown in Table 2.3.
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Fig. 2.7 Path diagram for Benetton data

Table 2.3 Manifest (MV) and latent variables (LV) definition for Benetton data
LV Name MV Name Concepts

Image Modernity It is modern and up to date
Style of living Represents a great style of life
Trust This brand can be trusted
Impression I have a clear impression of this brand

Character Brand name A brand name is very important to me
Fashion 2 I often talk about fashion
Trends I am interested in the latest trends
Fashion 1 Fashion is a way to express who I am

Brand Sympathy Sympathy
Preference Brand usage Brand usage

A PLS Path Modeling analysis on the whole sample has been performed with
standardized manifest variables. As it is obvious, the global model estimates are
consistent with the ones obtained by Ringle et al. in their study (see Chap. 8).
Since all the blocks in the model are supposed to be reflective, then they should
be homogeneous and unidimensional. Hence, first of all we have to check for block
homogeneity and unidimensionality. Table 2.4 shows values of the tools presented in
Sect. 2.2.1 for checking the block homogeneity and unidimensionality. According to
Chin (1998), all the blocks are considered homogenous, i.e. the Dillon-Goldstein’s
rho is always larger than 0:7. Moreover, the three blocks are unidimensional as only
the first eigenvalues for each block are greater than one. Therefore, the reflective
model is appropriate.

A simple overview of the global model results is proposed in Fig. 2.8. According
to the global model results Image seems to be the most important driver for
Brand Preference, with a path coefficient equal to 0:423. The influence of the
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Table 2.4 Homogeneity and unidimensionality of MVs blocks

LV Name # of MVs Cronbach’s ˛ D.G.’s � PCA eigenvalues

Image 4 0.869 0.911 2.873
0.509
0.349
0.269

Character 4 0.874 0.914 2.906
0.479
0.372
0.243

Brand preference 2 0.865 0.937 1.763
0.237

Fig. 2.8 Global model results from Benetton data obtained by using a SAS-IML macro

exogenous latent variable Character is considerably weaker (path coefficient of
0:177). Nevertheless, the R2 value associated with the endogenous latent variable
Brand Preference is quite low, being equal to 0:239. Ringle et al. (2010) consider
this value as a moderate level for a PLS Path Model. In our opinion, an R2 value of
0:239 has to be considered as unsatisfactory, and could be used as a first sign of pos-
sible unobserved heterogeneity in the data. Looking at the measurement models, all
the relationships in the reflective measurement models have high factor loadings (the
smallest loading has a value of 0:795, see Table 2.5). In Fig. 2.8 the outer weights
used for yielding standardized latent variable scores are shown. In the Brand Pref-
erence block, Sympathy and Brand Usage have similar weights. Instead, differences
arise in both exogenous blocks. Finally, the global model on Benetton data shows
a value for the absolute GoF equal to 0:424 (see Table 2.6). The quite low value
of the GoF index might also suggest that we have to look for more homogeneous
segments among the units.
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Table 2.5 Measurement model results for the global and the local models obtained by
REBUS-PLS

Global Class 1 Class 2 Class 3

Number of units 444 105 141 198

Outer weights Modernity 0:250 0:328 0:278 0:291

Image Style of living 0:310 0:264 0:314 0:270

Trust 0:321 0:284 0:315 0:375

Impression 0:297 0:292 0:267 0:273

Outer weights Brand name 0:343 0:342 0:262 0:298

Character Fashion2 0:292 0:276 0:345 0:314

Trends 0:258 0:266 0:323 0:335

Fashion1 0:282 0:314 0:213 0:231

Outer weights Sympathy 0:555 0:549 0:852 0:682

Brand preference Brand Usage 0:510 0:637 0:575 0:547

Standardized loadings Modernity 0:795 0:827 0:810 0:818

Image Style of living 0:832 0:834 0:860 0:735

Trust 0:899 0:898 0:890 0:895

Impression 0:860 0:865 0:840 0:834

Standardized loadings Brand name 0:850 0:832 0:842 0:822

Character Fashion2 0:894 0:846 0:929 0:908

Trends 0:859 0:850 0:902 0:878

Fashion1 0:801 0:819 0:788 0:762

Standardized loadings Sympathy 0:944 0:816 0:819 0:855

Brand preference Brand Usage 0:933 0:867 0:526 0:762

Communality Modernity 0:632 0:685 0:657 0:668

Image Style of living 0:693 0:695 0:740 0:541

Trust 0:808 0:806 0:792 0:801

Impression 0:739 0:748 0:706 0:696

Communality Brand name 0:722 0:692 0:709 0:676

Character Fashion2 0:799 0:715 0:864 0:825

Trends 0:738 0:722 0:814 0:770

Fashion1 0:642 0:670 0:620 0:581

Communality Sympathy 0:891 0:666 0:671 0:730

Brand preference Brand Usage 0:871 0:752 0:277 0:581

A more complete outline of the global model results is provided in Table 2.5 for
the outer model and in Table 2.6 for the inner model. These tables contain also the
class-specific results in order to make it easier to compare the segments.

Performing REBUS-PLS on Benetton data leads to detecting three different
classes of units showing homogeneous behaviors. As a matter of fact, the clus-
ter analysis on the residuals from the global model (see Fig. 2.9) suggests that we
should look for two or three latent classes. Both partitions have been investigated.
The three classes partition is preferred as it shows a higher Group Quality Index.
Moreover, the GQI index computed for the two classes solution (GQI D 0:454)
is close to the GoF value computed for the global model (i.e. the GQI index in
the case of only one global class, GoF D 0:424). Therefore, the 25% improvement
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Table 2.6 Structural model results for the global model and the local models obtained by
REBUS-PLS

Global Class 1 Class 2 Class 3

Number of units 444 105 141 198

Path Image 0:423 0:420 0:703 0:488

Coefficients Œ0:331I 0:523� Œ0:225I 0:565� Œ0:611I 0:769� Œ0:314I 0:606�

on brand Character 0:177 0:274 0:319 0:138

preference Œ0:100I 0:257� Œ0:078I 0:411� Œ0:201I 0:408� Œ0:003I 0:311�

Redundancy Brand preference 0:210 0:207 0:322 0:180

R2 0:239 0:292 0:680 0:275

Brand preference Œ0:166I 0:343� Œ0:162I 0:490� Œ0:588I 0:775� Œ0:195I 0:457�

R2 Image 0:81 0:67 0:79 0:90

contributions Character 0:19 0:33 0:21 0:10

GoF value 0:424 0:457 0:682 0:435

Œ0:354I 0:508� Œ0:325I 0:596� Œ0:618I 0:745� Œ0:366I 0:577�

0.150

0.125

0.100

0.075

0.050

0.025

0.000

Fig. 2.9 Dendrogramme obtained by a cluster analysis on the residuals from the global model
(Step 3 of the REBUS-PLS algorithm)

foreseen for preferring the partition in two classes is not achieved. Here, only the
results for the three classes partition are presented.

The first class is composed of 105 units, i.e around 24% of the whole sample.
This class is characterized by a path coefficient linking the latent variable Character
to the endogenous latent variable Brand Preference higher than the one obtained for
the global model. Moreover, differences in unit behaviors arise also with respect to
the outer weights in the Brand Preference block, i.e. Brand Usage shows a higher
weight than Sympathy. The GoF value for this class (0:457) is similar to the one for
the global model (0:424). Figure 2.10 shows the estimates obtained for this class.

The second class, instead, shows a definitely higher GoF value of 0:682 (see
Table 2.6). This class is composed of around 32% of the whole sample, and
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Fig. 2.10 Local model results for the first class detected by the REBUS-PLS algorithm on
Benetton data

Fig. 2.11 Local model results for the second class detected by the REBUS-PLS algorithm on
Benetton data

is characterized by a much higher path coefficient associated to the relationship
between the Image and the Brand Preference. Looking at the measurement model
(see Table 2.5), differences arise in the Brand Preference block and in the Character
block. As a matter of fact, the communality index (i.e. the square of the correlation)
between the manifest variable Brand Usage and the corresponding latent variable
Brand Preference is really lower than the one obtained for the global model as well
as for the first local model described above. Other differences for this second class
may be detected by looking at the results provided in Fig. 2.11.
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Fig. 2.12 Local model results for the third class by the REBUS-PLS algorithm on Benetton data

Finally, the results for the third class are presented in Fig. 2.12. This class is com-
posed of 198 units., i.e. more than 44% of the whole sample. It is characterized by
a very weak relationship between the latent variable Character and the endogenous
latent variable Brand Preference. Moreover, the 95% bootstrap confidence interval
shows that this link is close to be non significant as the lower bound is very close
to 0 (see Table 2.6). Differences arise also with respect to the measurement model,
notably in the Image block. As a matter of fact, in this class the manifest variable
Style of living shows a very low correlation compared with the other models (both
local and global).
Nonetheless, the quality index values computed for this third local model are only
slightly different from the ones in the global model (R2 D 0:275 and GoF D 0:435).

The three classes solution shows a Group Quality Index equal to 0:531. In order
to validate the REBUS-PLS based partition, an empirical distribution of the GQI

values is yielded by means of permutations. The whole sample has been randomly
divided 300 times into three classes of the same size as the ones detected by REBUS-
PLS. The GQI has been computed for each of the random partitions of the units.
The empirical distribution of the GQI values for a three classes partition is then
obtained (see Fig. 2.13). As expected, the GQI value from the REBUS-PLS parti-
tion is definitely an extremely high value of the distribution thus showing that the
REBUS-PLS based partition is better than a random assignment of the units into
three classes.

Moreover, in Fig. 2.14, it is possible to notice that the GQI computed for the
global model (i.e. the GoF value) is a very small value in the GQI distribution.
Therefore, the global model has to be definitely considered as being affected by
heterogeneity.

Ringle et al. (2010) apply FIMIX-PLS to Benetton data (see Chap. 8) and iden-
tify only two classes. The first one (80:9% of the whole sample) is very similar to
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Fig. 2.13 Empirical distribution of the GQI computed on 300 random partitions of the original
sample in three classes

Fig. 2.14 Descriptive statistics for the GQI empirical distribution

the global model results in terms of path coefficients. Nevertheless, the R2 value
associated to the endogenous latent variable Brand Preference is equal to 0:108.
This value is even smaller than for the global model (R2 D 0:239). The second
detected class, instead, is similar to the second class obtained by REBUS-PLS. As
a matter of fact, also in this case the exogenous latent variable Image seems be the
most important driver for Brand Preference, showing an R2 close to 1.

In order to obtain local models that are different also for the measurement
model, Ringle et al. (2010) apply a two-step strategy. In the first step they simply
apply FIMIX-PLS. Successively they use external/concomitant variables to look
for groups overlapping the FIMIX-based ones. Nevertheless, also in this two-step
procedure the obtained results are not better than the ones provided by the REBUS-
PLS-based partition. As a matter of fact, the R2 value and the GoF value for the first
local model are smaller than for the global model. The local model for the largest
class (80% of the whole sample) performs worse than the global model, and worse
than all the REBUS-PLS based local models.

The REBUS-PLS algorithm turned out to be a powerful tool to detect unobserved
heterogeneity in both experimental and empirical data.
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2.5 Conclusion and Perspectives

In the previous sections, where needed, we have already enhanced some of the on
going research related to the topics of interest for this chapter. Namely, the devel-
opment of new estimation modes and schemes for multidimensional (formative)
constructs, a path analysis on latent variable scores to estimate path coefficients,
the use of GoF -based non parametric tests for the overall model assessment, a
sensitivity analysis for these tests, the generalization of REBUS-PLS to capturing
heterogeneity in formative models.

We like to conclude this chapter by proposing a short list of further open issues
that, in our opinion, currently represent the most important and promising research
challenges in PLS Path Modeling:

� Definition of optimizing criteria and unifying functions related to classical or
modified versions of the PLS-PM algorithm both for the predictive path model
between latent variables and for the analysis of multiple tables.

� Possibility of imposing constraints on the model coefficients (outer weights,
loadings, path coefficients) so as to include any information available a priori
as well as any hypothesis (e.g. equality of coefficients across different groups,
conjectures on model parameters) in the model estimation phase.

� Specific treatment of categorical (nominal and ordinal) manifest variables.
� Specific treatment of non-linearity both in the measurement and the structural

model.
� Outliers identification, i.e. assessment of the influence of each statistical unit on

the estimates of the outer weights for each block of manifest variables.
� Development of robust alternatives to the current OLS-based PLS Path Modeling

algorithm.
� Development of a model estimation procedure based on optimizing the GoF

index, i.e. on minimizing a well defined fit function.
� Possibility of specifying feedback relationships between latent variables so as to

investigate mutual causality.

The above mentioned issues represent fascinating topics for researchers from
both Statistics and applied disciplines.

There is nothing vague or fuzzy about soft modeling;
the technical argument is entirely rigorous

Herman Wold
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Wertz, C., Linn, R., and Jöreskog, K. (1974). Intraclass reliability estimates: Testing structural
assumptions. Educational and Psychological Measurement, 34(1), 25–33.

Wold, H. (1966). Estimation of principal component and related models by iterative least squares.
In P. R. Krishnaiah (Ed.), Multivariate analysis, (pp. 391–420). New York: Academic Press.

Wold, H. (1975a). PLS path models with latent variables: the nipals approach. In H. M. Blalock,
A. Aganbegian, F. M. Borodkin, R. Boudon, and V. Cappecchi (Eds.), Quantitative sociology:
international perspectives on mathematical and statistical modeling. New York: Academic
Press.

Wold, H. (1975b). Modelling in complex situations with soft infromation. Third World Congress
of Econometric Society, Toronto, Canada.

Wold, H. (1975c). Soft modeling by latent variables: the nonlinear iterative partial least squares
approach. In J. Gani (Ed.), Perspectives in probability and statistics, papers in honor of
M. S. Bartlett (pp. 117–142). London: Academic Press.

Wold, H. (1980). Model construction and evaluation when theoretical knowledge is scarce. In
J. Kmenta, & J. B. Ramsey (Eds.), Evaluation of econometric models, pp. 47–74.

Wold, H. (1982). Soft modeling: the basic design and some extensions. In K. G. Jöreskog,
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