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Abstract 
 

There is a pervasive belief in the Management 
Information Systems (MIS) field that Partial Least 
Squares (PLS) has special abilities that make it more 
appropriate than other techniques, such as multiple 
regression and LISREL, when analyzing small sample 
sizes.  We conducted a study using Monte Carlo 
simulation to compare these three relatively popular 
techniques for modeling relationships among 
variables under varying sample sizes (N = 40, 90, 150, 
and 200) and varying effect sizes (large, medium, 
small and no effect).  The focus of the analysis was on 
comparing the path estimates and the statistical power 
for each combination of technique, sample size, and 
effect size.   The results suggest that PLS with 
bootstrapping does not have special abilities with 
respect to statistical power at small sample sizes. In 
fact, for simple models with normally distributed data 
and relatively reliable measures, none of the three 
techniques have adequate power to detect small or 
medium effects at small sample sizes.  These findings 
run counter to extant suggestions in MIS literature.   
 
 
1.  Introduction 
 

This work is motivated by the authors’ belief in 
three key assertions about the Partial Least Squares 
(PLS) statistical analysis technique.  First, the use of 
PLS in behavioral research is predominantly an MIS 
phenomenon.  Second, there is a pervasive belief 
among MIS researchers that when the sample size is 
small, PLS has special abilities that make it more 
appropriate than other techniques such as multiple 
regression and LISREL.  Specifically, researchers 
often argue that PLS only requires a sample size of 10 
(or even 5) times the most complex relationships 
within the research model.  For example, if the most  

 

complex relationship involved a construct with four 
formative indicators, the argument would be made that 
the minimum sample size would be 40.  

Third, research supporting the claim for PLS 
having greater efficacy at small sample size is 
inadvertently misleading the MIS research community, 
since it has, in effect, asked the wrong question.  More 
specifically, that research has focused on accuracy 
rather than statistical significance.  We argue that 
statistical significance is a primary consideration and 
accuracy a secondary one.  Since MIS researchers 
have in a very real sense “championed” the use of PLS 
to the wider research community, if the third assertion 
above is true, it is important to clarify the issue of PLS 
and small sample size.    

Because we are interested in comparing the output 
from different techniques rather than examining how 
they operate, we do not go into depth in describing 
PLS or the other techniques (multiple regression and 
LISREL) that we compare it with.  Previous work has 
provided detailed descriptions of the various statistical 
analysis techniques, and in some cases has provided 
excellent comparisons between two or more (e.g., [1]; 
[4]; [5]; [7]; [10]; [11]; [13]).  Interested readers 
wishing details on the various analysis techniques are 
encouraged to review these sources.   

Our findings suggest that PLS does not have an 
advantage in terms of detecting statistical significance 
at small sample size.  Further, the often cited and 
generally accepted “10 times” rule of thumb for the 
minimum sample size in PLS analysis ([1]; [5]) can 
lead to unacceptably low levels of statistical power.    

It is important to note that our examination of these 
issues is done within a narrow research context.  We 
use a relatively simple research model, measured with 
relatively strong (very reliable) indicators. Future 
research should extend our examination by including 
more complex models, less reliable indicators, and so 
on.  The paper closes with implications of the findings 
and suggestions for future research.   
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2.  Background:  The Three Assertions 
   
2.1. Assertion 1 -- The use of PLS is 
predominantly an MIS phenomenon.   
 

By asking knowledgeable researchers, we 
developed a consensus that three top research journals 
in the field of Management include:  Journal of 
Management, Academy of Management, and 
Organizational Behavior and Human Decision 
Processes.  For Marketing, three top research journals 
are:  Journal of Marketing, Journal of Marketing 
Research, and Journal of Consumer Research.  For IS, 
we selected MIS Quarterly, Information Systems 
Research and the Journal of Management Information 
Systems.  We examined all articles published in each 
of the nine journals from 2000 to 2003 (inclusive), and 
determined which methodology was used for every 
article where one of the three statistical analysis 
techniques (multiple regression, PLS or some form of 
covariance-based structural equation modeling, such 
as LISREL or AMOS) was employed. 

The results were surprising, even to us.  In fact, 
only two articles (one in Management and one in 
Marketing) used PLS in these six journals during this 
four year period, and both of those cited MIS authors 
when they justified using PLS ([18] cited [1]; [19] 
cited [5]).  In contrast, almost a third of the relevant 
MIS articles used PLS.  This is powerful evidence that 
PLS has been wholeheartedly accepted as an important 
statistical method in the MIS field, but is still by far 
the exception in Management and Marketing.  While 
we know that PLS is used in other fields, it is clear 
that the MIS field has adopted PLS in a way not 
matched by other behavioral disciplines.   

 
2.2. Assertion 2 -- There is a pervasive belief 
among MIS researchers that PLS has special 
abilities at small sample size.   
 
Below are quotes from two often-cited sources 
justifying the use of PLS with small sample sizes: 
 
• Barclay et al. [1]:  “It is this segmenting of 

complex models that allows PLS to work with 
small sample sizes.  . . . Sample size requirements, 
using the ‘rule of thumb’ of ten cases per 
indicator, become ten times the number of 
predictors [in the most complex relationship].” 

• Chin [5]:  “If one were to use a regression 
heuristic of 10 cases per predictor, the sample size 
requirement would be 10 times [the most complex 
regression relationship in the model].” 

 

These statements do not address the issue of 
statistical power directly.  Chin and Newsted [7] also 
did not focus on the issue of statistical power, but they 
did address it as a secondary component of their work.  
More specifically: 

 
• Chin and Newsted [7, pg. 327] repeat the 

statement above, and follow it by a comment that, 
for more accurate assessment, one should use the 
power tables provided by Cohen [8].  A few pages 
later (page 335):  “Earlier it was noted that a 
regression involving four independent variables 
and medium effect sizes would need a minimum 
sample size of 80 [according to Cohen’s tables].  
Interestingly, the [Monte Carlo analysis of PLS] 
at sample size 50 still generated significant 
results.”   

 
MIS researchers appear to have interpreted these 

and similar statements to imply that PLS has 
advantages over techniques such as regression and 
covariance-based structural equation modeling (CB-
SEM) for small sample sizes, including increased 
power.  Below are typical quotes from papers 
justifying the use of PLS.  These comments are by no 
means unique, and appear to reflect a prevailing 
perception among many MIS researchers that PLS has 
greater power for small sample sizes than regression or 
CB- SEM techniques such as LISREL. 

    
• Kahai and Cooper [14, page 277], using sample 

size of 31: “One important benefit is the ability of 
PLS to be employed with less data than other 
structural modeling packages.  As [9] indicate, 
PLS can be used in situations where there are at 
least five data points for each path leading to the 
construct that has the most incoming paths.  The 
minimum amount of data for our analyses is 25, 
since there are four hypothesized and one control 
path leading to decision quality.” 

• Yoo and Alavi [20], using a sample size of 45: 
“We chose PLS among several structural equation 
modeling tools, including EQS, AMOS, and 
LISREL because, unlike other tools, PLS does not 
require a large sample size [1, 11].”  

 
These comments suggest that the “10-times” 

heuristic ([1]; [5]), or even the “5-times” heuristic [9], 
is being used as the guide to the minimum sample size 
necessary to give sufficient power to detect 
relationships in PLS analysis.  This heuristic is based 
at least in part on Monte Carlo analyses such as those 
reported in [7].  If MIS researchers who employ PLS 
are not using the “10-times” heuristic as a guide to 
power, they must be ignoring the issue, since they 
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typically don’t explicitly address statistical power in 
any other way.   

 
2.3.  Assertion 3 -- The research on which the 
claim for adequate power for PLS at small 
sample size is based has, in effect, asked the 
wrong question.   
 

There are really three important issues that are 
often not clearly distinguished in comments about PLS 
and sample size.  The first issue is the question of 
whether the statistical technique will converge on a 
solution and avoid inadmissible results.  The second 
issue is how close parameter estimates will be to the 
true parameter values.  The third issue is the question 
of the power of the statistical approach – how likely a 
researcher is to find a statistically significant path 
estimate when a relationship really does exist in the 
underlying population.  We will discuss each of these 
in turn.   

 
2.3.1. Issue 1: Inadmissable Solutions.  It is certainly 
true that non-convergence and inadmissible solutions 
(such as negative variances) are a potential problem 
for LISREL at small sample size ([5]; [13]).  Neither 
PLS nor regression suffer from this problem, unless 
the sample size (N) is smaller than the number of 
incoming paths in the most complex relationship.  For 
example, a regression with three independent 
constructs predicting a fourth construct will not 
produce results unless there are at least three data 
points.   The same is true for PLS. 
 
2.3.2. Issue 2: Accuracy of the parameter estimates.  
Much of the MIS Monte Carlo simulation research on 
PLS and small sample size has focused on the second 
issue – how close the estimated parameters come to 
the true value.  Chin and Newsted [7], for example, 
looked at the performance of PLS and regression 
under a variety of conditions, in two separate studies.  
They concluded that “the PLS approach can provide 
information about the appropriateness of indicators at 
sample size as low as 20.  Furthermore, it performed 
better than the simple summed regression with four or 
eight indicators [7, page 335].”  By “better” they 
meant it produced parameter estimates that came 
closer to the true value. 
   
2.3.3. Issue 3: Statistical Significance and Power of 
a Statistical Test.   Statistical significance is well 
understood by researchers, with the standard being that 
unless there is less than a 5% chance of being 
mistaken, relationships between constructs should not 
be considered supported.  Power is, arguably, less well 
understood and less carefully attended to in published 

research ([2]; [16]; [17]).  The power of a statistical 
test is “the probability of rejecting H0, when H1 is 
true”[15].  In more basic terms, power is the 
probability that the researcher will find a statistically 
significant relationship, when the relationship is 
actually there.  The power of a statistical test is 
reduced by (among other things) small sample size, a 
weak underlying relationship, or measures that are 
clouded by error (low reliability).   

Given that in general it is harder to detect 
statistically significant relationships when sample size 
is small, and given that PLS is touted as having special 
abilities at small sample size, it is appropriate to ask 
whether PLS has more or less power at small sample 
sizes than regression or LISREL.   

Obviously both accuracy and statistical 
significance are important to researchers.  However, 
we contend that a perfectly accurate but “not 
statistically significant” estimate of a parameter cannot 
be assumed to carry scientific knowledge.  The fact 
that the estimate is not statistically significant tells us 
that although the estimate may be positive, there is 
also a good chance the true value is zero.  On the other 
hand, a somewhat inaccurate but statistically 
significant estimate of a parameter does carry 
scientific knowledge – specifically that there is little 
chance that the true value is zero.  Since we cannot 
legitimately interpret the value of a parameter that is 
not statistically significant, we believe that statistical 
significance and power have to be primary 
considerations, and accuracy secondary.        

To close this introduction, we summarize as 
follows.  We agree with existing literature that 
suggests PLS and regression are less likely to produce 
inadmissible solutions than LISREL at small sample 
size, and that PLS appears to generate larger parameter 
estimates than regression.  However we can find little 
evidence in the literature that PLS actually has greater 
power at small sample size (that is, greater ability to 
detect a path relationship as statistically significant).  
We argue that it is this issue of the power of the 
technique that is most important to MIS researchers.  
We conclude that the frequently implied "10 times" 
rule for sample size and the assertion that PLS has 
more power than other techniques at small sample size 
is in need of being tested more thoroughly.   

We now introduce the research model used for our 
study, and describe the Monte Carlo technique that we 
employed. 
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Figure 1. Our Basic Model  
 
 

3. Methods 
 

3.1. Monte Carlo simulation   
 

The best way to address this issue is to use a Monte 
Carlo simulation approach, which has been used by 
numerous researchers to investigate questions such as 
how the size of the biases in PLS estimates compares 
to the size of the biases in LISREL estimates [3], or 
the impact of different correlation structures on the 
chi-square goodness of fit tests for structural equation 
modeling [12].   

The Monte Carlo simulation approach requires that 
we start with a pre-specified “true” model that 
includes both the strength of the paths and the amount 
of random variance in the linkages (both between 
constructs, and between constructs and their 
indicators), such as is shown in Figure 1.  Using 
random number generators and the relationships from 
this true model, we then generate multiple simulated 
data sets for each condition we wish to study.  For 
example, we could generate 500 datasets with 40 cases 
each (i.e., the equivalent of 20,000 questionnaire 
responses in total), based on the model in Figure 1.   

Here a “case” is simply a set of responses 
generated (using a random number generator) for the 
indicators 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
in the model; each case corresponds to the 
questionnaire responses for one respondent.  Suppose 
we wanted to start by looking at the performance of 
regression on this collection of datasets.  We would 
analyze each of the 500 datasets (each having N=40) 
using regression.  We would then have 500 different 
regression estimates of the value of a particular causal 
link, and 500 different regression t-statistic values for 
that link.  Looking at the distribution of the resulting 
parameter estimates and the t-statistics, we could draw 
conclusions about the strengths of regression, at this 
sample size, for this model.   

Again looking at Figure 1, suppose that after an 
analysis such as described above, we found that out of 
500 datasets, regression found a statistically 
significant estimate for the Gamma1 link 253 times, or 
50.6% of the time.  We would conclude that regression 
had power of about .50 for this link and this sample 
size.  It would be safe to assume that if we took one 
more sample of 40 from the same population, we 
would only have about a 50% chance of finding a 
significant result for that link.  Further, if a researcher 
tests an equivalent model in the field using a sample 
size of 40, he or she has only about a 50% change of 
detecting that relationship, even if it is truly there.  The 
whole process could be repeated for PLS and then for 
LISREL, and the results compared.   
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3.2. Chin and Newsted’s (1999) study   
 
Chin and Newsted [7] report the results from two 

different Monte Carlo simulation analyses.  Though 
they used slightly different underlying models for the 
generation of the data, in both they used 
approximately the same approach, and in both they 
used only a strong effect size.  In the first study they 
used 125 “cells” or sets of conditions for sample size, 
number of indicators, and number of latent variables; 
in the second study they used 36 sets of conditions.  
For each cell they did the following.  First, they 
generated 100 distinct datasets for that cell.  Then they 
ran PLS (or regression) 100 times, once for each of the 
100 datasets.  In this way they found 100 path 
estimates for each relationship in their model.  They 
then compared the average path coefficients from PLS 
with those from regression, and with the true value of 
.40 (see [7, Appendix Tables 7 through 12, as referred 
to in 7, p331]).  From this they concluded that PLS 
was generally closer to the true value.   

  
3.3. The issue of statistical power   
 

We would argue that the most important thing a 
researcher designing a study wants to know from such 
an analysis is, what is the power for a particular 
sample size and number of indicators.  For example, if 
one single additional sample of size 50 with 4 
indicators were analyzed, what is the likelihood of 
finding a statistically significant path.  Although [7] 
analyzed 100 datasets in each cell, they did not report 
what proportion of the 100 resulted in statistically 
significant parameters; that is, they did not report the 
power for each cell.   

Chin and Newsted [7] did calculate a statistical 
significance for the average path coefficient in each 
cell.  To do this, for each cell they took the 100 
estimated path coefficients, and determined a single 
average, a single standard error, and a single t-statistic 
value that summarized all 100 estimated path 
coefficients for that cell (again, see their appendix).  
They did not report or address in any way the 100 t-
statistics of the path coefficients in each cell.  Their 
single t-statistic for each cell of 100 datasets tells us 
something very different from power.  It tells us, with 
a given significance level (say .05), whether a new 
researcher who gathered a new sample from this 
population could expect a positive path coefficient.  
Knowing that this new researcher could expect a 
positive path coefficient does not tell us whether he or 
she could expect a statistically significant path 
coefficient.  In other words, it does not tell us the 
power of the test.   

The studies conducted by Chin and Newsted [7]) 
provided considerable insight into the use of PLS 
under varying conditions, and a good comparison of 
PLS with MR, but they did not tell us whether PLS has 
greater statistical power than other techniques at small 
sample size. To address the issue of statistical power at 
small sample size, we designed an experiment using 
Monte Carlo simulation to extend the Chin and 
Newsted [7] research in three ways.  First, we 
compared the three common analysis techniques of 
multiple regression, PLS and LISREL.  Second, we 
created a research model that includes large, medium, 
small and zero effect sizes.  Third, we examined the 
statistical significance of each path estimate 
individually, and counted the proportion in each 
condition that were significant at the .05 level.  This 
gave us an accurate assessment of the power of each of 
the three techniques in each condition.   

 
3.4. Designing the Monte Carlo model 
 

The model in Figure 1 forms the basis for our 
analyses.  The model has four predictor variables 
(KSI1, KSI2, KSI3 and KSI4) and a dependent 
variable (ETA1).  The dependent variable and each 
predictor variable have three indicators.  In addition to 
the path coefficients and the indicator loadings, 
random error is added to the indicator scores and to the 
value for ETA1, as shown in the diagram.   

We selected the values for the links between the 
KSI constructs and ETA1 (the Gammas in the 
diagram), the random variance added to ETA1, and the 
random variance added to each indicator, based on the 
following requirements: 
• KSI1, KSI2, KSI3, and KSI4 should be 

independent and normally distributed with unit 
variance. 

• The effect size (measured without error) in the 
population for our four KSI constructs predicting 
ETA1 should be strong (.35), medium (.15), weak 
(.02) and zero (following Cohen’s (1988) 
suggestions for these effect sizes).   

• ETA1 should be normally distributed with a unit 
variance.  This required the following values for 
Gamma1 through Gamma4:  0.48, 0.314, 0.114, 
and 0.00.   

• Each of the five latent constructs should be 
measured by three indicators, and specifically 
with indicator loadings of .70, .80, and .90.   

• The error variance added to each indicator should 
be set so that the variance of each indicator (sum 
of its true score component and its error) would be 
normally distributed with variance of one. 
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We selected the unequal values for the indicator 
loadings for two reasons. First, we wanted to use 
values that would be similar to what one would expect 
to see in MIS research studies, and especially studies 
employing PLS.  Many researchers using PLS seem to 
follow the guideline for minimum loadings 
recommended by [1] of .707.  Second, we wanted to 
move away from equal indicator loadings, both 
because real studies typically exhibit some differences 
and also because equal loadings might favor 
regression over PLS or LISREL.  The result was that 
each construct had an underlying construct 
measurement reliability (Cronbach’s alpha) of .84.   

In other words, by construction (i.e. because we 
have defined it that way in our model), our constructs 
have good reliability.  Similarly, because we have 
defined the model in that way, our constructs all have 
unidimensional measures (no systematic cross 
loadings.)  The advantage of this approach is that it 
provides a common base model for testing each of the 
analysis techniques.  The disadvantage is that the 
simplicity of the model could favor regression.  We 
address this possible limitation later. 

We chose the sample sizes to use in the study by 
the following logic.  We selected 40 as the minimum 
reasonable size for PLS by using the “10-times” rule 
(10 times the number of antecedent constructs).  We 
selected 200 as a conservative estimate of the 
minimum reasonable size for LISREL.  We then 
partitioned the difference between the upper and lower 
bounds into three parts, giving us the following four 
sample sizes:  40, 90, 150, and 200.   

We then used our model to generate 500 data sets 
of simulated questionnaire data for each of the four 
sample sizes.  The data was generated using SAS and 
the SAS random number generator RANNOR. Each of 
the resulting 2000 data sets (500 data sets for each of 
four sample sizes) was then analyzed using multiple 
regression, PLS, and LISREL.   

 
3.5. Data analysis and results 
 

Chin and Newsted [7] observed that PLS provided 
estimates for path coefficients that were closer to the 
true values than those provided by regression.  Our 
results (shown in Table 1) were similar.  In addition, 
the estimates produced by LISREL were consistently 
larger than those produced by PLS, and generally were 
the closest to the true value.  (Ignore the line labeled 
‘PLS-R’ for now; we discuss this later). 

 
 
 

Table 1.  Results of Tests of Path Coefficients, 
Parameter Estimates 

 
Gamma 1 --Strong Effect Size 
n= 40 90 150 200 
Predicted 0.480 0.480 0.480 0.480 
MR 0.398 0.391 0.393 0.393 
PLS 0.405 0.399 0.400 0.399 
LISREL 0.486 0.485 0.484 0.484 
PLS-R 0.403 0.398 0.399 0.399 
Gamma 2 – Medium Effect Size 
n= 40 90 150 200 
Predicted 0.314 0.314 0.314 0.314 
MR 0.255 0.258 0.254 0.256 
PLS 0.273 0.270 0.263  0.262 
LISREL 0.317 0.320 0.315 0.314 
PLS-R 0.273 0.269 0262 0.262 
Gamma 3 – Weak Effect Size 
n= 40 90 150 200 
Predicted 0.114 0.114 0.114 0.114 
MR 0.099 0.099 0.096 0.089 
PLS 0.104 0.114 0.107 0.099 
LISREL 0.116 0.120 0.119 0.110 
PLS-R 0.105 0.114 0.106 0.099 
Gamma 4 – No Effect 
n= 40 90 150 200 
Predicted 0.000 0.000 0.000 0.000 
MR -0.009 -0.001 -0.002 -0.003 
PLS -0.016 0.002 -0.002 -0.003 
LISREL -0.010 0.000 -0.004 -0.003 
PLS-R -0.017 0.003 -0.002 -0.003 

 
Table 2 displays the results of our test for statistical 

power.  We used t-statistics provided by regression 
and by LISREL, and bootstrapping with 500 resamples 
for PLS, to determine the statistical significance of 
each link in our model from Figure 1.   

This gave us a separate t-statistic value for each of 
the 500 datasets within each cell.  We then counted the 
number of datasets that were statistically significant at 
the .05 level, and divided by 500, giving us the 
proportion of times the true relationship for that link 
was detected; in other words, the power of the test. 

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

6



 

Table 2. Results of Tests of Path Coefficients, 
Proportion Significant 

 
Gamma 1 --Strong Effect Size 
n= 40 90 150 200 
Predicted 0.79 0.99 0.99 0.99 
95% C.I. (.75, .83) (.98, 1.0) (.98, 1.0) (.98, 1.0)
MR 0.75 0.99 1.00 1.00 
PLS 0.78 0.98 1.00 1.00 
LISREL 0.69* 0.98 1.00 1.00 
PLS-R 0.81 0.99 1.00 1.00 
Gamma 2 – Medium Effect Size 
n= 40 90 150 200 
Predicted 0.45 0.81 0.96 0.99 
95% C.I. (.41, .49) (.77, .85) (.94, .98) (.98, 1.0)
MR 0.40 0.76 0.92 0.97 
PLS 0.41 0.76 0.93  0.98 
LISREL 0.37* 0.79 0.95 0.98 
PLS-R 0.50 0.83 0.95 0.98 
Gamma 3 – Weak Effect Size 
n= 40 90 150 200 
Predicted <25 <25 0.29 0.35 
95% C.I. N/A N/A (.25, .33) (.31, .39)
MR 0.09 0.16 0.27 0.29 
PLS 0.09 0.16 0.25  0.29 
LISREL 0.11* 0.19 0.28 0.31 
PLS-R 0.21 0.28 0.39 0.40 
Gamma 4 – No Effect 
n= 40 90 150 200 
Allowable 0.05 0.05 0.05 0.05 
95% C.I. (.03, .07) (.03, .07) (.03, .07) (.03, .07)
MR 0.06 0.05 0.04 0.03 
PLS 0.07 0.05 0.04 0.03 
LISREL 0.08* 0.05 0.04 0.04 
PLS-R 0.14 0.12 0.11 0.09 

 
(* Note that N=40 is well below any recommended 

minimum size for LISREL analysis.  In fact, 11 of the 
500 datasets did not converge at this sample size, even 
though the underlying model has very well behaved 
data.)   

 
To understand the presentation of our findings, 

consider the entries under Gamma1 (strong effect 
size), with n=40.  The expected power (the row 
labeled Predicted) is .79.  That is, according to 
Cohen’s power analysis for regression, we expect that 

79% of the 500 datasets will have statistically 
significant links in a regression analysis.    A standard 
equation for the confidence interval of a proportion 
suggests that for n=500 (there are 500 different 
samples and, therefore, 500 t-statistic values for 
Gamma1 in this cell), the 95% confidence interval 
around .79 is about .75 to .83.   

Our analysis shows that with regression, 75% of 
the 500 runs had significant paths for Gamma1.  For 
PLS it was 78%, and for LISREL it was 69%.   (Ignore 
the line labeled ‘PLS-R’ for the moment; we return to 
it shortly).  The values for regression and PLS are 
close to the predicted power level, but the value for 
LISREL was below the 95% confidence range.  Note 
that the sample size of 40 is well below the minimum 
recommended for LISREL, and hence it is not 
surprising to see that some runs did not converge, and 
the overall power was below that desired.  Since the 
values for regression and PLS are near the target for 
power of 80%, we would conclude that these two 
techniques have almost sufficient power to detect 
strong effect sizes with N equal or greater than 40.  
Since both are within the 95% confidence interval, we 
cannot conclude that one is better than the other.   

Continuing with the strong effect size (Gamma1) 
and looking now at n=90, 150 and 200, we see that all 
three approaches had very strong power (98% to 
100%).  Here all three were within the 95% confidence 
interval for predicted power of regression based on 
Cohen’s (1988) power analysis.   

Moving to Gamma2 (medium effect size) at n = 40, 
we see that Cohen’s (1988) power analysis predicts a 
power of 45% with a confidence interval of .41 to .49.  
PLS was at the bottom of this limit, but regression and 
LISREL were slightly below it.  However, LISREL 
results at such small sample sizes must be viewed with 
some skepticism.  In addition, it should be clear that a 
power of less than 50% is unacceptable, since there is 
only a fifty-fifty chance that true relationships will be 
detected.  None of the techniques had even close to an 
acceptable level of power for a medium effect size at 
N=40.   

For medium effect sizes with sample sizes of 90 
and above, power is close to acceptable for all three 
techniques -- about 76-79% for N= 90, and above 90% 
for larger sample sizes.  Again at N=90 and above, 
both regression and PLS had a level of power slightly 
below the 95% confidence interval.   

For Gamma3 (weak effect size), note that none of 
the techniques had sufficient power (i.e., 80%), even at 
n = 200.  Given the typical sample sizes used in IS 
research, we suspect most IS research does not have 
enough power to detect weak effects.     

For Gamma4 (no effect), we note that all results 
fall within the 95% confidence interval around .05, 
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with the exception of LISREL at N=40.  None of the 
techniques falsely identified significant paths that did 
not exist for sample sizes of 90 or above, over the 
normally acceptable limit of .05.  The exception for 
LISREL at a size of 40 should be discounted, for the 
reasons discussed previously. 

One possible criticism of our work to this point is 
that we are using two different methods for testing for 
statistical significance; normal theory testing for MR 
and LISREL, and bootstrapping for PLS.  Our 
rationale for doing so is that we wished to compare the 
three techniques within the context of how they are 
normally used by MIS researchers.   

To address this possible concern, we conducted 
additional analyses to see what impact (if any) there 
would be if we were to test PLS using normal theory 
testing.  More specifically, we ran the PLS analysis for 
all 500 datasets in each sample size condition, then 
stripped off the indicator weights for each construct 
and used those and the raw data to determine construct 
scores for each data point (each data point can be 
thought of as a "questionnaire").  These construct 
scores were then fed into a regression analysis which 
estimated the betas and t-statistics for each of the 500 
datasets, using normal theory testing.  The path 
estimates are displayed in Table 1, and the proportion 
of t-statistics that are significant (i.e. the power) for 
each effect size and N are displayed in Table 2, under 
the label ‘PLS-R’. 

Three things are worthy of note in the results.   
First, the path estimates derived from PLS are almost 
identical, whether bootstrapping or normal theory 
testing is employed.  Second, the power of PLS with 
regression significance testing (labeled PLS-R in 
Table 2) dominates all three other approaches for 
strong, medium and weak effect sizes at N=40, and 
dominates or is very close for those effect sizes at 
N=90.  At sample sizes of 150 and above, this 
advantage seems to have disappeared and the power of 
PLS-R is generally similar to the other techniques and 
is within the confidence interval of expected power.  
On the face of it, this is strong evidence that PLS with 
normal theory significance testing is a more 
efficacious technique (has more power) than the other 
techniques at small sample sizes.  

However, PLS-R also finds far more significant 
betas for Gamma 4, for which there is no actual effect.  
The other techniques all find between 3 and 7% of 
these false positives, within a 95% confidence interval 
around the allowable amount of 5%.  PLS-R finds 
between 12 and 14% of these false positives for small 
and medium sample size, and .11 and .09 at N=150 
and N=200, respectively.  This is strong evidence that 
PLS-R detects an unacceptably high number of ‘false 
positives’.   

Our interpretation of why this occurs is the 
following.  PLS has more "levers" available to it to 
capitalize on chance than regression.  Regression can 
only vary the beta coefficients, while PLS can vary 
both the beta coefficients and the indicator weights.  
This gives PLS a stronger ability to capitalize on any 
chance high correlations of a particular indicator and 
the dependent construct.  Especially with small sample 
size, often these chance high correlations come about 
through one or a few outlier data points.  

 Bootstrapping, because of the way it determines 
the standard error for significance testing, will react to 
such outliers with a larger standard error, since in the 
resamples sometimes the outlier data point will be 
included and sometimes it will not.  However, PLS-R 
allows the PLS algorithm to capitalize on chance, and 
does not correct for this using bootstrapping.  The 
result is an unacceptably high percent of false 
positives with PLS-R.   

This suggests that the higher power of PLS-R for 
strong, medium and weak effect sizes may also be due 
to capitalization on chance.  It further suggests that the 
approach of using PLS to determine indicator 
weightings and then using those weightings and 
indicators scores as input to a regression analysis is 
probably not appropriate.   

No published work that we are aware of has 
advocated this approach.  Obviously we need further 
investigation of this issue before offering any 
definitive statements, but, based on our results, we 
would not recommend employing it.   

 
 

4. Limitations and Opportunities for Future 
Research 

 
Certain limitations inherent in the study need to be 

acknowledged.  First, the model that we used is quite 
simple, with four independent and one dependent 
variable, which may well favor regression.  PLS may 
have more relative advantage when employed with 
more complicated models.  Future research could 
expand the range of models to include those with 
mediating and moderating effects, as well as those 
with a larger number of antecedent constructs. 

In addition, the data generated for use in this study 
were designed to be normally distributed and have 
relatively high factor loadings with little cross-
loadings.  While use of such well-behaved data created 
a level playing field for the three statistical techniques 
tested, actual field data often exhibits more 
challenging characteristics.  Future studies could be 
designed to test the three techniques across a variety of 
data conditions, including low reliability of measures 
and indicators that cross-load (i.e., load on constructs 
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other than the one they are intended to measure).  
Furthermore, our study employed only measures that 
were reflective in nature.  It would be useful to 
examine the impact of formative indicators [1].  PLS 
might have an advantage under those conditions. 

Finally, future research could investigate the 
impact of using bootstrapping approaches for all three 
techniques, or provide a more thorough testing of 
standard normal theory testing for all three under more 
diverse conditions (e.g., complexity of the model, 
weaker reliability of measures, etc.). 

 
 

5. Conclusions 
 

5.1 Accuracy of estimates   
 
Similar to other researchers [7] we observed that 

the average path coefficient estimates obtained from 
PLS were slightly closer to the true values than those 
obtained by regression.  The LISREL estimates were 
the closest to the true values.  However, as argued 
earlier, without statistical significance, accuracy 
contributes no scientific knowledge.   

 
5.2 Statistical significance and power   

 
Does PLS with bootstrapping provide more 

statistical power than other techniques at small sample 
size?  Champions of PLS may take some comfort in 
the fact that for N = 40, PLS had 3% and 1% higher 
power than regression for strong and medium effect 
sizes, but on the other hand PLS had the same power 
as regression at weak effect size, and found 1% more 
false positives.   

However, since the 95% confidence interval 
around these power values spans some 4 to 8 
percentage points, none of these differences are 
statistically significant.  In that sense we would have 
to say that there is no evidence that either PLS or 
regression has an advantage in terms of power at small 
sample size.  

  
5.3 The "rule of 10"versus Cohen 

 
Using commonly cited sources [1, 5] and the “10 

times” rule of thumb, N = 40 is the recommended 
minimum sample size for this model with PLS.  At 
N=40 with a weak or medium effect size, none of the 
techniques had even close to the 80% recommended 
power – all were less than 50%.   Only for a strong 
effect size (and high reliability) did the "10 times" rule 
lead to acceptable power.  On the other hand, Cohen's 
calculations for the power of regression analysis 
correctly predicted power in virtually all cases, for all 

sample sizes, all effect sizes and all techniques.  The 
one exception was LISREL at small sample size, 
consistent with unanimous suggestions in the literature 
that LISREL requires greater sample size.  At larger 
sample size, if any technique had the edge in terms of 
power, it was LISREL, though that edge generally did 
not put LISREL outside the 95% confidence interval.   

This is strong evidence that, general beliefs in the 
MIS research community to the contrary, the "10 
times" rule for sample size should not be used as a 
guideline when employing either PLS or regression for 
anything but a strong effect size with high reliability.  
Stated another way, the "10 times" rule does not take 
into account effect size, reliability, number of 
indicators, or other factors which are in one fashion or 
another are known to affect power.  It is therefore a 
misleading guide for acceptable sample size.  We 
suggest that the MIS research community should move 
quickly away from the claim that PLS has special 
abilities at small sample size, and away from the "10 
times" rule.   

We need to consider what this might mean in terms 
of existing published research that found significant 
results using PLS with small sample size.  Since the 
small increase in false positives for PLS versus 
regression is not statistically significant, there is 
nothing in our findings to suggest that any previously 
reported statistically significant results found with PLS 
are false positives. 

Now consider cases where the "10 times" guide to 
sample size were used, and no statistically significant 
results were found (in either published or unpublished 
studies).  Our results clearly suggest that it would be 
incorrect to assume that the relationships tested do not 
exist.  Because power was likely too low, these low 
power non-statistically significant results do not 
convey any scientific knowledge.  Further, the 
interpretation of results using regression at small 
sample sizes would be exactly the same -- significant 
results are probably there; non-significant results 
convey no scientific knowledge.    

We recognize that our conclusions are based on a 
quite simple model, with normally distributed data.  
However, this is not different from earlier Monte 
Carlo work on PLS and small sample size [7].  
Additional research should explore more complex 
models, different levels of reliability, and non-normal 
data.  However, we submit that if PLS has special 
abilities at small sample size, we should have seen 
evidence of those under the conditions used in this 
study.   

Finally, we want to stress that PLS did not 
perform worse in terms of statistical power than the 
other techniques for normally distributed data, even 
though it seems to have no special abilities at small 
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sample size.  It is still a convenient and powerful 
technique that is appropriate for many research 
situations, such as complex research models with 
sample sizes that would be too small for covariance-
based SEM techniques. Unfortunately, however, PLS 
does not provide researchers with a magic bullet for 
achieving adequate statistical power at small sample 
sizes.   
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