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Abstract

Microbial communities are highly dynamic and sensitive to changes in the environment. Thus, microbiome data are highly susceptible
to batch effects, defined as sources of unwanted variation that are not related to and obscure any factors of interest. Existing batch effect
correction methods have been primarily developed for gene expression data. As such, they do not consider the inherent characteristics
of microbiome data, including zero inflation, overdispersion and correlation between variables. We introduce new multivariate and
non-parametric batch effect correction methods based on Partial Least Squares Discriminant Analysis (PLSDA). PLSDA-batch first
estimates treatment and batch variation with latent components, then subtracts batch-associated components from the data. The
resulting batch-effect-corrected data can then be input in any downstream statistical analysis. Two variants are proposed to handle
unbalanced batch x treatment designs and to avoid overfitting when estimating the components via variable selection. We compare
our approaches with popular methods managing batch effects, namely, removeBatchEffect, ComBat and Surrogate Variable Analysis, in
simulated and three case studies using various visual and numerical assessments. We show that our three methods lead to competitive
performance in removing batch variation while preserving treatment variation, especially for unbalanced batch × treatment designs.
Our downstream analyses show selections of biologically relevant taxa. This work demonstrates that batch effect correction methods
can improve microbiome research outputs. Reproducible code and vignettes are available on GitHub.

Keywords: microbiome data, multivariate, non-parametric, dimension reduction, batch effect correction

Introduction
Investigating the link between microbial composition and pheno-
types, including human diseases, is the main goal of microbiome
research. The disruption of gut microbial communities has been
linked to varieties of diseases and sub-health status, ranging from
inflammatory bowel disease [1], diabetes [2] to obesity [3] and
malnutrition [4].

However, microbiome research faces the challenges of data
reproducibility and replicability that invalidate statistical results.
Because microbial communities are highly dynamic [5], micro-
biome data are highly susceptible to batch effects, that is, any
unwanted sources of variation that are unrelated to and obscure
the biological factors of interest [6]. Microbiome studies affected
by batch affects are increasingly abundant in the literature:
unwanted variation can be introduced by changes in technical
procedures including sample collection, shipping and processing
[7–9] or from independent studies [10]. Other confounding factors
including geography, age, sex, stress and diet also introduce batch
effects to the composition of the host microbiota [11–14]. These
batch effects often mask the biological effects of interest. Batch
effect management is therefore critical to improve the validity of
microbiome studies’ results.

Two types of approaches exist to handle batch effects [6]:
methods that correct for batch effects consist in removing batch

variation from the data; methods that account for batch effects
include batch effects as covariates in the statistical model. Eval-
uating the effectiveness of the former is easier than the latter
through numerical and graphical analyses [6].

Methods that account for batch effects are often restricted
to differential abundance analysis with models that hold strong
assumptions about data distribution. They include zero-inflated
Gaussian model [15] and Bayesian Dirichlet multinomial regres-
sion [16].

Methods that correct for batch effects are the most flexible
and any type of downstream analysis can be applied to the
resulting batch-effect-corrected data, including dimension reduc-
tion, visualization and clustering. However, for microbiome stud-
ies, these methods are challenged by small sample sizes, which
increase the uncertainty of batch effect estimation [17]. In addi-
tion, batch effect correction methods assume that batch and
treatment effects are independent, requiring a balanced batch
× treatment design [6]. However, microbiome experiments often
result in unbalanced designs where batch and treatment effects
are partly confounded, leading to the loss of treatment variation
during the batch effect correction process.

The multivariate method Remove Unwanted Variation (RUV)
has been recently adapted for microbiome data [18, 19],
but requires negative control variables and technical sample
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replicates that capture batch variation, which are not often
available in microbiome studies. Two methods percentile-
normalization [20] and NetMoss [21] were developed to remove
batch effects for microbial studies, but are only valid for case-
control studies, which narrow the scope of their application.

Several batch effect correction methods have been developed
for gene expression data [22, 23]. However, they are challenged
by the inherent characteristics of microbiome data including zero
inflation, uneven library sizes and compositional structure (even
if data are transformed beforehand, for example, with centred
log ratio transformation). Univariate methods disregard the inter-
dependent relationships between microrganisms [24]. They also
assume that batch effects are systematic and thus have a homo-
geneous influence on all microbial variables, which was found to
be unlikely [6]. When non-systematic batch effects are mistakenly
treated as systematic, biological variation of interest might be
removed from the data, or the batch variation may remain during
the batch effect correction process.

Promising methods have been proposed in other fields of
application, such as single-cell RNA-sequencing. Seurat V3 [25],
mnnCorrect [26], scmerge [27], zinbwave [28] assume a zero-
inflated distribution but are only effective for very large sample
size.

We propose novel approaches to correct for batch effects in
microbiome data based on Partial Least Squares Discriminant
Analysis (PLSDA [29]). PLSDA-batch is highly suitable for micro-
biome data as it is non-parametric, multivariate and allows for
ordination and data visualization. Latent components related
to treatment and batch effects are estimated to remove batch
variation in the data while preserving biological variation of inter-
est. Two other variants are proposed for unbalanced batch ×
treatment designs and to select discriminative microbial variables
among treatment groups. We assess the performance of PLSDA-
batch in extensive simulation studies and three case studies
that investigate microbial communities in sponge tissues, anaer-
obic digestion conditions and diet types in mice. We compare
the efficiency of our approaches in removing batch effects and
uncovering treatment effects with popular linear methods that
have been previously applied in microbial studies [30–32], such
as ComBat and removeBatchEffect. As our approach shares some
similarities with Surrogate Variable Analysis (SVA), besides the
fact that it accounts, rather than corrects for batch effects, we
include some comparisons in the simulation studies.

Methods
Our three approaches are derived from PLSDA [29] to correct batch
effects. We first give a brief description of the core method Partial
Least Squares (PLS [33]), and its PLSDA extension for classification
problems. We will use the following notations: X denotes an (n×p)

explanatory data matrix with p microbial variables and Y an (n×q)

data matrix with q response variables. Both datasets match on
the same n samples. We denote the matrix transpose by �. The �1

norm of a random vector v (v ∈ R
p×1) is defined as ||v||1 = ∑p

i=1 vi

and the �2 norm is ||v||2 =
√∑p

i=1 v2
i .

PLS and sparse PLSDA
PLS, a.k.a Projection to Latent Structures is an orthogonal
component-based regression method commonly used to model
the covariance structure between explanatory (X) and response
(Y) matrices in large datasets. The optimization problem to

solve is

arg max
||α||2=1||β||2=1

cov(Xα, Yβ), (1)

where α ∈ R
p×1 and β ∈ R

q×1 represent the loading vectors of X and
Y, respectively. The aim of PLS is to find the linear transformations
(α and β) of X and Y that maximize the covariance between
their latent components denoted as t and u, respectively, with
t = Xα and u = Yβ, t, u ∈ R

n×1. After the first pair of latent
components (t, u) is obtained, the residual matrix is calculated via
matrix def lation as

Xresiduals = X − tγ , (2)

where γ = (t�t)−1t�X. γ represents the regression coefficient
vector for each variable in X on t, γ ∈ R

1×p. Similarly, we can
calculate the residual matrix Yresiduals by deflating the matrix Y
with u. The deflated matrices are then used as updated X and Y for
the next PLS dimension. The deflation steps ensure that the latent
components associated with each PLS dimension are orthogonal.

PLSDA is an adaption of PLS for classification and discrimina-
tion, where the response matrix Y is a dummy matrix transformed
from a categorical outcome variable. Each column in Y indicates
the group membership of each sample: If sample i belongs to
group j, then Yij equals 1, otherwise 0. For each dimension h =
1, ..., H, the latent components th and uh are calculated as shown
earlier in Eq.(1). th summarizes the variation from X that is asso-
ciated with uh, whereas uh is a linear combination of the dummy
outcomes in Y. Thus, the th component is mostly relevant to
explain the discrimination between sample groups.

In PLSDA, we need to specify the optimal number of com-
ponents H. It can be chosen using repeated cross-validation to
estimate the classification error rate on each component th. As
PLSDA is an iterative process based on deflated matrices, the H
components that yield the lowest error rate correspond to the
overall performance of the PLSDA model [34].
sparse PLSDA (sPLSDA) uses �1 penalization on the loading vectors
[α1, ..., αH] in PLSDA to select variables [35]. During the regression
step, for each component h = 1, ..., H, the penalty is solved with
soft-thresholding in Eq.(1):

arg max
||αh ||2=1||βh ||2=1

cov(Xhαh, Yhβh) + λh||αh||1, (3)

where λh is a non-negative parameter that controls the amount of
shrinkage on the loading vector αh and thus the number of non-
zero loadings. The latent component th is therefore calculated
based on a subset of variables that are deemed most discrimina-
tive to classify the sample groups.

Two types of parameters need to be specified in sPLSDA: the
number of components H and the number of variables to select on
each component, which corresponds to the shrinkage coefficient
λh. Both parameters can be chosen simultaneously using repeated
cross-validation by evaluating the classification error rate on a
grid of number of variables to select on each component [34].

PLSDA-batch
PLSDA-batch aims to estimate and remove batch variation while
preserving treatment variation. We use additional notations as
we include in the model two different types of sample informa-
tion, treatment and batch, denoted Y(trt) and Y(batch), respectively.

The matrices A(trt) =
[
α

(trt)
1 , ..., α(trt)

H(t)

]
and B(trt) =

[
β

(trt)
1 , ..., β(trt)

H(t)

]
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include the loading vectors associated with X and Y(trt), respec-
tively, where H(t) is the number of components associated with the
treatment variation. The corresponding latent components are

denoted T(trt) =
[
t(trt)
1 , ..., t(trt)

H(t)

]
and U(trt) =

[
u(trt)

1 , ..., u(trt)
H(t)

]
. Similar

notations are used for the loading vectors and latent components
associated with the batch effect across H(b) components. We will
use simplified notations without superscript, such as Y, A, H and T
that are related to either treatment or batch variation when there
is not ambiguity. X(nobatch) is the matrix from which the batch effect
is removed, and similarly X(notrt) for the treatment effect.

Overview
The general concept of PLSDA-batch is shown in the first col-
umn of Figure 1. Assuming X includes both treatment and batch
effects, the samples projected onto a Principal Component Analy-
sis (PCA) plot would be segregated according to both treatment
and batch information. In a first step, PLSDA-batch estimates
the treatment variation with the components T(trt), which are
extracted from X to obtain X(notrt), so that only batch variation
remains. The second step estimates the batch associated compo-
nents T(batch) from X(notrt). The original dataset X is then deflated
with T(batch) to obtain the final matrix corrected for batch effects
while preserving the treatment variation X(nobatch).

Algorithmic and geometrical point of views
The remaining columns in Figure 1 further describe the approach.
For illustrative purposes, we only depict the case where only one
component is associated with either treatment or batch effects
rather than several components. The data matrix X with both
treatment and batch effects can be decomposed into three major
sources of variation: treatment, batch and residuals. All these
sources are assumed to be independent but in practice, treatment
and batch sources are likely to be correlated to some extent. This
motivated our approach to first estimate the treatment variation
to avoid over-estimating the batch variation and losing substantial
treatment variation.

In the first step, we apply PLSDA to X and Y(trt) to identify
the dimension of treatment effects α(trt) from X (see Algorithm 1
‘Estimation of latent dimensions’). t(trt) is then calculated using a
scalar projection of X onto α(trt). Therefore, the treatment variation
of all variables in X is summarized in the component t(trt). We
then calculate the matrix without treatment effects X(notrt) by
deflating X with t(trt). In the second step, we identify the batch-
associated dimension α(batch) from X(notrt), then calculate t(batch)

by projecting X onto α(batch). The batch variation t(batch) is then
removed from X via matrix def lation while ensuring the treatment
effects are fully preserved. Since the components t(trt) and t(batch)

are orthogonal, we could also deflate X(notrt) with respect to t(batch)

but such alternative would require adding the treatment variation
back.

Weighted PLSDA-batch
A balanced batch × treatment design is an experimental design
where samples within each treatment group are evenly dis-
tributed across batches [6]. Because of experimental constraints,
a batch × treatment design may be unbalanced, resulting in
treatment and batch effects that are correlated and not separable.
In PLSDA-batch, latent components associated with either treat-
ment or batch effects are assumed to be orthogonal, thus ignoring
the correlation between these two effects. The consequences
might be over-estimation of the treatment variation as well as

insufficient removal of the batch variation. Weighted PLSDA-
batch (wPLSDA-batch) is inspired from weighted PCA to account
for unbalanced designs [36], but in the case of PLSDA-batch
the weight is defined accordingly. Further details on defining
the weights are described in the Supplemental Section S2. Each
sample i is assigned a weight wi to take into account the number
of samples within each batch and treatment:

wi =
B∑

b=1

C∑
c=1

Y(batch)

i,b Y(trt)
i,c

1√
nb,c

, (4)

where Y(batch)

i,b represents the indicator value (0 or 1) of sample

i and batch b in the dummy matrix Y(batch), and similarly for
Y(trt)

i,c . nb,c represents the sample size in batch b and treatment
group c. W is a diagonal matrix that includes wi, i = 1, . . . , n. We
obtain the weighted explanatory and response matrices X(weighted)

and Y(weighted) by multiplying X and Y with W, respectively. The
batch-effect-corrected data X(nobatch & weighted) resulting from the
calculation on the weighted matrices using PLSDA-batch are then
multiplied by W−1 to remove the influence of weights.

Sparse PLSDA-batch
In PLSDA-batch, the latent components are calculated based on
all variables, thus assuming that all microorganisms are affected
by the treatment (e.g. antibiotics). In most microbial studies, we
can instead make the assumption that only a small number of
microorganisms are affected by the treatment [37]. In that case,
the batch-effect-corrected matrix X(nobatch) may not be accurate as
it depends on the calculation of the treatment components T(trt).
These components are most likely to be affected by batch-related
variables, especially when batch effect variability is high among
samples.

To avoid overfitting when we estimate the treatment compo-
nents, we apply �1-penalty to each treatment associated loading
vector (see Eq. (3)) to select variables. Thus, variables with no treat-
ment effect are assigned a zero loading value and are not included
in the calculation of a component. Batch effects are assumed
to be less microorganism specific than treatment effects. Thus,
to ensure that the batch variation is fully captured, no variable
selection is performed on the batch components.

Parameter tuning
In PLSDA-batch, we need to specify the optimal number of
components associated with either treatment or batch effects
(H(t) or H(b)). To choose this parameter, we estimate the variance
explained in the outcome matrix Y(trt) on each treatment
component t(trt)

h(t) , h(t) = 1, ..., H(t) and similarly for the batch-
associated outcome matrix and components. We choose the
optimal number of components that explain 100% variance in
either Y(trt) or Y(batch). The remainder components should only
explain some (unknown) noise.

In sPLSDA-batch, in addition to the parameter above, we also
need to specify the optimal number of variables to select on each
treatment component. For this purpose, we calculate the balanced

classification error rate BER =
∑C

c=1
Fc

Tc+Fc
C ), where Fc and Tc represent

the number of false and truly classified samples in the treatment
group c, c = 1, . . . , C, where C represents the total number of treat-
ment groups [38]. The BER is evaluated through repeated cross-
validation using the ‘maximum’ prediction distance as described
in [34] on a proposed grid of number of variables to select on
each treatment component. The number of variables yielding the
lowest BER is the optimal parameter.
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Figure 1. PLSDA-batch framework. From left to right columns: Visualization with Principal Component Analysis sample plots; Workflow describing
each step of Algorithm 1 and Geometrical representation of the approach via projections and deflation. For illustrative purpose, we only represent one
component associated with either treatment or batch effects.

Simulation and case studies
Simulation study
Microbiome data are multivariate with inherent correlation struc-
ture between microbial variables. The data are over-dispersed
with a distribution close to a negative binomial distribution [39,
40]. Inspired by [41], we simulated data from multivariate nega-
tive binomial distribution achieved with quantile–quantile trans-
formation between multivariate normal and negative binomial

distributions. To add treatment and batch effects, we used matrix
factorization to simulate the mean for modelling negative bino-
mial distribution as a matrix

� =
⎡
⎢⎣

θ11 ... θ1M

... ... ...
θ1N ... θNM

⎤
⎥⎦
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Algorithm 1 PLSDA-batch

Initialisation

X and Y are centered and scaled

Main algorithm

A(trt) ← PLSDA(X, Y(trt)) � to preserve treatment variation from X
X(notrt) ← Deflation(X, A(trt))

A(batch) ← PLSDA(X(notrt), Y(batch)) � to remove batch variation in X
X(nobatch) ← Deflation(X, A(batch))

Sub-steps

PLSDA(X, Y): Estimation of latent dimensions
Initialise X1 = X and Y1 = Y

For h = 1, ..., H, initialise αh as the left singular vector of the singular value decomposition of X�
h Yh, with ||αh||2 = 1

Repeat until convergence of αh and βh

th ← Xhαh � latent components associated to X
βh ← (Yh)

�th � loading vectors associated to Y
βh ← βh/||βh||2 � standardisation
uh ← Yhβh � latent components associated to Y
αh ← (Xh)

�uh � loading vectors associated to X
αh ← αh/||αh||2 � standardisation

Xh+1 ← Deflation(Xh, αh) and Yh+1 ← Deflation(Yh, βh) � matrix deflation
Output: A = [α1, ..., αH]

Deflation(X, A): Deflation of X on latent dimensions A
Initialise X1 = X

For d = 1, ..., D
αd = A[, d]
td = Xdαd � projection of X on latent dimensions
γ d = (t�

d td)
−1t�

d Xd � regression coefficients
Xd+1 = Xd − tdγ d � matrix deflation

Output: XD+1

for N samples and M microbial variables as follows:

� = exp(x�
(trt)β

(trt) + x�
(batch)β

(batch) + ε), (5)

where x(trt) and x(batch) represent the design vectors of treatment
and batch effects, respectively, for each sample. β(trt) and β(batch)

represent the regression coefficients of treatment and batch
effects for each microbial variable, and β

(trt)
j ∈ N(μ(trt), σ 2

(trt)),

β
(batch)

j ∈ N(μ(batch), σ 2
(batch)

). ε contains the random noise that is
independent and identically distributed (i.i.d) and εij ∈ N(0, δ2), in
which i = 1, 2, ..., N samples, j = 1, 2, .., M variables.

The probability matrix

P =
⎡
⎢⎣

p11 ... p1M

... ... ...
p1N ... pNM

⎤
⎥⎦

for modelling negative binomial distribution is calculated as

pij = r
r + θij

, (6)

where pij and θij represent the probability of success in each trial
and the mean for negative binomial distribution of sample i and
microbial variable j, and r is the dispersion parameter represent-
ing the number of successes.

We then simulated a data matrix based on multivariate normal
distribution with mean 0 and correlation matrix �:

Xnormal = N(0, �), (7)

where the correlation matrix � was simulated with the strategy
adapted from [42] as follows: We first generated a lower triangular
matrix L, in which the diagonal elements follow Unif (1.5, 2.5),
and the other elements Unif (−1.5, 1.5). We randomly set the ele-
ments outside the diagonal of L to zero with probability 0.7. A
precision matrix, which is the inverse of covariance matrix, was
created as R−1 = LL�. The corresponding correlation matrix �

to R was then obtained. These parameters were set according
to [42].

Thereafter we used Cumulative Distribution Function (CDF) to
achieve quantile–quantile transformation as

CDF
(
xnormal

ij

)
= CDF

(
xnb

ij

)
, (8)

where CDF(xnormal
ij ) represents the cumulative probability of

xnormal
ij for sample i and variable j that belongs to matrix

Xnormal from multivariate normal distribution as Eq.(7). CDF(xnb
ij )

represents the cumulative probability of each xnb
ij in matrix Xnb

from negative binomial distribution as Eq.(9).
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Table 1. Summary of simulation scenarios (two batch groups). For a given choice of parameters reported in this table, each simulation
was repeated 50 times. M(trt), M(batch) and M(trt & batch) represent the number of variables with treatment, batch or both effects,
respectively. Simulation 6 includes parameters likely to represent real data according to our experience in analysing microbiome
datasets.

Parameters μ(trt) σ(trt) μ(batch) σ(batch) M(trt) M(batch) M(trt & batch)

Simulation 1 3 1 7 {1,4,8} 60 150 0
Simulation 2 {3,5,7} 1 7 8 60 150 0
Simulation 3 3 {1,2,4} 7 8 60 150 0
Simulation 4 3 2 7 8 {30,60,100,150} 150 0
Simulation 5 3 2 7 8 60 {30,60,100,150} 0
Simulation 6 3 2 7 8 60 150 {0,18,30,42,60}

Table 2. Unbalanced batch × treatment design in the
simulation study for two batch groups

Trt1 Trt2

Batch1 4 16
Batch2 16 4

Based on the cumulative probability from Eq.(8), we can simu-
late a data matrix Xnb with multivariate negative binomial distri-
bution:

Xnb = NB(r, P, �), (9)

where r represents the dispersion parameter, P represents the
probability matrix and � the correlation matrix explaining the
dependence structure between microbial variables.

We simulated datasets with different parameters including
amount of batch and treatment effects (μ(batch), μ(trt)) and variabil-
ity among variables (σ(batch), σ(trt)), number of variables with batch
and/or treatment effects (M(batch), M(trt) and M(trt & batch)), balanced
and unbalanced batch × treatment designs, as summarized in
Table 1. The microbial variables with treatment or batch effects
were randomly indexed in the data with non-zero β(trt) or β(batch).
The background noise εij was randomly sampled from N(0, 0.22),
reflecting real microbiome datasets.

We also simulated datasets with different number of batch
groups:

(1) Two batch groups: Each dataset included 300 variables and
40 samples grouped according to two treatments (trt1 and
trt2) and two batches (batch1 and batch2). The balanced
batch × treatment experimental design included 10 samples
from two batches, respectively, in each treatment group. The
unbalanced design included 4 and 16 samples from batch1
and batch2, respectively, in trt1, 16 and 4 samples from
batch1 and batch2 in trt2 (see Table 2).

(2) Three batch groups: Each dataset included 300 variables and
36 samples grouped according to two treatments (trt1 and
trt2) and three batches (batch1, batch2 and batch3). The bal-
anced batch × treatment experimental design included six
samples from three batches, respectively, in each treatment
group. The unbalanced design included 2, 10 and 2 samples
from batch1, batch2 and batch3, respectively, in trt1, 10, 2
and 10 samples from batch1, batch2 and batch3 in trt2 (see
Table 3).

In addition, we simulated a ground-truth dataset that only
included treatment effects and background noise without batch
effects to evaluate batch effect correction methods.

Table 3. Unbalanced batch × treatment design in the
simulation study for three batch groups

Trt1 Trt2

Batch1 2 10
Batch2 10 2
Batch3 2 10

Our simulations generate over-dispersed count data with batch
and treatment effects as well as correlation structure among
variables, but without any compositional structure. We therefore
only applied natural log transformation to the simulated data
prior to analysis.

In these simulation scenarios, for PLSDA-batch we set C − 1 (or
B − 1) components associated with treatment (or batch) effects
(where C and B represent the total number of treatment and batch
groups respectively) as C − 1 (B − 1) components are likely to
explain 100% variance in Y. The number of variables with a true
treatment effect (M(trt)) is set as the optimal number to select on
each treatment component in sPLSDA-batch.

Case studies
We analysed three 16S rRNA amplicon datasets at the operational
taxonomic unit (OTU). The count data were filtered to alleviate
sparsity and transformed with Centered Log Ratio (CLR) transfor-
mation [43]. CLR is a pragmatic way to handle both uneven library
sizes and compositional structure in real data [37]. It also helps
reducing skewness in the data.

Sponge A. aerophoba. This study investigated the relation-
ship between metabolite concentration and microbial abundance
on specific sponge tissues [44]. The dataset includes the rela-
tive abundance of 24 OTUs and 32 samples collected from two
tissue types (Ectosome versus Choanosome) and processed on
two separate denaturing gradient gels in electrophoresis. The
tissue variation is the effect of interest, while the gel varia-
tion is the batch effect. This study includes a batch effect with
similar variation to the treatment effect, and a completely bal-
anced batch x treatment design. The sponge study enables us
to assess the efficacy of batch effect correction methods in such
circumstance.

Anaerobic digestion. This study explored the microbial indica-
tors that could improve the efficacy of anaerobic digestion (AD)
bioprocess and prevent its failure [45]. The dataset includes 231
OTUs and 75 samples treated with two different ranges of phenol
concentration (effects of interest). These samples were processed
at five different dates corresponding to batch effects. This study
includes a strong batch effect compared with the treatment effect,
with an approximately balanced batch x treatment design. The
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AD dataset enables us to assess whether batch effect correction
methods are able to remove sufficient batch variation in this case.

High fat high sugar diet. This study aimed to investigate the
effect of high fat high sugar (HFHS) diet on the mouse microbiome
[37]. This dataset includes 515 OTUs and 149 samples collected
at day 1, 4 and 7 from the mice treated with two types of diets
(HFHS versus normal). The diet variation is the treatment effect,
while the day variation constitutes a potential batch effect, which
is actually weak. The HFHS study enables us to assess whether
batch effect correction methods are able to preserve treatment
variation when batch effects are small.

For the PLSDA-batch analyses, we chose the number of com-
ponents that explained 100% variance in Y associated with either
treatment or batch effects (Sponge data: one treatment compo-
nent, one batch component; AD data: one treatment component,
four batch components and HFHS data: one treatment compo-
nent, two batch components). For sPLSDA-batch, we chose the
number of variables to select on each treatment component that
yielded the lowest BER from repeated cross-validation with four
folds and 50 repeats (Sponge data: one variable; AD data: 100
variables and HFHS data: two variables).

Benchmarking and assessment of batch effect
removal
We compared our approaches with removeBatchEffect, ComBat
and SVA. These methods are univariate and were originally
developed for gene expression data from microarray or RNA-
sequencing. They have been used extensively in microbiome
studies [30–32, 46, 47] even though they would require further
developments to be adapted to the inherent characteristics
of microbiome data. These methods’ limitations include the
inability to deal with non-Gaussian distribution, small sample
sizes and dependence between microbial variables. Similar to the
aim of our proposed methods, RemoveBatchEffect and ComBat
correct for batch effects to generate batch effect-free data for
downstream analysis, while SVA accounts for batch effects.
Both our approaches and SVA attempt to preserve treatment
variation prior to batch effect management to avoid information
loss, but the algorithms used to achieve this purpose differ.
However, SVA estimates and accounts for unknown batch effects,
which may result in overfitting the data, compared with our
approaches. Further details on these methods are described in the
Supplemental Section S1. We used a wide range of performance
measures to evaluate whether these methods are effective in
managing batch effects while preserving treatment effects.
These include classical accuracy measures used in simulation
studies where we know the ground-truth, that is, we know
which variables include batch and/or treatment effects [16], as
well as multivariate and univariate approaches to measure the
proportion of variance explained by batch and treatment effects
after batch effect removal.

Accuracy measures (simulation study only)
We identified variables with a true treatment effect after correct-
ing or accounting for batch effects using two approaches:

(1) Univariate one-way analysis of variance ANOVA) [48] to iden-
tify differentially abundant taxa between treatment groups
(Benjamini–Hochberg adjusted P-value < 0.05) followed by
accuracy measures described below,

(2) Multivariate sparse PLSDA to identify taxa that discrimi-
nate treatment groups followed by Area Under the Curve of
Receiver Operating Characteristics (AUC-ROC).

We measured the accuracy of the selected variables from one-
way ANOVA using Precision ( TP

TP+FP ), Recall ( TP
TP+FN ) and F1 score

(2∗ Precision∗Recall
Precision+Recall ), where TP is the number of true positives—the

variables assigned with treatment effects in the simulation and
correctly identified; FP the number of false positives—the vari-
ables without treatment effects but wrongly identified; FN the
number of false negatives—the variables with treatment effects
that were not identified. A high precision indicates an accurate
model with a low number of false positives, while a high recall
indicates a sensitive model with a low number of false negatives.
The F1 score balances both precision and recall, with a high score
indicating a model with good accuracy and sensitivity.

We measured the accuracy of the selected variables from
sPLSDA using AUC-ROC. As SVA does not generate batch-effect-
corrected data, we only considered the Precision, Recall and F1

score for this approach.

Proportion of explained variance across all variables
We used the multivariate method partial redundancy analysis
(pRDA) in the batch-effect-corrected data to calculate the propor-
tion of variance explained by treatment, batch effects and, most
importantly, their intersection [6, 49]. The intersectional variance
quantifies the unbalance in the batch × treatment design. A null
value indicates a completely balanced design.

Proportion of explained variance for each variable
We used the R2 value estimated with one-way ANOVA to calculate
the proportion of variance explained by treatment or batch effects
for each variable. The R2 values with either treatment or batch
effects were then visualized with boxplots. We also considered the
sum of all the R2 values to compare the methods globally.

Principal Component Analysis (case studies only)
We investigated the variance structure of the data before and after
batch effect correction using PCA. If batch effects account for the
largest proportion of variance in the data, we expect a separation
of the samples from different batches on the first component [6].

Alignment scores (case studies only)
We used the alignment score proposed for single-cell RNA-seq
datasets integration [50]. We extended the approach that was
originally developed based on canonical correlation analysis for
PCA. This score complements the qualitative results from PCA
to evaluate the degree of mixing samples from different batches
in the batch-effect-corrected data. The alignment score ranges
from 0 to 1 (poor to excellent mixing samples among the different
batches). We first perform a PCA on a given batch-effect-corrected
matrix to calculate a sample dissimilarity matrix based on the
principal components that explained at least 95% of the total
variance. Based on this dissimilarity matrix, the alignment score
is defined as

Alignment Score = 1 − x̄ − k
n

k − k
n

, (10)

where k represents the number of nearest neighbours and n repre-
sents the sample size. x is the number of each sample’s k nearest
neighbours that belong to the same batch and x̄ represents the
average of all x. In our case studies, we chose k = 0.1 ∗ n, a value
deemed reasonable for the sample size of our data.

Note that this score relies on PCA projection to calculate the
nearest neighbours. It is only relevant to compare several PCA
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Figure 2. Simulation studies (two batch groups): comparison of explained variance before and after batch effect correction for (A) balanced and (B)
unbalanced batch × treatment designs. The method pRDA estimated the proportion of variance explained by (from top to bottom) residuals, batch
effects, intersection of batch and treatment effects and treatment effects. All methods performed equally well in removing batch variance for a balanced
design except ComBat, while in an unbalanced design, our weighted variants wPLSDA-batch and swPLSDA-batch performed better than their unweighted
counterparts.

dissimilarity matrices (resulting from the batch-effect-corrected
matrices with different methods) where the samples have similar
sample distribution in their PCA projection.

Results
We benchmarked our three PLSDA-batch methods with remove-
BatchEffect, ComBat and SVA on the simulated datasets, then
against the former two on the three case studies.

Simulation studies
We first describe the results from a single simulation scenario
with two batch groups where parameters were representative of
real data, namely, μ(trt) = 3, σ(trt) = 2, μ(batch) = 7, σ(batch) = 8, M(trt) =
100, M(batch) = 200, M(trt & batch) = 50. The results for the other
scenarios are summarized in Supplemental Figures S1–S6.

pRDA assessment
Efficient batch effect correction methods should generate data
with a null proportion of variance explained by batch effects, and
a proportion of variance explained by treatment that is larger
compared with the original data, as shown in Figure 2A original
data and ground-truth data.

For a balanced batch × treatment design, we observed no
intersection shared between treatment and batch variance, as
expected. All methods successfully removed batch variance and
preserved (or slightly increased) treatment variance (sPLSDA-
batch), with the exception of ComBat where a very small amount
of batch variance remained.

For a strong unbalanced batch × treatment design (Figure 2B),
we observed the presence of intersectional variance explained
by both batch and treatment effects, as expected. This source of
variance is also present in the ground-truth data but should be
smaller compared with the uncorrected data. Both unweighted

PLSDA-batch and sPLSDA-batch performed poorly for such
design—for PLSDA-batch the intersectional variance increased,
while for sPLSDA-batch the batch variance was not entirely
removed. The other methods were successful in removing batch
variance. removeBatchEffect and ComBat explained a proportion
of variance by treatment similar to the ground-truth data,
while wPLSDA-batch and swPLSDA-batch explained slightly less
treatment variance.

R2 assessment
We estimated the proportion of variance explained by treatment
and batch effects for each variable using the R2 value.

In the balanced batch × treatment design (Figure 3A), remove-
BatchEffect and PLSDA-batch had the best performance, with
results very similar to the ground-truth data. ComBat retained
more batch variance of variables with batch effects only, and
with both batch and treatment effects, indicating an incomplete
removal of batch effects. This result is in agreement with the over-
all pRDA evaluation described earlier. For sPLSDA-batch, variables
with no treatment effect (batch effects only) included a slight
amount of (spurious) treatment variance. This was also observed
in pRDA evaluation. However, sPLSDA-batch performed as well as
PLSDA-batch when the simulated data did not include variables
with both batch and treatment effects.

We observed similar performance for removeBatchEffect and
ComBat for the unbalanced design (Figure 3B). With wPLSDA-
batch and swPLSDA-batch, variables with both treatment and
batch effects explained less treatment variance after correction,
compared with the ground-truth data. However, for the other
variables, wPLSDA-batch and its sparse version performed as
similar as the ground-truth data.

The sum of all the R2 values showed similar results
(Supplemental Figure S7).
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Figure 3. Simulation studies (two batch groups): R2 values for each microbial variable before and after batch effect correction for (A) balanced and (B)
unbalanced batch × treatment designs. Each box represents a summary of R2 values for variables simulated with the associated effects (batch or/and
treatment effects). Each R2 value was fitted for each variable from a one-way ANOVA with a treatment effect or batch effect as covariate (x-axis).
The colours indicate the effects assigned to each variable. In both designs, ComBat did not remove enough batch variation. For the balanced design,
sPLSDA-batch generated slightly spurious treatment variation for the variables with batch effects only. For the unbalanced design, wPLSDA-batch and
swPLSDA-batch generated data with less treatment variation for the variables with both treatment and batch effects compared with the ground-truth
data.
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Table 4. Simulation studies (two batch groups): summary of accuracy measurements before and after batch effect correction. The
proportion of correctly identified microbial variables with a true treatment effect was assessed with Precision, Recall, F1 score (using
one-way ANOVA as variable selection procedure) and AUC (using sPLSDA as variable selection procedure). Each value is the mean (or
standard deviation) over 50 repeats.

Before
correction

ground-truth
data SVA removeBatchEffect ComBat PLSDA-batch sPLSDA-batch

Balanced Precision 0.984 (0.04) 0.952 (0.08) 0.957 (0.06) 0.950 (0.09) 0.952 (0.08) 0.952 (0.08) 0.807 (0.11)
Recall 0.674 (0.03) 0.900 (0.03) 0.934 (0.03) 0.910 (0.03) 0.911 (0.03) 0.910 (0.03) 0.910 (0.03)
F1 0.799 (0.02) 0.923 (0.05) 0.944 (0.04) 0.927 (0.05) 0.929 (0.05) 0.929 (0.05) 0.851 (0.06)
AUC 0.944 (0.02) 0.964 (0.02) / 0.968 (0.02) 0.968 (0.02) 0.969 (0.01) 0.954 (0.02)

Before
correction

ground-truth
data

SVA removeBatchEffect ComBat wPLSDA-batch swPLSDA-batch

Unbalanced Precision 0.385 (0.01) 0.973 (0.05) 0.401 (0.02) 0.901 (0.09) 0.834 (0.08) 0.943 (0.05) 0.943 (0.05)
Recall 0.825 (0.03) 0.895 (0.03) 0.918 (0.03) 0.910 (0.03) 0.919 (0.03) 0.888 (0.03) 0.862 (0.03)
F1 0.525 (0.01) 0.932 (0.03) 0.558 (0.02) 0.903 (0.05) 0.873 (0.05) 0.914 (0.03) 0.900 (0.03)
AUC 0.704 (0.06) 0.967 (0.02) / 0.963 (0.02) 0.962 (0.01) 0.965 (0.01) 0.954 (0.02)

Accuracy measures
The results from the accuracy measures combined with variable
selection highlight the importance of removing batch effects as
both F1 score and AUC largely improved compared with the
original data (Table 4).

In the balanced design, starting from the original data com-
pared with the ground-truth data, selected variables had a higher
precision, lower recall and lower AUC, indicating a smaller num-
ber of variables selected with an actual treatment effect. Com-
bined with univariate one-way ANOVA, SVA performed best with
the highest, and sometimes greater, accuracy measurements than
the ground-truth data, as we discuss below. The other methods
led to similar performance with the exception of sPLSDA-batch,
which selected more false positives than the other methods.
PLSDA-batch led to a slightly better AUC than the other methods.

In the unbalanced design, the precision of SVA is low and very
similar to the original data, indicating that the performance of
SVA heavily depends on the experimental design and is likely to
overfit. This may explain the somewhat inflated results of SVA
in the balanced design case. wPLSDA-batch performed best with
results close to those from the ground-truth data.

We observed similar results but with higher resolution of these
accuracy measures for the other simulation scenarios presented
in Supplemental Figures S1–S6 and discussed in the Supplemental
Section S3.1. For simulations with three batch groups (parameters
μ(trt) = 3, σ(trt) = 2, μ(batch) = 7, σ(batch) = 8, M(trt) = 100, M(batch) =
200, M(trt & batch) = 50), we also observed similar results as the two
batch group cases (Supplemental Figures S8, S9 and S10 and Table
S1).

Summary of the simulation results
Our extensive simulation studies showed that weighted PLSDA-
batch was essential for an unbalanced batch × treatment design,
compared with its unweighted counterpart. Our PLSDA-batch
method preserved similar or slightly smaller proportion of treat-
ment variance compared with the other batch effect correction
methods, but achieved a higher F1 score and AUC especially
in an unbalanced design. When there was no variables with
both treatment and batch effects in the data, sPLSDA-batch-
and PLSDA-batch-corrected data were close to the ground-truth
data. However, when some variables included both these effects,
sPLSDA-batch performed slightly worse than PLSDA-batch. Our

results also suggested that SVA had a tendency to overfit the data,
while ComBat was not able to completely remove batch variation.
removeBatchEffect was not able to preserve enough treatment
effects for accurate variable identification.

Case studies
PCA
In the sponge data (Figure 4A), 24% of the total data variance was
explained by the first principal component, which highlighted a
strong difference of samples across different tissues (the effect
of interest). The batch variation accounted for 21% of the total
variance in the second component. Thus, in this study, batch
effects are smaller than the treatment effects. After batch effect
correction, the difference between batches became barely distinct
(Figure 4B–E), except for ComBat-corrected data where a clear
separation of the samples from two batches for the Choanosome
tissue could still be observed. The variance explained by the first
principal component that separated the different tissue types
was increased in all of the corrected data, with PLSDA-batch
and sPLSDA-batch resulting in the second highest proportion of
variance (27%) next to ComBat (28%).

In the AD study (Supplemental Figure S11), batch variation
was removed after correction from all methods. PLSDA-batch
performed the best as the proportion of variance explained by the
first component that was highly relevant to treatment variation
was larger than the explained variance for any other method.

In the HFHS data, the PCA plot indicated that batch variation
was only observed in one treatment group and was very weak
(Supplemental Figure S12). After batch effect correction, the batch
difference was removed and the proportion of variance explained
by the first component (related to treatment effects) was slightly
improved, indicating that treatment variation was still preserved.
This case study shows that batch effect correction methods are
still relevant when batch effects are very weak. However, sPLSDA-
batch performed the worst with a loss of treatment variance,
indicating this method is not appropriate to correct for very weak
batch effects.

Alignment scores
The alignment scores complement the PCA results when batch
effect removal is difficult to assess on PCA sample plots. In
Figure 5, we observed that the samples across different batches
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Figure 4. PCA sample plots of the sponge data (A) before or after batch effect correction using (B) removeBatchEffect, (C) ComBat, (D) PLSDA-batch or (E)
sPLSDA-batch. The colours represent the effect of interest (tissue types), and shapes the batch types. ComBat did not remove enough batch variation,
as samples still present a batch separation within the cluster of Choanosome.

Figure 5. Comparison of alignment scores for (A) sponge data, (B) AD data and (C) HFHS data before and after batch effect correction using different
methods. A large alignment score indicates that samples from different batches are well mixed based on the PCA dissimilarity matrix. The alignment
scores between methods can only be compared when samples have similar sample distribution in their PCA projection, i.e. for sponge and HFHS data.
In these two case studies, our method PLSDA-batch had a better performance than the univariate methods ComBat and removeBatchEffect.

were better mixed after batch effect correction with different
methods compared with the original data.

In the sponge study, the data corrected using PLSDA-batch
and sPLSDA-batch had higher alignment scores than using
removeBatchEffect and ComBat, indicating a better performance
in removing batch variation. The ComBat-corrected data had the
lowest alignment score, which was consistent with PCA that the
data still had residual batch variation remaining.

In the AD data, the alignment scores of the data corrected
with PLSDA-batch and sPLSDA-batch led to a poorer performance
than removeBatchEffect and ComBat. This may result from the
difference in the PCA sample projections of the batch-effect-
corrected matrices, as we discussed in the Methods section. The
data corrected with removeBatchEffect and ComBat had a large
variance in their PCA projection, while PLSDA-batch- and sPLSDA-
batch-corrected data had a small variance. A small variance
projection results in a small alignment score, as it is easy to locate
the samples from the same batch as nearest neighbours. In fact,

pRDA presented below quantitatively confirmed that both PLSDA-
batch and sPLSDA-batch entirely removed the batch variance.

For the weak batch effect in the HFHS data, PLSDA-batch
performed best with the highest alignment score compared with
the other methods. We did not face the same issue as the AD
data as the sample distribution in projection was similar across
all datasets.

pRDA assessment
We next focused on estimating the proportion of variance
explained by treatment and batch effects globally for the batch-
effect-corrected data using pRDA.

In the sponge data (Figure 6A), the different methods pre-
served similar proportion of treatment variance (removeBatchef-
fect: 17.5%, ComBat: 18.2%, PLSDA-batch: 18.2%, sPLSDA-batch:
18.2%) and removed all batch variance, with the exception of
ComBat that still retained 0.9% of batch variance.
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Figure 6. Explained variance before or after batch effect correction for (A) sponge data, (B) AD data and (C) HFHS data. In sponge data (A), ComBat-
corrected-data still included batch associated variance. In AD data (B), sPLSDA-batch-corrected data included a higher treatment variance and lower
intersectional variance compared with the data corrected from the other methods. In HFHS data with weak batch effects (C), PLSDA-batch-corrected
data preserved the largest amount of treatment variance.

In the AD data (Figure 6B), we observed a small amount of
intersectional variance (1.3%) due to the unbalanced batch ×
treatment design. As the intersection was small, unweighted
PLSDA-batch and sPLSDA-batch were still applicable, and thus
the weighted versions were not used. PLSDA-batch preserved the
largest proportion of variance explained by treatment effects, and
also the largest proportion of intersectional variance. sPLSDA-
batch-corrected data led to a higher proportion of treatment
variance than the two univariate methods. sPLSDA-batch is a
shrinkage version of PLSDA-batch, thus the proportion of treat-
ment variance preserved by sPLSDA-batch should be nearly the
same as or slightly smaller than PLSDA-batch, as we observed for
this study.

In the HFHS data where batch effects are weak, we detected
3.6% of the variance explained by batch effects (Figure 6C). PLSDA-
batch performed the best as the corrected data preserved the
highest proportion of treatment variance and a complete removal
of batch variance. sPLSDA-batch performed the worst as the
method did not remove sufficient batch variance and lost some
treatment variance. This result is consistent with the previous
results that sPLSDA-batch-corrected data had a lower alignment
score (related to batch variation) and lower variance explained by
the first PCA component (related to treatment variation) than the
other methods.

R2 assessment
The R2 values representing the variance explained by batch
or treatment effects for each variable estimated with one-
way ANOVA are displayed in Figure 7 for the AD study. The
corrected data from ComBat still included a few variables
with a large proportion of batch variance. The overall sum of
R2 values indicated that removeBatchEffect removed slightly
more batch variance (removeBatchEffect: 1.70, PLSDA-batch:
12.40, sPLSDA-batch: 9.25) but preserved less treatment variance
(removeBatchEffect: 31.75, PLSDA-batch: 40.00, sPLSDA-batch:
36.22) than our proposed approaches (Supplemental Figure S13).
We observed similar results with the sponge data (Supplemental
Figures S14, S15). In the HFHS study, we did not observe any

variables with a large proportion of batch variance in the ComBat
corrected data (Supplemental Figure S16), but the total amount of
treatment variance summed from all variables was smaller than
with PLSDA-batch. We reached similar conclusions for remove
batch-effect-corrected data (Supplemental Figure S17).

Biological interpretation
We applied sPLSDA to select 20% of the total number of OTUs in
the anaerobic digestion (46) and the HFHS diet (103) studies, but
we excluded the sponge study from this analysis as it includes
only a small number of OTUs. We then compared the OTU selec-
tions before and after batch effect correction with different meth-
ods.

Anaerobic digestion. When comparing the variable selections
before and after batch effect correction, five OTUs were uniquely
selected in the original uncorrected data and belonged to
the family Spirochaetaceae (order Spirochaetales), Synergistaceae
(order Synergistales) and three different families of the order
Clostridiales. Both of Spirochaetaceae and Synergistaceae have been
reported to be associated with methanogenesis. The former can
ferment glucose to acetate and ethanol which are utilized by
methanogenic communities [51], while the latter is associated
with hydrogenotrophic methanogens in a syntrophic manner
[52]. Members of the order Clostridiales have been recognized to
hydrolyse a variety of polysaccharides by different mechanisms
[53]. After batch effect correction, we observed an overlap of 32 out
of 46 OTUs (69.6%) that were selected from the data uncorreted
and corrected with different methods, showing a good agreement
among all methods. We also identified 17 OTUs that were only
selected from the corrected data compared with the uncorrected
data. Among these OTUs, one from the family Christensenellaceae
was only selected with removeBatchEffect, while one from the
family Peptococcaceae and two from the family Synergistaceae
were selected with both removeBatchEffect and ComBat. The
family Christensenellaceae includes saccharolytic fermentative
anaerobes [54], while members of the family Peptococcaceae
are acetogen/syntrophic bacteria in natural and methanogenic
environments [55]. Another eight OTUs among these 17 were only
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Figure 7. AD study: R2 values for each microbial variable before and after batch effect correction. Each box represents a summary of R2 values fitted
for variables from a one-way ANOVA with a treatment effect or batch effect as covariate (x-axis). The colours indicate the fitted effects in ANOVA. The
Combat-corrected data included some variables with a large proportion of batch variance (outliers). removeBatchEffect removed slightly more batch
variance, but preserved less treatment variance than our proposed PLSDA-batch and sPLSDA-batch.

selected with PLSDA-batch or/and sPLSDA-batch. The families of
these eight taxa included Ruminococcaceae (3), Syntrophomonadaceae
(1), Peptococcaceae (1), Clostridiales vadinBB60 group (1) from the
order Clostridiales and Thermoplasmatales Incertae Sedis (1) from
the order Thermoplasmatales and Marinilabiaceae (1) from the
order Bacteroidales. Ruminococcaceae can decompose a wide variety
of recalcitrant substrates like cellulose and hemicellulose to
produce small molecules of acids, such as acetic acid and butyric
acid involved in the process of anaerobic digestion [56, 57].
The family Syntrophomonadaceae is responsible of the acetate
production from butyrate and in a syntrophic relationship
with hydrogenotrophic methanogens [58]. Clostridiales vadinBB60
group plays an important role in carbohydrate fermentation
and short-chain fatty acid production [59]. Thermoplasmatales
Incertae Sedis includes methanogens [60]. Marinilabiaceae can
ferment various substrates with the production of propionate,
acetate, and succinate [61]. The rest five OTUs were selected
with removeBatchEffect, ComBat, sPLSDA-batch and/or PLSDA-
batch. Four out of the five were from the order Clostridiales (family
Christensenellaceae (2), Ruminococcaceae (1) and Family XIV (1)),
and only one was from the family Marinilabiaceae of the order
Bacteroidales. To summarize, from the data corrected with our
PLSDA-batch and sPLSDA-batch approaches, we identified more
taxa within the order Clostridiales than with removeBatchEffect
and ComBat. Our approaches selected a larger number of unique
OTUs compared with the two univariate methods, and these OTUs
are highly relevant to the AD process. This study also shows that

our approaches were successful at preserving treatment variation
for the data that included a strong batch effect.

(High fat high sugar diet). For this study, we did not include the
selection from sPLSDA-batch-corrected data, which did not pre-
serve enough treatment variation inferred from previous assess-
ments. When comparing the original data with the batch-effect-
corrected data, three OTUs selected were from the family S24-
7 (order Bacteroidales), family Lachnospiraceae and Ruminococcaceae
(order Clostridiales), respectively, that were not selected after batch
effect correction. The family S24-7 is closely related to carbo-
hydrate metabolism [62], while the family Lachnospiraceae plays
a key role in the metabolism of undigested carbohydrates [63],
and Ruminococcaceae can decompose a wide variety of recalcitrant
substrates like cellulose and hemicellulose to short-chain fatty
acids, including butyrate [56, 57]. Among all different datasets, 91
out of 103 OTUs (88.3%) were commonly selected. We identified
12 OTUs that were uniquely selected from the data corrected
with particular methods, including one OTU from the family
Lachnospiraceae selected from the ComBat. Another six OTUs were
only selected from our PLSDA-batch approach and belonged to
the family Erysipelotrichaceae (2) (order Erysipelotrichales), Desulfovib-
rionaceae (2) (order Desulfovibrionales), Coriobacteriaceae (1) (order
Coriobacteriales) and an unknown family (1) of order Clostridiales.
The family Erysipelotrichaceae is highly correlated with cholesterol
metabolism [64], while the family Desulfovibrionaceae is positively
correlated with glucose and lipid metabolism [65] and the family
Coriobacteriaceae increases the level of short-chain fatty acids
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including acetic acid, propionic acid and butyric acid and is
related to impaired glucose metabolism [66]. The rest five out
of these 12 OTUs selected with ComBat, PLSDA-batch and/or
removeBatchEffect were from the family S24-7 (1) (order Bac-
teroidales), Lachnospiraceae and three unknown families from the
order Clostridiales. To summarize, in the HFHS data that include
weak batch effects, over 88% of the selected microbial variables
from different batch-effect-corrected data were in common with
the original uncorrected data. However, from the data after our
PLSDA-batch correction, we selected additional OTUs highly rele-
vant to the HFHS diet compared with the other datasets including
removeBatchEffect, ComBat corrected data and the original data.

Discussion
In this article, we introduced PLSDA-batch to correct for batch
effects in a multivariate fashion while preserving treatment vari-
ation. We also proposed two additional variant methods weighted
PLSDA-batch that includes group size weight to handle unbal-
anced batch × treatment designs, and sparse PLSDA-batch that
includes variable selection when estimating treatment compo-
nents. In this article we referred to microbiome data as microbial
metataxonomic data and analysed datasets at the OTU level.
However, our methods are also suitable for the metagenomic data
and datasets considered at any other level of taxonomy.

We compared our proposed methods with existing remove-
BatchEffect, ComBat and SVA. The former two are univariate
methods that correct for known batch effects, while SVA is a
hybrid method that estimates unknown batch effects with a
multivariate strategy and accounts for the estimated batch effects
in a univariate manner. All methods assume each variable fol-
lows a Gaussian distribution and do not consider the dependent
structure between variables. In addition, ComBat assumes that
all variables are affected by batch effects in a systematic manner.
This assumption does not hold true in practice [6]. Our approach
PLSDA-batch has a relaxed assumption about data distribution
and thus is more suitable for microbiome data, even after CLR
transformation. The multivariate nature of our approach also
enables to model the correlation structure between variables and
handle non-systematic batch effects.

Our simulation studies showed that SVA had a tendency to
overfit the data; ComBat was not able to completely remove batch
variation and removeBatchEffect was not able to preserve enough
treatment effects for accurate variable identification.

Across most simulation scenarios, PLSDA-batch led to a high
performance in terms of F1 score and AUC, especially in an unbal-
anced design where weighted PLSDA-batch was preferable to its
unweighted version. PLSDA-batch performed better than sPLSDA-
batch in the case where variables had both treatment and batch
effects. Our simulations under a negative binomial distribution
did not emphasize on the performance of sPLSDA-batch com-
pared with PLSDA-batch, as sPLSDA-batch lacked the appropriate
fit in component estimation and removed excessive amount of
batch variation, resulting in spurious treatment variation. Further
simulations (Supplemental Figures S18–S25) under a Gaussian
distribution demonstrated a better performance of sPLSDA-batch.
This was also reflected in the case studies, suggesting that the
count data after CLR transformation may approximate a Gaussian
distribution. The distribution of real microbiome data is often
debatable, thus may not be strictly negative binomial. Some stud-
ies have discussed that microbiome data may follow instead a
zero-inflated lognormal distribution [67], which was confirmed to
some extent in our results.

In the case studies of sponge and anaerobic digestion, PLSDA-
batch and sPLSDA-batch performed similarly. These two stud-
ies include a strong batch effect, and all performance criteria
we used indicated that PLSDA-batch and sPLSDA-batch outper-
formed ComBat, which removed an insufficient amount of batch
variation (sponge and AD data) and preserved insufficient treat-
ment variation (AD data). The data corrected with removeBatch-
Effect resulted in a smaller proportion of treatment variance
compared with our methods. When performing variable selection
on the data corrected for batch effects with our approaches, we
selected a larger number of unique OTUs relevant to anaerobic
digestion than with the other batch effect correction approaches.
Regarding the HFHS data that include a weak batch effect, the
data corrected with sPLSDA-batch lost certain amount of treat-
ment variance as it did not estimate the treatment associated
component well, indicating sPLSDA-batch is not suitable for weak
batch effects. We observed a large overlap of OTUs when per-
forming variable selection before and after batch effect correction
by the different methods, but from the data corrected by PLSDA-
batch we selected additional OTUs highly relevant to HFHS diet,
suggesting that batch effect correction is still beneficial when
batch effects are weak. Due to the limited resolution of taxonomic
information with 16S rRNA sequencing, our biological interpre-
tation was limited to family level. Deeper resolution obtained
with whole genome sequencing would give more insight into the
biological meaning of the additional OTUs that were selected with
our approaches.

Based on our results, we propose the following guidelines to
choose the best method that achieves maximum batch effect
removal: (1) when the proportion of treatment variance after
batch effect correction is larger than from the original data, it
is best to choose the method that preserves a smaller treatment
variance that is likely to be not spurious; (2) on the opposite, when
the proportion of treatment variance after correction is smaller
than from the original data, it is best to choose the method that
preserves the larger treatment variance.

We have identified several limitations in our proposed frame-
work that will warrant further investigations. Our methods cur-
rently require pre-defined batch group information. If the batch
information is unknown, we recommend assigning the samples
to batches identified with PCA or any clustering methods. While
wPLSDA-batch showed a good performance, the presence of an
interaction effect between batch and treatment on microbial vari-
ables still remains a challenge, most likely because this interac-
tion is non-linear. When batch and treatment effects are collinear,
only methods which account for batch effects but do not cor-
rect for them would be suitable, such as linear regression [6].
In addition, PLSDA methods are linear techniques, where both
explanatory and response components are constructed based
on a linear combination of variables, and where we model the
linear relationship between components. It is highly possible that
variables in microbiome data interact non-linearly. As such, non-
linear approaches based on PLS kernel could also be expanded in
our framework [68].

Conclusions
Our multivariate approach PLSDA-batch aims to estimate and
remove batch variation while preserving treatment variation for
microbiome data. The batch-effect-corrected data can then be
used as input in any downstream analyses, such as dimension
reduction, visualization, clustering or variable selection. In our
study, we showed that when some variables included both
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treatment and batch effects or when batch effects were very
weak, PLSDA-batch was more suitable than the sparse version.
For unbalanced batch × treatment designs, the weighted PLSDA-
batch led to superior results to disentangle correlated batch
and treatment effects. On both simulation and case studies,
our methods resulted in a superior performance compared
with existing methods based on both visual and quantitative
assessments. The taxa selected in the downstream analysis
were biologically relevant. Our work is an important step to
raise awareness for managing batch effects and ensure reliable
downstream statistical analyses to ultimately facilitate microbial
studies.

Key Points

• We developed a set of three multivariate and non-
parametric batch effect correction methods for micro-
biome data to estimate and remove batch variation
while preserving treatment variation.

• The methods were specifically designed to handle unbal-
anced batch x treatment designs (weighted PLSDA-
batch) and to avoid overfitting in components estimation
with variable selection (sparse PLSDA-batch).

• The application of our methods to both simulated and
real case studies showed competitive performance to
existing methods, especially for unbalanced batch x
treatment designs.

• Various visual and numerical assessments for batch
effect detection and removal are available.

Data availability
The R package ‘PLSDAbatch’ along with the case study datasets,
simulations and all analyses are fully reproducible and available
on GitHub: https://github.com/EvaYiwenWang/PLSDAbatch.

Supplementary data
Supplemental_Material includes supplemental methods, sup-
porting results, figures and tables.
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