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Abstract—This paper introduces distributed algorithms that

share the power generation task in an optimized fashion among

the several Distributed Energy Resources (DERs) within a
microgrid. We borrow certain concepts from communication net-

work theory, namely Additive-Increase-Multiplicative-Decrease

(AIMD) algorithms, which are known to be convenient in terms
of communication requirements and network efficiency. We adapt

the synchronized version of AIMD to minimize a cost utility

function of interest in the framework of smart grids. We then
implement the AIMD utility optimisation strategies in a realistic

power network simulation in Matlab-OpenDSS environment, and

we show that the performance is very close to the full-communi-
cation centralized case.

Index Terms—Distributed algorithms,microgrid, optimal power

scheduling.

I. INTRODUCTION

A Nobjective of the smart grid is to perfectly balance supply

and demand in the power network [1], [2] and [3], and

achieving such an objective with a high level of reliability when

a large share of power is generated from renewable fluctuating

resources is one of the current challenges in the power commu-

nity. The main challenges in realizing this aspiration arise be-

cause the power network is very large scale, and each node of the

network should sense in real-time its required energy demand,

and then try to balance this demandwith the amount of produced

energy [4]. Clearly, not only the generated power from renew-

able sources is stochastic, but the demand is also uncertain as it

depends on the end-users usage of electric appliances. Energy

usage is also further affected by highly unpredictable factors,

such as energy price,weather conditions (use of air conditioning/

heating), and (in the near future) also by an increasing penetra-

tion of electric transportation [5]. Thus, due to the large number

of distributed energy resources (DERs) and (aggregates of) end-

users, the real-time power scheduling and balancing problem is

currently an important and challenging area of research.

Virtual Power Plants (VPPs) are currently seen as a viable an-

swer to the increasingly distributed nature of the power system

network [6]. A Virtual Power Plant is defined as “a cluster of
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dispersed generator units, controllable loads and storage sys-

tems, aggregated in order to operate as a unique power plant”

[7]. The term virtual refers to the fact that the VPP will be, in

general, a multi-fuel, multi-location, and multi-owned power

station. From a grid operators perspective, purchasing energy

or ancillary services from a virtual power plant is equivalent to

purchasing from a conventional station [2]. The idea of a VPP

is illustrated in Fig. 1. In practice VPPs decompose the original

complex fully centralized network into a number of distributed

units, each one of which has a central entity, called an Energy

Management System (EMS), that performs the balancing task.

Every time balancing is not achieved (e.g., the power generated

within a VPP, plus that stored in available storage systems is not

enough to fulfil the end-users requirements), then the VPP buys

energy from other VPPs, or from the smart grid in general, or

can curtail some controllable loads (e.g., Direct Load Control,

see [8]). Similarly, if more energy than required is produced,

then the VPP tries to sell energy to other VPPs.

The microgrid shares similar features with the VPP, but usu-

ally the term VPP is used to emphasize the economic features of

the structure, i.e., the ability to compete in the energy markets

against other VPPs. On the other hand, the microgrid must be

able to operate in a grid-connected mode, isolated mode, and in

a transition between grid-connected and isolated modes [9]. One

of the main advantages of microgrids and VPPs is that the en-

ergy demand will be primarily satisfied by the DERs belonging

to the same cluster of the users, thus generally avoiding long

distance transport of energy and satisfying the small-distance

producer-consumer paradigm [3].

The main task of the EMS of a microgrid is to achieve the

aforementioned balance of produced/consumed energy. Al-

though the size of a microgrid is much smaller than that of the

whole smart grid, there is still the major problem of selecting

which power generators to use, and in which proportion, to

provide the required power.

Remark:Note that the DERs within the same VPP or microgrid

do not compete among themselves to increase their earnings,

as overall they constitute a single unique (virtual) power plant.

In fact, the DERs cooperate to achieve a common goal, e.g.,

minimize the sum of the financial costs incurred by each DER

to generate its share of power.

A. Paper Contribution

The main contribution of this paper is to design an algorithm

that automatically shares the power generation task among the

available DERs in a way that is fair and distributed. As we shall

see, the concept of fairness in our context will be with respect
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Fig. 1. A Virtual Power Plant (VPP) is generally characterized by Distributed Energy Resources (DERs), including Combined Heat and Power (CHP) and wind/
solar plants, storage systems, controllable and uncontrollable loads, Electric Vehicles (EVs), and is connected to other VPPs through the grid.

to a utility function, where utility will refer to financial costs.

We will achieve this objective by adopting AIMD (Additive In-

creaseMultiplicative Decrease) algorithms, which are borrowed

from communication network theory [10]. In this context, our

paper provides several contributions: (i) we propose a truly dis-

tributed solution to the power generation problem, which at the

same time minimizes communication overhead; (ii) we present

a consensus-like modification of the conventional synchronized

AIMD algorithm to solve the utility minimization problem in

the case of quadratic cost functions; and (iii) we illustrate our re-

sults in a realistic simulation in a Matlab/OpenDSS framework.

This paper is organized as follows. The next section reviews

the state of the art for power generation in a smart grid context.

Section III describes the power generationproblemand thefinan-

cial cost function of a microgrid. Section IV describes the basic

AIMD algorithm, and how it can be adapted to the power gener-

ation context. In the same section we also explain how the algo-

rithm can bemodified tominimize the power generation cost in a

distributed manner. Section V compares the performance of the

proposed algorithms with that of a fully centralized algorithm,

in a Matlab-OpenDSS environment. Finally in Section VI we

summarize our findings and outline future lines of research.

II. STATE OF THE ART

Balancing the energy demand and the energy offer is a chal-

lenging problem due to a number of effects.

� Theuncertain demand. This refers to the uncertain energy

consumption from both industries and single users. Many

authors have addressed this problem using techniques from

machine learning and time series analysis in an attempt to

accurately forecast the power load [11]–[13] and [5].

� The uncertain energy offer. As the penetration level

of energy being produced from renewable sources

is constantly increasing, the availability of energy is

highly affected by weather conditions (i.e., availability

of sun/wind). More accurate weather forecast services,

together with an extensive use of storage systems, are

currently used to mitigate such uncertainties [14].

A first approach to optimally share the power generation task

among the DERs, is to let the EMS solve the optimal sched-

uling problem at fixed time steps, typically chosen between 5

and 30 minutes. This centralized solution has the main draw-

back of a significant communication overhead, as every single

DER must communicate to the EMS how much power can be

provided. Then, the EMS must gather all this information, and

the energy needed by the users, solve an optimization problem,

and communicate back to each DER its correct allocation of en-

ergy. See for instance [15], [16] and [17] for similar approaches

for optimal power scheduling.

To avoid this frequent exchange of information, some au-

thors have designed day-ahead thermal and electrical sched-

uling algorithms of large-scale VPPs (LSVPPs) [18], [19], or

[20] where the day-ahead unit commitment problem is solved

in a distributed fashion. In [21] the day-ahead solution is then

corrected in a centralized framework, considering latest avail-

able measurements. In fact, in the afternoon prior to the sched-

uled energy delivery, the hourly prices for the following day (set

by electricity spot markets) are already known, and at the same

time, quite accurate weather and load forecasts are also avail-

able [18]. This approach is for the most part effective. How-

ever, it does not consider real-time information, such as the error

between the available power and that predicted on the basis of

weather forecast, that could be important to fully exploit the re-

newable resources. In addition, this solution is not robust, and

problems in the EMS will have consequences in the entire net-

work in terms of grid stability.
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Fig. 2. DERs (on the left) must provide enough energy to satisfy the demand coming from the users (e.g., from industries and residential areas). AIMD algorithm
is suggested to coordinate the DERs.

Recently, there has been a strong trend in many different en-

gineering disciplines to move from centralized strategies to dis-

tributed ones. Examples of this trend can be found in Internet

research, electric vehicle charging and indeed in the case of de-

mand side management, see for instance [22]–[26] and [27].

Distributed systems do also provide the benefit that DERs can

join and leave the power generation task at will without any cen-

tralized supervision, thus giving rise to a system that is “plug-

and-play” in spirit. This latter point allows entities with excess

power generation (e.g., PVs in residential areas in summer days)

to profit from underutilized resources. The main objective of

this paper is to follow such a distributed trend. Specifically, to

design an algorithm that automatically shares the power gener-

ation task among the available DERs in a way that is fair and

distributed.

III. PROBLEM STATEMENT AND PRELIMINARIES

We consider the scenario depicted in Fig. 2, and assume that

at a given time , each one of DERs provides an amount of

power denoted as , where the index refers to the ’th DER.

Our main assumption is that at every time step , the overall set

of DERs is always able to provide the total power required

by the users. Therefore, the EMS has the ability to choose which

of the DERs will be used, and in which proportion, to provide

the requested power.

Remark: Note that the assumption that the power requested by

the users is smaller or equal than that provided by the DERs

is not a strong assumption. In fact, if this is not true, then the

EMS can either take more energy from storage systems, or buy

it from other VPPs or from the outer grid. It may also decide

to disconnect some of the loads, thus reducing the demanded

power. After completing any of the previous actions, the condi-

tion that the energy produced by the DERs is enough to satisfy

the (residual) demand holds. Many papers in the literature have

tackled the problem of which of these actions is more conve-

nient from the EMS point of view; see for instance [15], [16]

and [17] that propose optimal scheduling solutions. However,

this problem is not of interest here. In this work it is more con-

venient to simply assume that the demand is smaller than the

power deliverable from the DERs; otherwise, the load is pro-

vided in a best effort fashion.

As the DERs provide more or equal power than is required by

the users, the purpose of this paper is to automate this process

in a decentralized manner such that some utility function of in-

terest is minimized; namely, the financial cost associated with

power generation.

A. Utility Minimization

In principle, the EMS hasmanyways of sharing the power de-

mand among the available DERs.We are interested in the power

share that minimizes the financial cost of producing the desired

power. To solve this problem, we associate each DER with a

quadratic utility function, as common in the VPP literature, see

[28] and [16].

(1)

where is the hourly cost in Currency Unit (C.U.) per hour,

is the generated power in MW, and and are coefficients

of appropriate measurement unit that depend on the technology

of the power plant (e.g., fuel cost, efficiency, etc.). In particular,

includes operation and maintenance costs (O&M) costs, and

fuel and carbon costs, which are usually expressed in /MWh

(or in $/MWh). The coefficient takes into account the expenses

that are incurred even if no energy is produced at all. Quadratic

cost functions have been used in many references in the liter-

ature, see for instance the classic [29], or the more recent [28]

and [16] in the context of VPPs. Due to the fact that the coef-

ficients are usually quite small, and because of the difficulty

of handling nonlinear (though quadratic) cost functions, many
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authors in the literature simply neglect the quadratic term, and

use affine functions in the optimization; see for instance [15].

Also note that in the literature it is very simple to find databases

containing values of coefficients and for several examples

of DERs all over the world, for the computation of the levelized

costs of electricity (LCOE) [30].

In this paper we use the complete quadratic cost function (1).

However, the study can be extended to other convex utility func-

tions of interest1; for instance, one could minimize an environ-

mentally friendly utility function (e.g., emissions) to in-

centivate the penetration of renewables.

IV. ALGORITHMS FOR UTILITYMINIMIZATION FOR VPPS VIA

SYNCHRONIZED AIMD

The problems that we described are very close to those

encountered in Internet congestion control. In Internet conges-

tion control, one tries to allocate bandwidth such that certain

objectives are realized [31]. A wide variety of work has been

published in this area and it can be shown that the TCP Reno

and TCP Vegas both correspond to various utility maximization

solutions [31]. In AIMD an individual agent (e.g., a computer

sending packets) gently increases its transmission rate, during

the Additive Increase (AI) phase, until a packet loss signal is

received. This is called a congestion event, and indicates that

the sum of individual bandwidths has exceeded the total ca-

pacity. Upon detecting congestion, the agents instantaneously

decrease their transmission rate in a multiplicative fashion. This

is the Multiplicative Decrease (MD) phase of the algorithm

[10]. Note that such congestion control problem in the Internet

exhibits similar characteristics as power generation here. The

quantities of interest are positive (bandwidth/power), locally

bounded (local maximum transmission rate/available power),

the available capacity/required energy may vary over time, and

the system of interconnected agents (Internet/Smart Grid) is

very large scale. We refer the reader to [10], [32]–[35] for a

discussion on convergence properties of the AIMD algorithms.

A. AIMD

In this section we borrow ideas from the Internet congestion

control community, and we adapt the basic TCP to the scenario

of interest here, as depicted in Fig. 2.

Algorithm IV.1: BASIC AIMD ALGORITHM

repeat

if

else

until end of simulation

1This is the subject of current work.

In Algorithm IV.1, the parameter is the positive additive pa-

rameter associated with the additive increase phase of the al-

gorithm (AI) (expressed in kW or MW), and is

the multiplicative parameter used in the decrease phase (MD).

The quantities and denote the minimum and max-

imum bound on the power respectively. In fact, the values of

cannot take arbitrary values due to: (i) the limited sizes of the

DERs; (ii) the availability of renewables (sun/wind); (iii) the

power network constraints (e.g., transformer tap settings, secu-

rity constraints, minimum voltages at load buses and transmis-

sion lines); and (iv) due to the fact that DERs can modulate their

power generation without exceeding a nominal ramp reference.

Note also that such bounds are time varying.

Remark: The main feature that makes the AIMD algorithm

particularly convenient to apply in large-scale systems, is that

the algorithm can be easily implemented in a truly distributed

manner. In fact, Algorithm IV.1 only requires the EMS to send a

“congestion notification” to the DERs when the produced power

equals the demanded power, which can be coded in a single bit

of information. In the context of power balancing, such a notifi-

cation will be denoted as balancing notification in the remainder

of the paper. This implies that the DERs do not have to exchange

information among themselves, do not have to communicate the

available sun/wind to the EMS, and also do not even have to

communicate when they stop or start contributing to the power

generation task. Furthermore, the EMS itself does not have to

communicate to the DERs how much power they must provide.

In order to illustrate in a simple fashion the mechanism of the

basic AIMD Algorithm IV.1, Fig. 3 illustrates the output of the

algorithm in a simple toy example, which corresponds to the

VPP scenario investigated in [15]. Therefore, we assume that

three DERs are available: a PV plant; a wind plant; and a CHP.

It is assumed that the PV plant has a net capacity of 6 MW and

a capacity factor of 6%; the wind plant has a net capacity of

45 MW and a capacity factor of 27%; the CHP plant has a net

electrical capacity of 40 MW and a capacity factor of 85%. We

assume that all DERs have the same and parameters equal

to 0.01 MW and 0.95 respectively. Fig. 3(a) illustrates the case

without constraints (i.e., without even considering the sizes of

the power plants), when the power demand is constant and equal

to 35MW.Note that in this case AIMDgives rise to the fair solu-

tion where each single DER produces exactly the same quantity

of energy. The smaller sizes of the renewable energy sources,

together with renewable availability (e.g., no sun at night time),

make the AIMD solution provide completely different results

in Fig. 3(b) than those depicted in Fig. 3(a). The case study

scenario is then further complicated, assuming a more realistic

non-constant power demand, and the corresponding results are

shown in Fig. 3(c) (the time-varying demanded power profile is

taken again from [15]). In the same scenario, Fig. 3(d) compares

the power demand with the power generation of the example de-

picted in Fig. 3(c). Note that the individual power generated by

the three single DERs are now summed, and, as expected, de-

mand and offer are perfectly balanced.

Remark: The algorithm illustrated in IV.1 gives rise to saw-

tooth signals. Note that not all equipment might be suitable to

handle such signals. Thus, typical methods that are already used

to handle oscillating power generated from renewable sources
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Fig. 3. Figure (a) refers to a scenario where a PhotoVoltaic (PV) plant, a wind plant and a CHP are required to provide a (static) power of 35 MW. The fair sharing
solution is that all plants provide the same power. Figure (b) introduces a constraint on the plant sizes and availability of solar/wind. Figure (c) further considers a
typical non-constant requirement of energy, and Figure (d) shows the required and provided power (summing contributions of single plants) of scenario (c).

might be required (e.g., PI-smoothing of the output power, pre-

filtering of the AIMD signal, use of batteries for primary fre-

quency and voltage control).

B. Utility Optimization via Synchronized AIMD

The basic AIMD algorithm is designed to share the required

energy among the available DERs in some manner. For in-

stance, if there were no constraints, then each DER would

provide the same quantity of energy as illustrated in Fig. 3(a).

In this section we show that by appropriately modifying the

basic AIMD algorithm, it is possible to minimize the financial

cost of generating the required power, according to the cost

functions introduced in Section III.A. Similar work in this

direction can be found in [36]. The optimization problem can

be formally stated as

(2)

i.e., at every time step we want to find the combination of

such that the generated power is equal to the requested power,

and it minimizes the sum of the cost functions. Each utility func-

tion has the form , as was de-

scribed in Section III.A. Note that in this section we do not con-

sider the constraints on the single , as the AIMD algorithm

will automatically satisfy them as described in Section IV.A.

This minimization problem can then be conveniently solved at

each time step with the aid of Lagrange multipliers, and the

solution is known to be

(3)

where

(4)

subject to the linear constraint being satisfied, and where the

uniqueness of the solution follows from the convexity of the

utility functions2. Our approach is similar, but we solve the min-

imization problem by achieving consensus on the value of the

2The KKT conditions are necessary for optimality. By placing extra condi-
tions on the utility functions they are also sufficient.



2150 IEEE TRANSACTIONS ON SMART GRID, VOL. 5, NO. 4, JULY 2014

function [37]3. For this purpose, the

basic algorithm can be adapted for utility optimization purposes

as follows:

Algorithm IV.2: AIMD UTILITY OPTIMIZATION

repeat

if

else

until end of simulation

and the multiplicative step is performed when the sum of de-

livered power exceeds the requested power. All DERs have the

same parameters and , so called to remind that they refer to

an AIMD algorithm on the variable . Therefore, AIMD makes

all converge to a unique value which has to be . Note that

each DER has to update its own variable , and the commu-

nication requirement is again only restricted to the balancing

notification from the EMS.

C. Practical Implementation

The utility optimization problem can be theoretically solved

by simply running an AIMD consensus problem on , as when

all DERs have the same value of , then this value has to be .

However, is only an abstract quantity

which, for the choice of utility functions in here, is ;

it is not straightforward to compute how a DER can change its

own value of by adjusting its power generation, and also

how toexpress thepower constraints in termsof .Therefore,

we now remap the AIMD algorithm in terms of instead of

. By simply exploiting the fact that ,

we can rewrite the AIMD Algorithm IV.2 as:

Algorithm IV.3: AIMD UTILITY OPTIMIZATION

repeat

if

else

until end of simulation

3Because of the discrete nature of AIMD, the proposed approach will provide
an optimal solution at the sample times.

Note that this algorithm provides the same solution of Algo-

rithm IV.2 with parameters and , and it is formally iden-

tical to algorithm IV.1, by appropriately changing different pa-

rameters for each DER as

(5)

Algorithm IV.3 solves the utility optimization problem, while

retaining the convenient feature of AIMD that the only required

communication is the notification of the balancing event, broad-

casted by the EMS to all the DERs. The only required assump-

tion is that each DER knows its own cost function (i.e., parame-

ters and that associate their own generated power with

the financial costs) that are required to tune the personal AIMD

parameters and .

V. OPENDSS SIMULATIONS

A. Simulation Set-Up

In order to evaluate the performance of our proposed AIMD

utility optimization strategy in a more realistic fashion, we

tested our algorithms on a revised version of the distribution

power system based on the IEEE 37 bus test feeder [38]. This

test network incorporates a certain amount of loads, is served

by several DERs, and corresponds to the microgrid (or VPP)

as illustrated in Fig. 1. Figs. 4 and 5 show the topology of

our test network. In our simulations, the base voltage of the

High Voltage (HV) network was set to 110 kV (1.0 pu) at the

source-end of the external grid. A 2.5 MVA distribution substa-

tion was connected to the external grid to bring the voltage level

down to 10 kV, which is a typical Medium Voltage (MV) level

in European power systems. We considered three wind DERs,

two PV DERs, and a CHP. Each DER is able to produce power

to the MV substation via a connected transformer. To simplify

our model, we assumed that the same type of DERs had the

same level of generation capacity. However, the real power

output from each DER was dependent on the available resource

(e.g., wind speed/solar intensity) and the requested power from

the load area at each time slot. In addition to this, all the DERs

were modeled as constant P-Q generators with the same power

factors equal to 1.0 to generate pure active power for the loads.

It is clearly not realistic to assume that DERs produce pure

active power and to model the loads without reactive power

consumption. However, we did so as the focus of this paper

is on active power generation. In practice, this corresponds to

assuming that the reactive power is provided by some ancillary

services in the power network (e.g., capacitance tanks, reactive

Vehicle-to-Grid (V2G) and Grid-to-Vehicle (G2V) services), or

bought from the external grid. Note that the AIMD algorithm

could be further extended through a double prioritized algo-

rithm to accomplish reactive power management, as shown in

the recent [39] in the context of EV charging, and is not shown

here due to page limits.

We also assumed that the wind plants, the PV plants and the

CHP had a capacity of 750 kW, 200 kW and 1MW respectively.

Such values typically allow the microgrid to work in island
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Fig. 4. Schematic topology of the tested network.

Fig. 5. The IEEE 37 node test feeder was modified as shown in the figure, where the red points were considered without load connections.

mode, i.e., the required power is less than the power provided

by the DERs, as assumed in Section III. We assumed that each

load had a power factor of 0.95 lagging, and load profiles were

randomly chosen for a period of 24 hours, according to [40].

The maximum wind power output for each wind DER was ran-

domly chosen from the real wind turbine data fromNational Re-

newable Energy Laboratory (NREL) [41]. The maximum solar

power generation profile of each PV was computed according

to a quadratic function with non-zero values from 6 am to 6 pm,

randomly perturbed to simulate cloud disturbances, as in [15].

The parameters of the utility functions were taken from [16]

(and converted from euros to US dollars), and [30] and are sum-

marized in Table I. We decided to sample the load profiles and

the maximum output of the DERs every 5 minutes, and assumed
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Fig. 6. Figure (a) shows that the distributed AIMD solution manages to balance demand and provided power during the whole day, similarly to the optimal cen-
tralized solution. Figure (b) gives the detail of how AIMD shares the energy production. Figure (c) shows that the AIMD manages to achieve the same minimum of
the centralized solution. Figure (d) shows compares the communication costs of the two algorithms: with same step size, AIMD clearly outperforms the centralized
approach.

TABLE I
PARAMETERS OF THE UTILITY FUNCTIONS

that they would be constant during such a time lapse. The whole

scenario was simulated using a customized OpenDSS-Matlab

simulation platform [42]. In particular, Matlab was used to gen-

erate the dispatch curve for each DER, and a day power system

simulation was implemented by OpenDSS to evaluate the state

of the network, e.g., line voltage, substation power flow, power

losses, for each time slot.

B. Simulation Results

This section illustrates the simulation results obtained by im-

plementing the proposed AIMD utility optimization algorithm

in the network described in the previous section. To better eval-

uate the performance of the proposed algorithm, we compared

the solution with the optimal one obtained in a centralized

fashion with a full exchange of information. The centralized

solution is computed every 5 minutes, assuming that the EMS

is informed of the maximum power that each DER can provide

(depending on wind/sun availability) and also by the power

required by the users. Then we assumed that the EMS had the

ability to solve instantaneously the constrained optimization

problem (i.e., considering the power network constraints) and

to schedule the optimal power flows to the DERs. As for the

AIMD case, we settled with 5 seconds the time step for the

increase and decrease steps.

The obtained simulation results are summarized in Fig. 6.

Fig. 6(a) depicts that both the centralized algorithm and the pro-

posed distributed one manage to balance the generated power

with that required by the users. We also show the maximum

power that could be generated by all the DERs working at full

capacity. Fig. 6(b) illustrates how much power was generated

by each single DER. As can be noted, the CHP is mainly used

to back-up the energy production from the renewable plants, as

it is less convenient from the point of view of the cost func-

tion being in exam here (i.e., due to its fuel and carbon costs).

Fig. 6(c) shows that the value of the utility function is almost

the same as would have been obtained by implementing a fully

centralized approach. Finally, Fig. 6(d) shows that the commu-

nication requirement of the AIMD performed every 5 seconds

is similar to that of the centralized solution performed every 5

minutes. However, even in the simple scenario adopted for this

comparison, as can be seen from the same figure, the central-

ized solution can not be used at faster time scales and if we

use the same step size for both approaches, then the communi-

cation requirement of the centralized approach becomes about

100 times larger than that of AIMD. Clearly, as the operation of

smart grids is heading towards real-time fully automated prac-

tices, AIMD-like techniques are much more desirable than cen-

tralized solution from a communication perspective.
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VI. CONCLUSION

One of the most interesting and challenging objectives of the

upcoming smart grid is the ability to heighten the situational

awareness of the grid, and to allow for fast-acting changes in

power production and power routing, thus altering the stream

of electrical supply and demand on a moment-by-moment basis

[1]. Such an ambitious objective poses difficult issues to the

energy management system of the power network in terms of

communication and control. In this paper we designed AIMD

algorithms that manage to minimize a cost function of interest

in a microgrid in a distributed manner. The cost function is the

total cost of energy production, and this is achieved without

any significant communication overhead. In particular, power

balancing is achieved without having to communicate real-time

power availability from renewable resources (sun/wind), or the

power required by the users, but by simply notifying the DERs

with a single bit of information every time the provided power

equals the required power. The proposed algorithms perform in

practice as well as a centralized full-communication algorithm.

Our approach was tested on a simple scenario with a few

DERs and a total load of the order of a few MW. The work

can be extended in a number of directions: reference [39] shows

in a different context, how AIMD algorithms can be modified

to further include reactive power management; reference [43]

shows how thermal energy requirements can be further included

in the microgrid operation; also, it would be interested to check

how the presence of several DERs connected to the same line

feeder will affect the performance of the proposed method. Ac-

cordingly, current work of the authors is continuing along these

lines, and will consider a more realistic scenario to further val-

idate the proposed power generation strategies. Also, the sug-

gested strategies will be tested in a small testbed. The oscil-

lations caused by the AIMD method are similar to those that

are typically caused by fluctuating renewable sources, thus ex-

isting methods used to alleviate the impact of renewables on the

grid (e.g., PI smoothing of the generated output, batteries for

primary frequency control and voltage control) can be used as

well. However, only testing in the real test-bed will definitely

validate the proposed method.
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