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ABSTRACT 

PLUME CONTAMINATION MEASUREMENTS OF AN ADDITIVELY-PRINTED 

GOX/ABS HYBRID THRUSTER 

by 

David A. Brewer, Master of Science 

Utah State University, 2018 

 

Major Professor: Dr. Stephen A. Whitmore 

Department: Mechanical and Aerospace Engineering 

 

 

Historically, due to the lack of a reliable, on-demand, and multiple-use ignition 

methodology, hybrid rockets have never been previously considered for in-space 

propulsion. Recently, the Propulsion Research Laboratory at Utah State University 

has developed unique arc-ignition system that overcomes this problem and allows 

hybrids to be started, stopped, and restarted with a high degree of reliability, and 

requiring a low power input. The technology is derived from the unique electrical 

breakdown properties of 3-D printed plastics like ABS. Because ABS is an entirely 

new material for propulsion applications, and no database exists to describe the 

potential deleterious effects of the exhaust plume on spacecraft surfaces. 

Adsorption of propellant effluents on spacecraft surfaces can create multiple 

operational concerns; for example, deposition of molecules on solar arrays and 

thermal control surfaces can lead to decreased power production and increased 

spacecraft temperatures. This paper presents the results from a set of preliminary 
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plume contamination measurements collected under both ambient and vacuum 

chamber conditions. The instrumentation suite used for these measurements is 

derived from sensors used to make hall-effect thruster plume contamination 

measurements on the USAF ESEX spacecraft. Generally, it is observed that when 

the motor operates at or near stoichiometric combustion, plume contamination 

effects are small. At oxidizer-to-fuel ratios significantly below stoichiometric, 

plume contamination effects become considerably larger.  

(58 pages) 
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PUBLIC ABSTRACT 

PLUME CONTAMINATION MEASUREMENTS OF AN ADDITIVELY-PRINTED 

GOX/ABS HYBRID THRUSTER 

David A. Brewer 

 

 This thesis examines the impact of the physical contamination on optical surfaces of 

spacecraft by an ABS/GOX thruster. Plume contamination presents a significant operational 

hazard for spacecraft solar arrays and thermal control surfaces can lead to decreased power 

production and increased spacecraft temperatures. Historically, due to the lack of a reliable, on-

demand, and multiple-use ignition methodology, hybrid rockets have never been previously 

considered for in-space propulsion. Recent advancements in hybrid rocket technologies, have 

made hybrid systems feasible for in space propulsion. However, prior to this study no research 

had ever been performed with regard to plume contamination effects due to hybrid rockets. This 

paper presents the results from a set of preliminary plume contamination measurements on a 

prototype small spacecraft hybrid rocket system, collected under both ambient and vacuum 

chamber conditions. 
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CHAPTER I 

INTRODUCTION 

The Propulsion Research Laboratory at Utah State University recently developed and patented 

arc-ignition system that overcomes 

multiple technical difficulties 

associated with hybrid rocket ignition 

systems. The USU-developed system 

allows hybrid motors to be started, 

stopped, and restarted with a high 

degree of reliability and require an 

ignition input less than 10 Joules.i The 

resulting non-pyrotechnic system and 

impervious to any associated Hazards of Electromagnetic Radiation to Ordnance (HERO).ii This 

patented technology is derived from the unique electrical breakdown properties of 3-D printed 

acrylonitrile butadiene styrene (ABS), discovered serendipitously while investigating the 

thermodynamic performance of ABS as a hybrid rocket fuel.iii Additive manufacturing is an 

essential feature of this configuration. Because additive manufacturing builds the specimen one 

layer at a time, 3D-printed ABS possesses unique electrical breakdown properties that have been 

exploited to allow for rapid on-demand system ignition. On demand ignition has been 

demonstrated using nitrous oxide (N2O), gaseous oxygen (GOX), and hydrogen peroxide (H2O2) 

as oxidizers.iv,v  

Multiple prototype devices with thrust values ranging from 4.5 to 900 N have been developed 

and tested.vi Figure 1(a) shows the range of sizes and form factors that have been previously tested. 

 
a) Range of Form Factors           b) Grains with Interlocking Sections 

Fig. 1 Previously Tested Fuel Grain Prototypes 
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Figure 1(b) shows the patented interlocking grain concept that allows large fuel grains to be printed 

from a relatively small printer.vii All units are capable of multiple restarts and can be operated in 

either continuous or pulse modes. 

The GOX/ABS thruster has achieved specific impulse (Isp) values in excess of 220 seconds 

under ambient operating conditions, and greater than 280 seconds under soft-vacuum conditions. 

This Isp value exceeds the hydrazine performance level by more than 20%. This performance 

enhancement is achieved by a comparably simple configuration layout with an inherently safe and 

environmentally sustainable system design. The current system offers the safety and 

environmental friendliness of a cold-gas system, but at a significantly higher performance level. 

This promising "green" hybrid-rocket alternative to hydrazine-based space propulsion systems 

currently lies at an intermediate state of development, with a technology readiness level (TRL) 

estimated to be approximately between 4 and 5. This estimate was established using the USAF 

Technology Readiness Level (TRL) Assessment Tool.viii  

 

1.1 LITERATURE REVIEW 

 It is well known that a serious complication due to space propulsion is the potential for 

adsorption of propellant effluents onto spacecraft surfaces. Plume contaminants can create 

multiple operational concerns including decreased power production from optical contaminants 

on solar array panels, and increased spacecraft temperatures due to contaminated thermal control 

surfaces. In an early study entitled, “Investigation of exhaust backflow from a simulated cluster 

of three wide-spaced rocket nozzles in a near-space environment,"ix NASA characterized the 

contamination primarily via temperature and pressure differences. This study also has a number 

of photographs showing the actual physical contamination, but none of these ever suggest the 
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impact on an optical surface. The significance of this is despite the significant amount of 

literature on plume contamination most of this data is of limited value because they fail to 

identify how the optical properties are impacted by the contamination.  

This dearth of data on plume effects on optical surfaces is also noted in the introductory section 

of a different NASA study “The effect of rocket plume contamination on the optical properties of 

transmitting and reflecting materials” x, which noted it as follows: 

More, recently, however, our endeavors have been directed towards investigating the 

effects of the local spacecraft environment (such as rocket plume impingement and waste 

gas venting) on optical properties. For long-term missions it is necessary to control the 

vehicle orientation by means of small attitude control thrusters. As a result, the exhaust 

products of these engines may present a serious contaminating source for such things as 

thermal control materials, optical sensors, and solar cell arrays, to name a few. These 

sources of contamination may or may not be of importance. The contamination effect is 

of concern only when the functional thermal or optical properties of a material of interest 

is measurably altered. 

 The biggest problem with studying the backflow plume contamination generated by 

various thrusters is that this effect doesn’t occur with any significant effect in Earth’s 

atmosphere. This makes experimental testing much more challenging because an environment 

like the vacuum of space must be simulated. In early research done by NASA in the 1960’s,ix 

large vacuum chambers were used to generate a space-like environment because solving the 

equations specifically the Navier-Stokes and Boltzmann equations is extremely difficult.xi 
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Both sets of equations are required because the internal flow properties of the chamber and the 

actual plume are best solved using the Navier-Stokes equations just like you would while in an 

atmosphere. However, the lack of particles in the vacuum of space means that once you leave the 

immediate plume regime there is insufficient fluid to apply the Navier-Stokes equations. 

Furthermore, while vacuum chambers are a good approximation of the space environment, they 

are not perfect. Even the best vacuum pumps can’t maintain the pressure low enough to truly 

simulate the vacuum of space while burning a thruster inside. Since the vacuum pump is 

undoubtedly connected to only a few locations on the chamber, the pressure generated by the 

thruster will be drawn to those openings rather than dissipating in a more uniform fashion as it 

would in space. This means that any particulates generated by the thruster will also be biased 

towards travelling to those openings. The other major problem is that the true temperature of 

space is approximately 3 degrees Kelvin. Maintaining a vacuum chamber where the interior 

walls are at cryogenic temperatures is a massive feat, and as a result it is not commonly done. 

While space simulation chambers that are capable of maintaining temperatures of 3 Kelvin do 

exist, the costs of both obtaining liquid hydrogen and properly insulating the system from the 

extreme temperature are both extremely high. The effect is that in a vacuum chamber used for 

most rocket testing, the gases in the thruster plume can only cool to the ambient temperature of 

Earth. The inadequate cooling potentially results in reduced plume contamination as the gases do 

not solidify the way they might if the thruster had been fired in space.  

The difficulties in properly simulating a space environment are the primary reason why most 

modern studies on backflow plume contamination run numerical simulations to obtain results. 

The simulations are then validated with actual spaceflight data. The Chinese Journal of 
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Aeronautics has a detailed explanation of the reasons for this in the introductory section of 

“Research on vacuum Plume and its effects” xii as follows: 

Until now three kinds of methods are introduced to research the vacuum plume and its 

effects. The first one refers to the semi-experimental and analytical methods, which 

include the Simons method and MOC method. These methods have relatively high 

efficiency but low accuracy and are only suitable for simple cases. The second kind is the 

numerical simulation method. In the early 1960s, Bird proposed the DSMC 

method,3 which directly simulates the physical phenomena described by the Boltzmann 

equation. Since the appearance of the DSMC method, it has been successfully applied to 

a wild range of high-altitude rarefied gas dynamics problems. The third one belongs to 

experimental study, which contains simulation experiments on the ground and flight 

experiments. Ground simulation experiments are often used to validate the numerical 

simulation programs and also used to measure small thruster plume parameters. Flight 

experiments can obtain the actual conditions of the plume. A flight experiment named 

SPIFEX was conducted to research plume effects by the U.S. space shuttle. However, the 

cost of flight experiment is too expensive. 

The research of plume started in the 1960s. A lot of experimental researches were 

performed in recent years. With the advanced computation development, numerical 

simulation becomes a main tool for the plume study. The plume question could be 

understood more distinctly by combining experimental study and numerical simulation. 

 Many existing studies considered the plume contamination purely from quantitative dust 

particulate levels. There are numerous studies that document how much particular matter, often 

referred to as dust, their thruster produced from backflow contamination. As an example during a 

http://www.sciencedirect.com/science/article/pii/S1000936112000246#b0015
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NASA-Boeing study titled “Thruster Plume Induced Contamination Measurements from the PIC 

and SPIFEX Flight Experiments” one of the plume contamination results from section 3.1 were 

characterized as follows: xiii  

To quantify the initial contaminant deposit, excluding the rapid evaporation effect, the 

initial deposit is calculated by summing the increase in frequency (Δf) values for all 10 

spikes. The decrease in frequency during the evaporation period is not included in this 

sum since it is related only to the evaporation of the deposited contaminant. The result is 

a total increase in frequency (Δf) of 580 Hz. This increase in frequency yields an initial 

mass deposition of 2.56 μg/cm2 for the ten seconds of total on-time, or an initial mass 

flux of 0.26 μg/cm2·s. 

 However, the impact of the dust could and probably does vary between propellants because the 

actual impact is based on the combustion byproducts of the thruster’s plume. In general, more 

contamination equals greater degradation of performance, regardless of the chemical makeup of 

the particles. But since the combustion byproducts are not the same between different 

propellants, just analyzing the amount of dust doesn’t reveal all of the useful information 

available. 
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Chapter II 

POTENTIAL CONTAMINATION EFFECTS OF BURNED ABS 

ABS is an entirely new material for propulsion applications, and no database exists to describe 

the potential deleterious effects of the exhaust plume on spacecraft surfaces. In fact, the authors 

could find no published literature 

presenting plume contamination 

measurements for any type of hybrid 

rocket. Additionally, this study goes 

step beyond existing studies by 

examining the composition of the 

contaminants in addition to the total amount. Of particular concern is the potential optical 

degradation that plume contamination backflow would have on the surfaces of a spacecraft, and 

the optical effects will vary based on the amount of contamination and the specific chemical 

species deposited.  

Generally, long lifetime requirement for spacecraft sensors mean that these exists a potential 

for years of exposure to contamination from on-orbit propulsion required for attitude control and 

orbit maintenance/corrections. These contamination effects can create multiple operational 

concerns; for example, the collection of molecules on solar arrays and thermal control surfaces can 

lead to decreased power production and increased spacecraft temperatures. As an example the 

Voyager 1 spacecraft, which employed several 0.9-N hydrazine thrusters for trajectory 

adjustments, exhibited a 60% drop in the reaction-wheel torques resulting from solar cell 

contamination due to the plume effluent.xiv 

 

Fig. 2 Exhaust Plume Flow Characteristics and Flow Regimes 

Under Vacuum Conditions. 
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Plume interactions generally results in three forms of contamination 1) condensation of exhaust 

species on baffles and optics, 2) pitting of optical surfaces, 3) film adsorption from the 

condensation, and 4) surface etching from acidic deposits. Contamination manifests itself on the 

sensor system by increased scatter, increased surface emissivity, and decreased signal to noise 

ratio. Figure 2 illustrates this effect where the aft-directed plume scatters at it expands rapidly into 

the vacuum, allowing a small fraction of the ejected particles to obtain lateral and even back-

scattered momentum, allowing interaction with spacecraft surfaces that are not directly in the path 

of the exhaust plume.  

The experimental results to be presented will allow the effects of the GOX/ABS thruster 

exhaust plume contaminants on critical spacecraft components, including solar panels, antennae, 

and optical sensors, to be qualitatively and quantitatively assessed. These data can be used as check 

cases to verify existing particle and molecular contamination codes. To date no such plume 

contamination experiments have been performed for hybrid rocket systems. Development of this 

database is essential before the proposed systems can be considered for a ride-share spaceflight 

demonstration or for commercial development.  

2.1 GOX/ABS PLUME CHEMICAL ANALYSIS 

ABS is manufactured by co-polymerizing acrylonitrile and styrene to form styrene-

acrylonitrile (SAN). Butadiene gas is then dissolved into the SAN to create ABS. Typical ABS 

preparations contain 21%-27% acrylonitrile, 12%-25% butadiene, and 54%-63% styrene 

monomer fractions by mass.xv Acrylonitrile improves the overall chemical resistance, butadiene 

imparts impact resistance, and styrene supplies stiffness that allows good machinability. Butadiene 

also supplies the majority of the energy content to the polymer. Extruded ABS is a very stable 

material as shown by industrial sewer pipes that remain buried for decades with little degradation. 
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NASA has tested the ABS plus® stock material used for the previously described thruster fuel 

grainsxvi and has classified the material as "low out gassing." In their series of tests, the material 

was heated to 125 oC in a vacuum environment to drive off any volatile components. Total Mass 

Loss (TML) was measured at 0.63%, and a Maximum Collected Volatile Condensable Material 

(CVCM) of 0.08%.xvii  

The tests to be summarized in the paper will use the commercially available Stratasys ABS-

Plus 340® as the feedstock for the additively manufactured fuel grains. The precise chemical 

formulation of this material is a closely held industrial secret of Stratasys Inc; however, the general 

monomer properties of ABS are publicly known, and some combustion toxicity analysis has been 

previously performed.xviii Moreover, the general consensus from this literature survey is that since 

ABS can be created by a variety of processes that result in distinctively different monomer ratios 

and different resulting combustion by products.  

In order to understand the types of exhaust product that may result from combustion of ABS 

in concentrated oxygen, the NASA-developed the equilibrium gas-chemistry code Chemical 

Equilibrium with Applications (CEA)xix,xx used to model the combustion products for the 

butadiene-rich ABS formulation tested by Whitmore and Peterson.iii Here the assumed monomer 

ratio is 50% mole fraction of butadiene, 43% acrylonitrile, and 7% styrene. The “reduced” 

chemical formula corresponding to this mix ratio is C3.85H4.85N0.43. Whitmore and Petersoniii 

calculated the enthalpy of formation of this formulation to 62.63 KJ/mol with a molecular weight 

of 57.07 kg/kg-mol. Figure 3 plots the resulting characteristic velocity c*, flame temperature T0, 

for pressure levels varying from 100 to 300 psia (690 to 2070 kPa). Best operating conditions for 

these propellant are slightly rich, with a peak c* near 1.6 O/F ratio. The stoichiometric O/F ratio is 

2.674, and best performance occurs between Equivalent Ratios, = 1.6 and 1.8.  
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Fig. 3 Characteristic Velocity and Flame Temperature for Various Pressure Levels and O/F Ratios. 

Table 1 shows the resulting GOX/ABS exhaust plume mass concentrations for 8 different O/F 

ratios with equivalence ratios ranging from fuel-rich ( > 1) to lean ( < 1). Figure 3 compares 

the plume various mass concentrations graphically in a series of bar charts. The assumed 

combustion pressure was 150 psia, and corresponds to the approximate thrust levels of a small-

spacecraft thruster.  The specific combustion by-products produced from GOX ABS combustion 

are strongly dependent up the O/F ratio. The primary exhaust products are carbon monoxide, 

carbon dioxide, water vapor, and gaseous hydrogen. No acidic or ozone depleting gases are 

produced. The principal gases responsible for any potential toxicity are HCN (hydrogen cyanide) 

and CO (carbon monoxide).  

This analysis concludes that when the motor is operated in a fuel rich mode, the combustion 

by products tend to be more problematic, producing substantial mass fractions of HCN and CO. 
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Burning at low O/F (higher equivalence ratios) also produces significant dirty, vaporized carbon 

C(gr); and should be avoided for flight operations. When the motor operates near the optimal O/F 

ratio between 1.5 and 2.0 (as the USU thruster has been designed), the combustion products for 

GOX/ABS are relatively benign. Hydrogen cyanide gas does not result until equivalence ratios rise 

above approximately 2.3.  

 

Fig. 4 Characteristic Velocity and Species Mass Fraction of GOX/ABS contrasted with Hydrazine.  

 

As shown by Whitmore and Merkleyxxi the current GOX/ABS thruster family feature O/F 

ratios that vary from approximately 2.25 to slightly less than 1.30 across the burn lifetime. Per the 

results of Table 1 this burn profile generally results in "clean" exhaust by-products with C(gr), and 

carbon monoxide levels half of what is produced when traditional petroleum based hydrocarbons 
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are burned. Figure 4 illustrates that GOX/ABS combustion has a significantly higher c* than 

hydrazine does regardless of the Decomposition fraction of hydrazine. Figure 4 also indicates that 

most of the byproducts of GOX/ABS combustion will be gaseous when operating at or above the 

peak performance O/F ratio of approximately 1.6. 

 

Most importantly, the data of Table 1, Figure 4, and Figure 5 demonstrate that GOX/ABS 

combustion does not produce ammonia decomposition products. As described previously the vast 

majority of operational spacecraft have relied on hydrazine as the main propellant. Highly fluent 

and condensable ammonia is an abundant by-product of hydrazine decomposition, and over the 

lifetime of a spacecraft can result in significant contamination of critical spacecraft surfaces.xxii 

The GOX-ABS hybrid does not produce highly-fluent by products. This, the potential for 

contamination is significantly reduced.  

 

Table 1 Example GOX/ABS Propellant Combustion By-products at 150 Psia Combustion Pressure.  
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Fig. 5 GOX/ABS Plume Species Concentration for Various O/F Ratios. 
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2.2 EXHAUST PLUME CONTAMINATION MEASUREMENTS 

The contamination measurements to be presented in this paper are based on a photometer 

design previously developed for the USAF ESEX flight test experiment.xxiii Figure 6(a) shows the 

sensor concept where a PC-board mounted light-sensitive cadmium-sulfide (CdS) photo-resistor1 

receives illumination behind a quartz glass window that is intended to simulate spacecraft optical 

surfaces. The sensor glass surface footprint measures approximately one square inch. Figure 6b 

shows the prototype bridge sensor and the accompanying LED light source to be described later 

in this section. The change of resistance of the CdS photo-resistor is converted to a voltage output 

signal using a simple Wheatstone bridge circuit. 

            

a) Sensor Design                                                               b) Prototype Units 

Fig. 6 Photometer Sensor Design Layout and Prototype Units. 

                                                           
1 Anon, “CdS Photoconductive Cells, GL55298, https://cdn.sparkfun.com/datasheets/Sensors/LightImaging/SEN-09088.pdf, 

[Cited 3-22-2107].  

https://cdn.sparkfun.com/datasheets/Sensors/LightImaging/SEN-09088.pdf
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Figure 7(a) plots the photo-

resistance of the GL-55298 photo-

resistor as a function of the illumination 

level, and Figure 7(b) plots the spectral 

response. Although the best response 

level is near the green wavelength at 

approximately 620 nm, the response of 

the resistor is good over the entire visible 

light spectrum.  

A three-color high intensity light emitting diode (LED) is used to provide a known illumination 

source. The high-powered LED2 outputs three different with emission frequencies 630 nm (Red), 

460 (Blue), and 520 nm (Green) in the visible light spectrum. The corresponding RGB luminous 

flux levels are 35, 13, and 57 J/sec (lumens). These flux levels are plotted on the photo response 

chart of Figure 7. The light source is modulated at a set frequency so that the resulting 

measurements can be band passed filtered using Fourier transform techniques eliminate spurious 

light contamination.xxiv 

Chapter III 

VACUUM CHAMBER TESTS OF A FLIGHT WEIGHT 25-N THRUSTER. 

A prototype 25-N flight weight thruster system was vacuum tested during the summer of 2016 

in the NASA Marshall Space Flight Center’s (MSFC) Propulsion Research and Development 

Laboratory (PRDL). Test objectives included 1) demonstration of reliable multiple restart 

                                                           
2 Anon, LED Model YSH-FRGBB-1A, China-Yung SUN LED Technology Co. LTD, 

https://www.sparkfun.com/datasheets/Components/LED/COM-08718-datasheet.pdf. 

 

Fig. 7 Response Properties of GL-55298 CdS Photoresistor. 
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capability under near vacuum conditions, 2) characterization of the vacuum specific impulse with 

a high expansion ratio nozzle, 3) characterization of the system startup time under vacuum 

conditions, 4) identify any possible corona discharge effects due to the high-ignition voltage at 

low operating pressure levels, and 5) obtain preliminary plume contamination measurements using 

the sensor package described in the previous section.  

Prior to the vacuum tests this thruster has been previously well-characterized by a series of 

static-firings under ambient pressure conditions at the Utah State Propulsion Research 

Laboratory.xxv For the vacuum tests a separate non-flight weight feed system delivered the oxidizer 

(GOX) to the thrust chamber. The vacuum chamber altitude system consists of a vacuum chamber 

roughly 4.5 ft3 in volume that is evacuated by a rotary vacuum pump. The pump discharges outside 

of the building into a stainless steel drum. 

Table 2 lists the key motor component parameters. The test article features 1) a thrust chamber, 

2) phenolic line, 3) motor cap with integral oxidizer injector, 4) fuel grain with embedded 

electrodes, 5) graphite nozzle, and 6) nozzle retainer. The rocket nozzle, nozzle retainer, and 

injector cap were manufactured by Utah State University, and have been previously tested and 

well-characterized under ambient pressure operating conditions. The rocket thrust chamber is 

constructed from 6061-T6 high-temperature aluminum, and was procured commercially from 

Cesaroni Inc. as commercial off-the-shelf (COTS) equipment. The phenolic liner was purchased 

from an on-line retail distributer.  Both low (2.064:1) and optimal (9.5:1) expansion ratio nozzles 

were evaluated.  
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Table 2 Motor Geometry Parameter Specifications. 

Parameter Injector Single Port - 0.127 cm Diameter 

Fuel Grain Diameter: 3.168 cm Length: 6.850 cm Initial Weight: 

50.0 g 

Initial Port Diameter: 

0.625 cm 

Motor Case Diameter: 3.8 cm Length: 13.8 cm Wall Thickness: 1.5 mm 

Low Expansion 

Ratio Nozzle 

Initial Throat Diameter: 

0.401 cm 

Exit Diameter: 

0.583 cm 

Ambient Tests 

Initial Expansion 

Ratio: 2.1:1 

Nozzle Exit Angle: 5.0 

deg. 

High Expansion 

Ratio Nozzle 

Initial Throat Diameter: 

0.401 cm 

Exit Diameter: 

1.215 cm 

Vacuum Tests Initial 

Expansion Ratio: 

9.5:1 

Nozzle Exit Angle: 

20.0 deg. 

 

Figure 8(a) shows the additively-manufactured ABS fuel grain prior to testing. The printed 

fuel grains were fabricated from Stratasys ABSplus-340® feed-stock. Figure 8(b) shows the 

thruster during a 1-second pulse-firing. Figure 9 shows the thrust chamber schematic. Figure 10 

shows the thruster installed in the vacuum chamber and illuminated by the red-LED. The details 

of the thrust stand instrumentation are also shown. The plume contamination sensor is mounted on 

the lower rail of the test sled rail, just upstream of the nozzle exit plane, and the LED is mounted 

onto the opposite chamber wall shining directly down onto the photometer. Arrows point to the 

LED and plume sensor locations. Figure 11 shows the thruster installed on the Demo Test Rig cart 

with the LED and Photoresistor bridges installed. It also has a piece of the space shuttle tile 

mounted to simulate backflow from vacuum conditions. 
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a) Printed Fuel Grain with Electrodes                                         b) Static Test Firing 

Fig. 8 Flight-Weight Green Propellant Thruster. 

 

 

 

Fig. 9 Test Article Thrust Chamber Mechanical Schematic and Exploded View. 
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Fig. 10 25-N Thruster Mounted in Vacuum Chamber with Red LED Illumination. 

 

Fig. 11 25-N Thruster Mounted on Demo Test Rig stand with LED and Photometers installed. 
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3.1 VACUUM CHAMBER PERFORMANCE TEST RESULTS 

Table 3 summarizes the results from both the ambient and vacuum motor characterization tests. 

As mentioned previously, before the vacuum testing campaign, this thruster had been previously 

characterized under ambient test conditions in the USU Propulsion Research Laboratory, Logan 

Utah using a near-optimal nozzle expansion ratio of 2.064:1.3 Whitmore and Mathiasxxvi give a 

complete description of the test stand and the instrumentation system used to collect the ambient 

test measurements. The MSFC vacuum tests were repeated with the 2.064:1 nozzle and a near-

optimal nozzle with a higher an expansion ratio of 9.5:1. The mean Isp for the ambient tests was 

approximately 213 seconds, with a burn-to-burn standard-deviation of +7.4 seconds. As expected, 

when compared to the ambient pressure tests, the vacuum thrust and Isp levels are noticeably 

higher, with 235.3+7.5 seconds being achieved by the low (2.064:1) expansion ration nozzle and 

280.0+7.3 seconds being achieved with the high (9.5:1) expansion ratio nozzle. This Isp increase 

is clearly a result of the reduced backpressure and the higher expansion ratio (9.5:1) nozzle. 

 

Table 3 Summary of Ambient and Vacuum Thruster Performance Characterization Tests. 

Motor 

Configuration 

# of 

Burns 

Pc F Fmax,  Isp Ignition 

Energy 

τrise, O/F 

Ratio 

Combusti

on 

Efficiency

, η* 

2.064:1 initial 

ε, Ambient 

Conditions 

8 155.16 

+- 4.88 

psia 

20.49 

+1.16 N 

20.96 

+0.49  N 

212.84 

+7.41 s 

1.67 

+0.23 J 

214.0 

+46.0 ms 

N/A 95% 

2.064:1 initial 

ε, Vacuum 

Conditions 

10 180.01 

+ 5.75 

psia 

24.65 + 

1.06 N 

26.58 

+0.89  N 

235.27 

+7.57 s 

1.38 

+1.01 J 

132.5 

+30.9 ms 

2.37 

+0.35 

95.5% 

+1.70% 

9.5:1 initial ε, 

Vacuum 

Conditions  

20 183.92 

+ 9.63 

psia 

30.84 + 

1.36 N 

32.98 

+0.92  N 

280.01 

+7.23 s 

1.63  

+ 0.43 J 

122.5 

+44.3 ms 

1.94 

+0.46 

94.1% 

+0.96% 

 

                                                           
3 These tests were performed in the Utah State Propulsion Test Laboratory Test Cell at an elevation of approximately 1400 meters 

(4600 ft.) altitude. Nominal atmospheric pressure at this altitude is approximately 85.6 kPa (12.415 psia).  
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3.2 THRUSTER PERFORMANCE MEASUREMENTS 

 

Figure 12 plots a typical 4-pulse burn time history from the vacuum tests in this test series the 

1-second burns were followed with a 10 second recovery time in order to ensure that the vacuum 

chamber returned to near its minimum pressure level between each burn. Plotted are Plotted are 

the a) thrust as measured by the load cell and calculated from chamber pressure, b) chamber, nozzle 

exit, and vacuum chamber pressure, c) nozzle exit, oxidizer and fuel mass flow, d) specific impulse 

as calculated from the thrust, chamber pressure, and total mass flow, e) ignitor input voltage, and 

f) ignitor input power and total input energy. With the thruster firing, the vacuum systems were 

able to maintain a mean chamber pressure of approximately 0.15 atmospheres. This value 

corresponds to a vacuum pressure of approximately 650 torr below one standard atmosphere, and 

are thus considered to be “soft vacuum” conditions.  

For each configuration the 4-pulse burn tests were repeated 5 times and data from a total of 20 

successful 1-second burns were collected.  The ensemble mean thrust level is 30.85 N with a 

standard deviation of +1.96 N. At the 95% confidence level the estimated error range for the 

ensemble mean thrust is +0.88 N. The ensemble mean Isp is 280.0 sec with a sample standard 

deviation of +8.4 seconds. At the 95% confidence level the estimated error range for the ensemble 

mean Isp is +3.8 seconds. The ensemble mean ignition power drawn is 1.38 watts with a sample 

standard deviation of +0.46 watts. At the 95% confidence level the estimated error in the mean 

ignition energy is +0.21 watts. The ensemble mean rise time for the vacuum tests is 133 

milliseconds with a standard deviation of +20 ms. At the 95% confidence level the estimated error 

range for the ignition rise time is +8.9 ms. This rise time is approximately 70% of the value 

measured during the ambient pressure tests. Most likely, the nozzle throat chokes sooner under 

vacuum conditions, thus allowing the chamber pressure to build up faster.  
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Figure 13 shows photographic images taken of the exhaust plume for the low (2.064:1) and 

higher (9.5:1) expansion ratio nozzles during the vacuum tests. Image (a) shows the “splayed” 

exhaust plume that is characteristic of an under expanded nozzle. With the low expansion ratio, 

the exit pressure is substantially higher than the background pressure in the vacuum chamber, and 

the plume expands immediately aft of the nozzle exit plane. Image (b) taken with the near-optimal 

higher-expansion ratio nozzle shows a more uniform exhaust plume with only a slight expansion 

of the plume aft of the nozzle exit plane.  

 
Fig. 12 Time Histories of Pulsed Burns for Soft-Vacuum Conditions. 
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Even though the 9.5: 1 nozzle was optimized for these test conditions, the measured specific 

impulse of 280 seconds does not represent a true vacuum value. Using data from Table 3, the 

specific impulse can be extrapolated to a hard vacuum condition by using the one-dimensional de-

Laval flow equations [36]. Assuming a mean chamber pressure level of 195 psia (1250 kPa), test 

vacuum pressure of 15 kPa, a ratio of specific heats of 1.18, the thruster with the 9.5:1 expansion 

ratio nozzle extrapolates to give a hard vacuum specific impulse of 296.5 seconds. When the nozzle 

is more optimized for vacuum operating conditions, e.g. Aexit/A
* = 25:1, then the exit pressure 

drops to 6.7 kPa and the specific impulse extrapolates to 319 seconds. This value is 30-35% greater 

than can be achieved by mono-propellant hydrazinexxvii or either of the ionic-liquid green 

propellants LMP-103sxxviii or AF-M315E.xxix  

Chapter IV 

PLUME CONTAMINATION MEASUREMENTS 

Because the low-expansion ratio nozzle exhibited the greatest plume expansion and potential 

for backscatter, vacuum plume contamination measurements were obtained using the low 

expansion ratio nozzle. As shown by previously by Figure 5(a) the change of resistance of the CdS 

     

Fig. 13 Comparison of Thruster Vacuum Exhaust Plumes for 2.064:1, and 9.5:1 Expansion Ratios. 
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photo-resistor is converted to a voltage output signal using a simple Wheatstone Bridge circuit. 

Under the lighting conditions experienced in the closed tunnel ~ 5 lumens, it was discovered that 

matching resistors of approximately 20 kΩ were able to balance the bridge output when the 

illuminating LED was turned off.  

Using a 5-volt bridge excitation input, the corresponding bridge responses for the RGB LED 

outputs were approximately 1.4, 0.8, and 1.7 volts respectively. Figure 14 presents a typical plume 

measurement time history. Figure 14(a) plots the commanded LED logic, and Figure 14(b) plots 

the photometer bridge output voltage. The commanded LED modulation is a 1-Hz square wave; 

the bridge output signal was low passed filtered at 5 Hz to remove any spurious higher frequency 

optical inputs. The two large spikes in the middle of the voltage plot result from each of the two 

1-second rocket burns. Notice that the voltage amplitude drops slightly after the thrust is 

terminated. The primary cause of this short-term drop is the plume heat causing the internal 

chamber temperature to rise.   

 

Fig. 14 Typical Photometer Bridge Time History Output. 

Figures 17(a) and 17(b) show the photometer response for 10 consecutive thrust burns for two 

sensors placed side by side as shown in Figure 11. By contrast Figure 17(a) plots the photometer 

response for 10 consecutive thruster burns under soft-vacuum conditions. The burn series for the 

Demo Test Rig (DTR) cart was done in 10 1-second pulses, with approximately 30 seconds of post 
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data collection. However, this ended up being split into 3 distinct data collections due to issues 

while firing the thruster. Each soft of soft-vacuum burns featured two 1-second pulses, followed 

by 30-50 seconds of post-data collection. The bridge excitation is 5-volts, and each of the matching 

resistors were 20 kΩ. The 1-second burn intervals are clearly visible. After the post burn voltage 

levels stabilized the vacuum chamber was pressurized, and opened to allow the LED’s optical 

surface to be wiped clean of any residue. The photometer surface was not cleaned after each test 

series, allowing a gradual build-up of surface contaminants. The LED optical surface was also 

wiped after every second burn during the tests on the DTR cart to more closely match the data 

from the vacuum chamber.  

Figures 15 and 17(b) plot the peak photometer voltage output as a function of accumulated 

burn time. Plotted are (a) peak voltage (during burn), (b) peak stable voltage after each burn but 

before the LED surface was wiped clean, and (c) peak stable voltage after the LED surface was 

wiped clean. Clearly, there is a gradual drop off of the output voltage for all three metrics, 

indicating that the photo-resistor illumination level is also dropping.  

 

a) Photoresistor Bridge Output Volts (Bridge 1)  b) Photoresistor Bridge Output Volts (Bridge 2) 

Fig. 15 Photo Resistor Bridge Time History Output from 10 Consecutive Thruster Burns.  
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Fig. 16 Photoresistor Bridge Peak Output Volts as a function of Burn Time (DTR). 

 

Fig. 17 Photoresistor Bridge Time History Output from 10 Consecutive Thruster Burns (Vacuum).  

 

4.1 EFFECT OF PLUME CONTAMINATION ON PHOTOMETER ILLUMINATION LEVEL 

 

The drop off in illumination is calculated using the post burn peak amplitudes; both before 

and after the LED surface was wiped clean. The calculation starts with the Wheatstone Bridge 

resistance equation  
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Assuming that the three fixed bridge resistors have identical values R, then Eq. (2) reduces to  
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Calculating the normalized sensitivity of a change in resistance to the normalized change in output 

voltage, then  
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From the data presented by Figure 6(a) the photo-sensor resistance can be curve fit as a function 

of the illumination level as  
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Solving for the normalized sensitivity of a change in illumination to the normalized change in 

output voltage  
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Equation (6) is used to calculate the estimated optical attenuation that corresponds to the post-burn 

data plotted on Figure 17 (b). Figures 18-20 plot these results. Figures 18 and 20(a) plot the fraction 

of original illumination, and Figures 19 and 20(b) plot the attenuation fraction. The total motor 

burn time is plotted on the abscissa for both graphs. The measured illumination attenuation of 

between 9 and 13% occurs in spite of the fact that there was no visible contamination apparent of 

the photometer’s optical window.  

The devised method is quite sensitive to optical contamination, and will prove to be a very 

robust and inexpensive tool for further contamination studies. Preliminary results indicate that 

plume contaminations result in an optical surface luminous flux deterioration slightly greater than 

1% of the ‘clean surface” illumination for each second of burn time. Also, at this point it is unclear 

as to what fraction of the observed contamination levels are generally applicable to a hard-vacuum, 

free space condition, and what fraction is an artifact of the test apparatus arrangement and the 

relatively small vacuum chamber. At the current level of understanding, the authors conclude that 

this level of contamination, although measurable, is generally not alarming. Clearly, a more 

comprehensive study must be performed in order to assess the total field contamination levels. 

 

a) Fraction of Original Illumination (Bridge 1)  b) Fraction of Original Illumination (Bridge 2) 

Fig. 18 Photoresistor Bridge Time History Fraction Output from 10 Consecutive Thruster Burns.  
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a) Illumination Attenuation (Bridge 1)   b) Illumination Attenuation (Bridge 2) 

Fig. 19 Photoresistor Bridge Time History Attenuation Output from 10 Consecutive Thruster Burns. 

 

Fig. 20 Photo Resistor Bridge Time History Fraction Output from 10 Consecutive Thruster Burns 

(Vacuum).  

4.2 SCANNING ELECTRON MICROSCOPE ANALYSIS OF BRIDGE PHOTOMETERS 

 As seen in Figure 6 each of the Photometers used included a thin transparent shield for the 

photoresistor from the contamination of the thruster plume. While the shield used in the vacuum 

chamber testing was an acrylic plastic and as such made primarily from carbon, the shield for the 

DTR cart was from a silicon based glass. The Scanning Electron Microscope (SEM) at the USU 

Microscopy Core facility was employed to determine the chemical composition of the 

contamination on the glass shields used for the DTR cart. The photometers were approximately 12 

inches from the space shuttle tile that simulated vacuum conditions backscatter. Additionally, a 

piece of glass of approximately the same size and thickness that was not exposed to the 
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contamination from the thrust plume was placed in the SEM to provide a basis of comparison. 

Figures 21 and 22 below are included to show the specific SEM used to conduct the analysis. 

 

Fig. 21 External Picture of the SEM employed at USU. 

 

Fig. 22 Internal Pictures of the SEM employed at USU (Left: Top view, Right: Front view). 
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 This SEM was employed in Low vacuum mode at approximately 0.3 torr because the glass 

shields are non-conductive. While visual comparison of the glass after contamination reveals no 

obvious imperfection viewing it in the SEM at 500x magnification does show obvious (if small) 

pockets of carbon from the thruster plume. However, by comparing Figure 23 with Figures 24 and 

25 it can be seen that the overall amount of carbon increase on the shields after the thruster burns 

is very small. 

 

Fig. 23 SEM results for the clean glass piece (Left: Picture at 500x, Right: Chemical composition). 

 

Fig. 24 SEM results for the bridge 1 shield (Left: Picture at 500x, Right: Chemical composition). 
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Fig. 25 SEM results for the bridge 2 shield (Left: Picture at 500x, Right: Chemical composition). 

 

CHAPTER V 

FLIGHT TEST 

 In March of 2018, a system based on the ABS/GOX hybrid was tested on a Terrier 

Improved Malemute rocket via the NASA Undergraduate Student Instrument Project (USIP). 

The rocket is shown at the time of launch in Figure 26. One of the most notable differences 

between the two systems is that the rocket that flew during USIP used enriched air rather than 

GOX. This is because, GOX at low pressures is rather low density compared to hydrazine, and in 

order to ensure a high level of volumetric efficiency, GOX must be stored at very high pressures, 

greater than 3000 psig. GOX stored at high pressures creates a high level of fire danger, and 

precision cleaning and maintenance of spacecraft components is required. The use of GOX-rated 

aerospace components are also required for safe operation. These specialized requirements can 

lead to cost-prohibitive system designs. However, most materials designed for use with standard 

air delivery can be adapted for use with enriched air -- up to 40% oxygen concentration -- with 

little or no hardware modifications. Precision cleaning, logging, and tracking of flow path 

components is not required. Thus, if the green thruster system designed for GOX usage can be 
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demonstrated to perform effectively using enriched air, these exists the potential for a significant 

reduction in operating costs.  

 

Fig. 26 Terrier Improved Malemute rocket launched for NASA USIP 2018. 

 The other major differences were that the system had to be constructed flight ready, small 

enough to be inserted into the payload section of the rocket, and that a self-nulling design was 

employed rather than a single thruster. The USIP rocket was launched above the Von Karman 

line to allow the various student projects to be tested and operated in hard vacuum conditions. 

This was illustrated in the Concept of Operations (CONOPS) for the project, shown as Figure 27 

below. The major difficulty of the project stemmed from the need to make a system that was 

flight ready and small enough to fit the standard RockSat deck 12 inches in diameter and 10.75 

inches tall. Figures 28 is an illustration that was generated during the USIP project to see a CAD 

model of the proposed test assembly contrasted with the relative size of the rocket. Figures 29 

and 30 show the USU rocket assembly used at Wallops Flight Facility and give an idea of its 

actual size. 
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Fig. 27 USIP 2018 CONOPS for USU. 

 

 

 

 

 

Fig. 28 RockSat Deck and location of payload on the rocket. 
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Fig. 29 USIP payload integration onto Terrier Improved Malemute. 

 

Fig. 30 USU Assembly awaiting installation. (Photoresistor and Wheatstone bridge hidden behind the 

thruster) 

 

 

LED for plume testing 
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5.1 USIP PLUME CONTAMINATION TEST RESULTS 

 The most significant success for the plume contamination testing from the USIP launch 

was that despite the hard vacuum conditions and other difficulties that occurred prior to the 

launch, the photometer still showed an observable degradation as seen in Figure 31.  

 

Fig. 31 Fraction of Original Illumination. (USIP Flight Data) 

Additionally, it can be noted that even though only one photometer was installed the 

contamination that was observed can be clearly seen to be the result of both thrusters. Figures 32 

and 33 show both the voltage response of the photometer and the chamber pressure of both 

thrusters. Comparing the two figures at approximately 16 seconds where true ignition of the far 

thruster occurred and the following reduction of output voltage for the photometer strongly 

supports the idea that the contamination from both thrusters is observed. The noticeably lack of 

an illumination spike on the photometer shows that the thruster nearest to the photometer never 

had true ignition. The chamber pressures for both thrusters suggest that both thrusters had issues 

igniting until the fourth burn where the other thruster finally ignited and burned properly for both 

of the remaining burns. The difficulties in achieving ignition are believed to be a combination of 
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the low temperatures and high moisture content around the assembly for the time preceding the 

launch. Despite that complication, the thrusters did receive the necessary spark to ignite but 

rather than burning the fuel properly only smoldered. 

 

Fig. 32 Bridge Output Voltage. (USIP Flight Data) 

 

Fig. 33 Chamber Pressure for both thrusters in USIP. (Blue: Near, Black: Far) 
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 Finally, the mass flow from the USIP flight, shown in Figure 34, indicates that significant 

amounts of fuel was burned from both thrusters which supports the theory that smoldering 

occurred in both thrusters during the times where true ignition did not occur. 

 

Fig. 34 Mass flow for both thrusters in USIP.  
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

Historically, hybrid rocket systems have never been seriously considered for in-space 

propulsion due to the lack of a reliable, low energy, multiple-use, and on-demand ignition system. 

Recently however, the Propulsion Research Laboratory at Utah State University has developed a 

patented USU arc-ignition system that overcomes multiple technical difficulties allows hybrid 

motors to be started, stopped, and restarted with low power input and a high degree of reliability. 

The technology is derived from the unique electrical breakdown properties of 3-D printed 

acrylonitrile butadiene styrene (ABS), discovered serendipitously while investigating the 

thermodynamic performance of ABS as a hybrid rocket fuel. Additive manufacturing is an 

essential feature of this configuration. Because additive manufacturing builds the specimen one 

layer at a time, 3D-printed ABS possesses unique electrical breakdown properties that have been 

exploited to allow for rapid on-demand system ignition.  

Because ABS is an entirely new material for propulsion applications, and no database exists to 

describe the potential deleterious effects of the exhaust plume on spacecraft surfaces. In fact, the 

authors could find no published literature presenting plume contamination measurements for any 

type of hybrid rocket. The adsorption of propellant effluents on spacecraft surfaces can create 

multiple operational concerns; for example, the collection of molecules on solar arrays and thermal 

control surfaces can lead to decreased power production and increased spacecraft temperatures.  

The presented results begin the process of quantifying the expected contamination levels 

generally for hybrid rockets in general, and specifically for 3-D printed ABS-based fuels. 

Presented equilibrium chemistry calculations have allowed the authors to conclude that when the 

GOX/ABS motor is operated near the optimal O/F ratio between 1.5 and 2.0, the combustion 
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products are relatively benign, and this burn profile generally results in "clean" exhaust by-

products with C(gr), and carbon monoxide levels half of what is produced when traditional 

petroleum based hydrocarbons are burned.  

Most importantly, presented data demonstrate that GOX/ABS combustion does not produce 

ammonia decomposition products. The vast majority of operational spacecraft have relied on 

hydrazine as the main propellant. Highly fluent and condensable ammonia is an abundant by-

product of hydrazine decomposition, and over the lifetime of a spacecraft can result in significant 

contamination of critical spacecraft surfaces. The GOX-ABS hybrid does not produce highly-

fluent by products. This, the potential for contamination is significantly reduced when compared 

to traditional in-space thruster systems  

Acidic products like Hydrogen cyanide gas are produced only when the motor is run extremely 

fuel rich, at equivalence ratios above approximately 2.3. The results demonstrated from the 

Scanning Electron Microscope (SEM) confirm that the only particulate contaminate that results 

from the thruster plume is carbon which can be mitigated by running the motor fuel lean. 

The presented plume measurements demonstrate that the photometer design is quite sensitive 

to optical contamination, and will prove to be a very robust and inexpensive tool for further 

contamination studies. Following a 10-burn cycle, this instrument measured an optical illumination 

attenuation of between 9 and 13% occurs in spite of the fact that there was no visible contamination 

apparent of the photometer’s optical window. At the current level of understanding, the authors 

conclude that this level of contamination, although measurable, is generally not alarming.  

 The results from the USIP flight test data clearly indicate that this contamination system 

can be successfully employed to detect contamination of a GOX/ABS thruster even under hard 

vacuum conditions. The approximate optical illumination attenuation of 15% supports the 
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conclusion that the level of contamination is not problematic. Additionally, the fact that this flight 

used 40% enriched air in lieu of GOX, the ignition difficulties, and the fact that the photometer 

was clearly detecting contamination from both thrusters suggest that the actual attenuation level 

might have been lower under more optimal conditions. 

  



43 
 

CHAPTER VII 

FUTURE WORK 

At this point it is unclear what fraction of the observed contaminations are generally applicable 

to a hard-vacuum, free space conditions; as compared to the extraneous contamination resulting 

from the test apparatus and the relatively small vacuum chamber. Clearly, a more comprehensive 

study must be performed in order to assess the total field contamination levels. Although the test 

data suggests that most of the contamination observed was from the artificial backscatter of the 

Vacuum chamber, the amount of noise in the data requires that additional testing be conducted to 

confirm this. Recently, USU completed testing of a NASA funded flight using the prototype 

“green” ABS/GOX thrusters launched to an apogee of 150 kilometers altitude aboard a Terrier 

Improved Malemute sounding rocket. The rocket launched from the Wallops Flight Facility’s East 

Coast Rest range. The test platform spent more than 200 seconds above the 100 km ‘Von-Karman” 

line in a free-space, hard vacuum environment. The experiment used a set of 2 by 2.5-N thrusters, 

with each performing multiple restarts. This experiment used a set of photometers of the design 

described in this paper will be mounted at near the nozzle of one of the thrusters. A high-power, 

3-color pulse-modulated LED will illuminate each sensor. Extensive ground test will be performed 

to measure the generated contaminants derived from simulated flight burn profiles. These results 

will be compared to the flight data derived for identical burn-time profiles, but under hard vacuum 

conditions. The data obtained from this flight indicated that even under hard vacuum conditions 

the sensors used for this project are capable of detecting the optical contamination. Additional hard 

vacuum tests will be conducted to determine how much contamination occurs over the life of the 

thrusters. 
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