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Abstract

Recent studies link changes in energy metabolism with the fate of
pluripotent stem cells (PSCs). Safe use of PSC derivatives in regen-
erative medicine requires an enhanced understanding and control
of factors that optimize in vitro reprogramming and differentiation
protocols. Relative shifts in metabolism from naïve through
“primed” pluripotent states to lineage-directed differentiation
place variable demands on mitochondrial biogenesis and function
for cell types with distinct energetic and biosynthetic require-
ments. In this context, mitochondrial respiration, network dynam-
ics, TCA cycle function, and turnover all have the potential to
influence reprogramming and differentiation outcomes. Shifts in
cellular metabolism affect enzymes that control epigenetic config-
uration, which impacts chromatin reorganization and gene expres-
sion changes during reprogramming and differentiation. Induced
PSCs (iPSCs) may have utility for modeling metabolic diseases
caused by mutations in mitochondrial DNA, for which few disease
models exist. Here, we explore key features of PSC energy metabo-
lism research in mice and man and the impact this work is starting
to have on our understanding of early development, disease
modeling, and potential therapeutic applications.
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Introduction

Energy production in early mammalian development depends upon

many factors, including substrate availability, uptake, and O2

tension. All mammalian cells produce ATP by differing proportions

of glycolysis and oxidative phosphorylation (OXPHOS), with the

balance between these processes at specific developmental stages or

states of cellular activation controlled by multiple intra- and extra-

cellular factors. Glycolysis is the enzymatic conversion of glucose to

pyruvate, which generates 2 net ATP molecules per molecule of

glucose. Cells that depend mainly on glycolysis for ATP production

further convert pyruvate to lactate, which is excreted. By contrast,

cells in oxygen-rich environments may prefer OXPHOS for more effi-

cient ATP production, which on average nets 34 additional ATP

molecules per glucose by oxidizing pyruvate to acetyl-CoA in the

mitochondrial tricarboxylic acid (TCA) cycle. During pre-implanta-

tion development of early mouse embryos, ATP is produced mainly

by OXPHOS from uptake of pyruvate, lactate, amino acids, and

triglyceride-derived fatty acids (Brinster & Troike, 1979; Martin &

Leese, 1995; Jansen et al, 2008; Leese, 2012). This is followed by a

shift to a more balanced mixture of glycolysis and OXPHOS with

increasing glucose uptake in the low O2 microenvironment of an

implanting blastocyst (Leese & Barton, 1984; Houghton et al, 1996;

Zhou et al, 2012). In vitro studies report a similar increase in

glucose uptake in early human embryos advancing to the blastocyst

stage in a dish (Gardner et al, 2001). Pyruvate and glucose uptake

and amino acid turnover are predictors of human blastocyst quality

and enhanced viability for in vitro fertilization protocols (Houghton

et al, 2002; Brison et al, 2004). In concept, in vivo differences in

early mammalian embryo energy metabolism should be replicated

in vitro by cells obtained from distinct stages of embryonic develop-

ment that are maintained in similar culture conditions.

Human embryonic stem cells (hESCs) originate from the blasto-

cyst inner cell mass and hold great clinical potential for cell replace-

ment therapies because of their high proliferative capacity and their

ability to differentiate into any cell type in the body (Thomson et al,

1998). However, the clinical use of differentiated hESCs is limited

by ethical concerns regarding the method of hESC acquisition and

by potential allogeneic immune rejection (Zhao et al, 2011). To help

circumvent these issues, mammalian somatic cells can be repro-

grammed to induced pluripotent stem cells (iPSCs) through ectopic

expression of different combinations of transcription factors, such

as the “Yamanaka cocktail” of POU5F1, SOX2, KLF4, and MYC

(Takahashi & Yamanaka, 2006; Takahashi et al, 2007) or by other
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methods (Yu et al, 2007; Huangfu et al, 2008; Lowry et al, 2008;

Ichida et al, 2009; Kim et al, 2009; Lin et al, 2009; Lyssiotis et al,

2009; Zhou et al, 2009a; Jia et al, 2010; Warren et al, 2010; Zhu

et al, 2010; Anokye-Danso et al, 2011; Hu et al, 2011; Miyoshi et al,

2011; Bayart & Cohen-Haguenauer, 2013; Hou et al, 2013; Sommer

& Mostoslavsky, 2013). Both hESCs and human iPSCs (hiPSCs) are

markedly glycolytic, secreting abundant lactate, in ambient

(~160 mm Hg) O2 (Zhang et al, 2011; Zhou et al, 2012), which

differs substantially from the ~40 mm Hg O2 partial pressure

measured for several mammalian reproductive tracts (Fischer &

Bavister, 1993). A similar glycolytic preference in different O2 envi-

rons at first pass suggests a pluripotent stage-specific metabolic

program that is relatively insensitive to O2 levels in chemically

defined or undefined culture media. However, hESCs replicate well

in 1–5% O2 and resist spontaneous differentiation compared to

culture in 21% O2, suggesting that O2 levels influence the factors

that maintain pluripotency (Ezashi et al, 2005). Somatic cell repro-

gramming to hiPSCs or mouse iPSCs (miPSCs) requires a shift from

mainly OXPHOS to mainly glycolytic metabolism and high levels of

lactate production (Yoshida et al, 2009; Zhou et al, 2012). iPSC

production efficiency is enhanced by performing reprogramming in

hypoxia or inducing a shift to glycolysis during this process, indicat-

ing a role for metabolism in controlling and not just passively

responding to de-differentiation (Yoshida et al, 2009; Zhu et al,

2010; Jung et al, 2013). In fact, a shift to glycolysis may occur early

in reprogramming before self-renewal and pluripotent gene expres-

sion (Folmes Clifford et al, 2011; Mathieu et al, 2014; Prigione et al,

2014). Interestingly, glycolysis-skewed pluripotent stem cells

(PSCs), which include ESCs and iPSCs, resemble many cancer

cell types that revert to “Warburg metabolism” (aka “aerobic

glycolysis”) upon malignant transformation and coupled cellular

de-differentiation (Warburg, 1956; Christofk et al, 2008; Figueroa

et al, 2010; Lu et al, 2012; Ward Patrick & Thompson Craig, 2012).

OXPHOS is low in hPSCs, which includes both hESCs and

hiPSCs, and the mitochondria are perinuclear and less fused into a

filamentous network structure with swollen, less mature appearing

inner membrane cristae folds than mitochondria in terminally differ-

entiated cell types (Oh et al, 2005; St John et al, 2005, 2006;

Houghton, 2006; Suhr et al, 2010; Zeuschner et al, 2010; Folmes

Clifford et al, 2011; Zhang et al, 2011). The perinuclear arrangement

of mitochondria has also been noted in cleavage stage embryos of

several mammalian species including mice and humans and has

been suggested as a “stemness” property (Batten et al, 1987; Barnett

et al, 1996; Wilding et al, 2001; Squirrell et al, 2003; Lonergan et al,

2006, 2007). Mouse ESCs (mESCs), which like hESCs are obtained

from the blastocyst inner cell mass, contain mitochondria that

display even less mature morphological and ultrastructural features

than hPSCs (Folmes Clifford et al, 2011; Zhou et al, 2012).

Glossary

5hmc 5-hydroxymethylcytosine
5mC 5-methylcytosine
ADP adenosine diphosphate
AMD1 adenosylmethionine decarboxylase 1
AMP adenosine monophosphate
AMPK AMP-activated protein kinase
ARNT aryl hydrocarbon receptor nuclear translocator
ATP adenosine triphosphate
Cited2 CREB-binding protein (CBP)/p300-interacting

transactivator with glutamic acid and aspartic acid tail 2
DEPTOR DEP domain-containing mTOR-interacting protein
Drp1 dynamin-related protein 1
EBs embryoid bodies
ETC electron transport chain
FAD flavin adenosyl dinucleotide
FAO fatty acid oxidation
FBS fetal bovine serum
HAT histone acetyltransferase
hESCs human embryonic stem cells
HIF1a hypoxia-inducible factor 1a
HIF1b hypoxia-inducible factor 1b
HIF2a hypoxia-inducible factor 2a
hiPSCs human-induced pluripotent stem cells
hLIF human leukemia inhibitory factor
HMT histone methyltransferase
hPSCs human pluripotent stem cells
IMS intermembrane space
iPSCs induced pluripotent stem cells
JmjC Jumonji domain-containing
Jph2 junctophilin 2
KLF4 Kruppel-like factor 4
LKB1 liver kinase B1
LSD1 lysine-specific demethylase 1
MEFs mouse embryonic fibroblasts
mEpiSCs mouse epiblast stem cells
mESCs mouse embryonic stem cells

MET mesenchymal-to-epithelial transition
Mfn1 mitofusin-1
Mfn2 mitofusin-2
miPSCs mouse-induced pluripotent stem cells
MOMP mitochondrial outer membrane permeabilization
mPSCs mouse pluripotent stem cells
mPTP mitochondrial permeability transition pore
mtDNA mitochondrial DNA
mTOR mammalian target of rapamycin
mTORC1 mammalian target of rapamycin complex 1
mTORC2 mammalian target of rapamycin complex 2
NAD nicotinamide adenine dinucleotide
NPCs neural progenitor cells
NuRD nucleosome remodeling and deacetylase
OCT4 octamer-binding protein 4
OPA1 optic atrophy 1
OXPHOS oxidative phosphorylation
PC pyruvate carboxylase
PDH pyruvate dehydrogenase
PDK1 pyruvate dehydrogenase kinase 1
PDK3 pyruvate dehydrogenase kinase 3
Phb2 prohibitin 2
PHD prolyl hydroxylase
POU5F1 POU class 5 homeobox 1
PSCs pluripotent stem cells
pVHL von Hippel-Lindau tumor suppressor protein
PYGL glycogen phosphorylase liver
REX1 reduced expression 1
ROS reactive oxygen species
SAM s-adenosyl methionine
SOX2 SRY (sex-determining region Y)-box 2
TCA cycle tricarboxylic acid cycle
TDH threonine dehydrogenase
Tet1 ten–eleven translocation
Tsc2 tuberous sclerosis 2
UCP2 uncoupling protein 2
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However, hPSCs metabolically resemble developmentally more

mature, glycolytic mouse epiblast stem cells (mEpiSCs), obtained

from the post-implantation epiblast, instead of mESCs, which show

a bivalent metabolism that can switch between glycolysis and

OXPHOS on demand (Zhou et al, 2012). This metabolic comparison

is consistent with biomarker and functional features of standard

laboratory hPSCs that are “primed”, or more mature, than naı̈ve, or

ground state hPSCs. Naı̈ve hPSCs, similar to mESCs that represent

the least mature pluripotent stage, have recently been obtained by

hPSC exposure to chemical inhibitor and growth factor cocktails or

by transient expression of two transcription factors combined with

two chemical inhibitors and human leukemia inhibitory factor

(Fig 1) (Gafni et al, 2013; Takashima et al, 2014; Theunissen

Thorold et al, 2014; Ware et al, 2014). hPSCs reset to a naı̈ve state

through transient ectopic expression of NANOG and KLF4 respire at

a higher level than “primed” hPSCs, similar to pre-implantation

mouse embryos and naı̈ve mESCs (Fig 1) (Takashima et al, 2014).

The regulation of energy metabolism therefore appears intertwined

with genetic and epigenetic mechanisms that control PSC matura-

tion state through pathways that require further elucidation.

Metabolic regulation of self-renewal, reprogramming,
and differentiation

Reprogrammed iPSCs maintain an “epigenetic memory” or chroma-

tin signature of the cells from which they were generated that can

impact their re-differentiation potential and function (Kim et al,

2010, 2011; Bar-Nur et al, 2011). Changes in cellular metabolism

can impact the activity of epigenome-modifying enzymes, as

discussed below (Kaelin William & McKnight Steven, 2013). There-

fore, manipulation of culture conditions could erase or generate

new epigenetic marks during iPSC reprogramming, PSC differentia-

tion, or steady-state growth that will affect the functional potential

of the end resulting cell. For therapeutic utility, identifying specific,

reproducible, and chemically defined culture conditions to produce

safe and functional differentiated cells from hPSCs, or by transdiffer-

entiation protocols, will be required. Several key cell types targeted

for cell replacement therapies have high energy demands, such as

cardiomyocytes and neurons. Therapeutic applications will there-

fore require re-establishment of a cell type-specific, fully functional

mitochondrial network to support the energy and other mitochon-

drial supplied factors for these replacement cell types. Importantly,

mitochondrial dysfunction due to impaired nucleus and mitochon-

drial encoded genes has been linked to > 400 named human

diseases, including multiple neurodegenerative disorders and cancer

(Nunnari & Suomalainen, 2012).

The discovery that hypoxia maintains self-renewal and increases

the efficiency of reprogramming to pluripotency has stimulated

studies to determine the role of oxygen tension in cell fate determi-

nation. A striking difference in mitochondrial morphology between

PSCs and their differentiated derivatives has similarly spurred stud-

ies to decipher the mechanisms that control cell state-specific mito-

chondrial structure and function. Adding to this complexity are

state-specific levels of cellular metabolites, such as the AMP/ATP

ratio and amino acid availabilities, which can impact PSC gene

expression and cell function. In the first part of this review, the

effect that these components of cellular metabolism have on self-

renewal and differentiation is explored.

Oxygen tension and hypoxia-inducible factors (HIFs)

Reduced O2 (1–5%) can be used for hPSC tissue culture to mimic

the hypoxic early embryonic microenvironment in vivo. Transcription

factors such as hypoxia-inducible factor 1a (HIF1a) and 2a (HIF2a)
control the genomic response to low O2 tension by promoting the

expression of genes such as pyruvate dehydrogenase kinase 1

NANOG, KLF4, 2i, L

or 5i, L, A

Methionine withdrawal

Naïve pluripotent
stem cell

‘Primed’ pluripotent
stem cell

Fibroblast

Glycolysis

OXPHOS

Glycolysis

OXPHOS

Glycolysis

OXPHOS

OSKM or other variations

Hypoxia

HIF1α
Vitamin C

OXPHOS inhibitors

Rapamycin

HIF2α

EarlyLate

Reprogramming stage

Figure 1. Influence of energy metabolism on pluripotent status.
Naïve human pluripotent stem cells (hPSCs) show an increase in ATP production through oxidative phosphorylation (OXPHOS) compared to more mature, “primed”
hPSCs. Primed hPSCs can be converted to the naïve state through ectopic expression of NANOG and KLF4, inhibition of the ERK pathway by two inhibitors (2i),
and stimulation with human leukemia inhibitory factor (L) (Takashima et al, 2014). Alternatively, the naïve state can be induced with a cocktail of five inhibitors and
growth factors Activin and hLIF (5i/L/A) (Theunissen Thorold et al, 2014). Somatic cells can be reprogrammed with OCT4, SOX2, KLF4, and c-MYC (OSKM). Fibroblasts are
more oxidative than primed hPSCs. Factors that activate glycolysis and inhibit OXPHOS promote induced PSC (iPSC) reprogramming. Vitamin C enhances iPSC
reprogramming as an antioxidant and as a cofactor for epigenetic enzymes. Rapamycin, an inhibitor of the mTOR pathway, also increases the efficiency of iPSC
reprogramming. Withdrawal of methionine from hPSC culture, which is required to maintain DNA and histone methylation, promotes differentiation.
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(PDK1), lactate dehydrogenase A (LDHA), and glycogen phosphory-

lase liver (PYGL), which encode for key glycolysis regulating

enzymes (Greer et al, 2012; Zhou et al, 2012). HIF1a and HIF2a are

degraded in ambient air (~21% O2 at sea level) by hydroxylation

and ubiquitination from O2-dependent prolyl hydroxylases (PHDs)

and the von Hippel-Lindau tumor suppressor protein (pVHL),

respectively (Maxwell et al, 1999; Ohh et al, 2000; Jaakkola et al,

2001). In hypoxia, HIF1a and HIF2a are stabilized and form a hete-

rodimer with the aryl hydrocarbon receptor nuclear translocator

(ARNT; aka HIF1b). HIF heterodimers accumulate in the nucleus

and bind to promoters of genes that regulate cellular adaptation to

hypoxia, stimulating their transcription (Wang et al, 1995). As

noted above, hypoxia inhibits the spontaneous differentiation of

hESCs and also increases the efficiency of iPSC reprogramming

(Ezashi et al, 2005; Yoshida et al, 2009). HIF2a-dependent transacti-
vation of Oct4 gene expression promotes self-renewal and the

maintenance of pluripotency in hypoxia (Niwa et al, 2000; Covello

et al, 2006). HIF1a stabilization promotes a metabolic shift to

increased glycolysis and lactate production during the transition

from mESCs to mEpiSCs. Ectopic expression of a non-degradable

form of HIF1a in mESCs is sufficient to induce a mEpiSC-like pheno-

type with a decrease in OXPHOS and an increase in glycolysis,

indicating the importance of HIF transcription factors in early

embryonic development (Zhou et al, 2012).

Hypoxia causes the re-entry of lineage-committed progenitor

cells derived from hESCs back into pluripotency. hESCs transiently

induced to lineage non-specific differentiation by fetal bovine serum

(FBS) addition instead de-differentiate in 2% O2, whereas hESCs

differentiated with FBS in air (~21% O2) proceed ahead. As

expected, differentiated hESCs shift their metabolic balance from

mainly glycolysis to OXPHOS, whereas de-differentiated hESCs

remain glycolytic. De-differentiated hESCs are enriched for HIF1a
and HIF2a target gene expression, suggesting a role for HIFs in

promoting re-entry into the pluripotent state (Mathieu et al, 2013).

HIF2a is required early in iPSC reprogramming for shifting from

mainly OXPHOS to lactate-producing glycolysis, but stabilization of

HIF2a beyond day 12 of reprogramming is detrimental (Fig 1).

Ectopic expression of sequence-stabilized HIF1a and/or HIF2a is

sufficient to impair OXPHOS in fibroblasts (Mathieu et al, 2014).

HIF1a improves iPSC reprogramming efficiency by increasing

glycolysis and lactate production through activation of target genes

PDK1, pyruvate dehydrogenase kinase 3 (PDK3), and pyruvate

kinase isoform M2 (PKM2) (Fig 1) (Mathieu et al, 2014; Prigione

et al, 2014). CREB-binding protein (CBP)/p300-interacting transacti-

vator with glutamic acid and aspartic acid tail 2 (Cited2) is a HIF1a
antagonist. Cited2 is expressed and inhibits HIF1a during lineage

non-specific mESC differentiation, with Cited2 knockout mESCs

unable to silence Oct4 or activate differentiation-related genes.

shRNA knockdown of HIF1a in Cited2-deficient mESCs partially

rescues this defect in lineage non-specific differentiation (Li et al,

2014).

HIF transactivation also regulates the lineage-specific differentia-

tion of human neural progenitor cells (NPCs) (Xie et al, 2014).

Neurons are more oxidative than glial cells (Kasischke et al, 2004;

Bélanger et al, 2011). NPCs generated by changing the hPSC culture

media to enable the formation of rosette structures can develop into

neurons or glia by directed NPC differentiation. NPCs derived from

hESC differentiation are mainly glycolytic (Birket et al, 2011), and

proteomic comparisons of hESCs at different stages of neural lineage

differentiation show differential expression of enzymes that regulate

redox homeostasis (Fathi et al, 2014). The differentiation of mixed

lineage embryoid bodies (EBs) in 2% O2 also promotes neurogene-

sis. Most cells differentiated from hPSC-derived NPCs are neurons

with a concomitant small number of glial cells. Remarkably, just

shifting the O2 environment during NPC differentiation from 21 to

2% O2 strongly shifts the culture toward gliogenesis and away from

neurogenesis. This effect can be replicated with HIF stabilizing defe-

roxamine in ambient O2 as well. HIF1a promotes gliogenesis

through the inhibition of LIN28a by displacement of MYC on the

LIN28 promoter. Remarkably, even a transient low O2 period during

NPC differentiation skews the resulting culture strongly toward glio-

genesis, suggesting that the O2-sensing machinery induces a lasting

effect on NPC differentiation potential (Xie et al, 2014).

Mitochondria and the electron transport chain

Mammalian cells consume glucose and convert it to pyruvate with

ATP production in several enzymatic steps during glycolysis (TeSlaa

& Teitell, 2014). Pyruvate in turn can be converted to lactate by

LDH and will be excreted from the cell. Alternatively, pyruvate can

enter mitochondria as acetyl-CoA, through the action of pyruvate

dehydrogenase (PDH), or as oxaloacetate, via pyruvate carboxylase

(PC), to generate CO2 and additional ATP through OXPHOS. Pyru-

vate that enters the TCA cycle regenerates NADH and FADH2, which

subsequently donate electrons to the electron transport chain (ETC)

and establish a hydrogen ion gradient, which is used by the F0F1
ATP synthase to make ATP from ADP plus inorganic phosphate.

ETC activity therefore depends on the ADP/ATP ratio as well as the

levels of environmental and internal resources that include TCA

cycle carbon substrates and electron acceptors. The levels and func-

tional assemblies of nucleus and mitochondrial DNA (mtDNA)

encoded ETC subunits that comprise ETC complexes I through V,

excluding nucleus-encoded complex II, and their assemblies into

higher order supercomplexes, along with mitochondrial network

fusion/fission status, further determines the minimal and maximal

respiratory potential of most cells, which remains to be established

for PSCs. The complexity of ETC complex regulation has been

shown in other systems, including the differential expression of

subunits in complex IV and the assembly of complexes I, III, and IV

into supercomplexes (Fukuda et al, 2007; Chen et al, 2012b; Ikeda

et al, 2013; Lapuente-Brun et al, 2013).

Low-level respiration and activity of the ETC in primed PSCs,

including hPSCs and mEpiSCs, may at least partially result from the

hypoxic microenvironment in vivo, immediately post-implantation.

In addition, the donation of electrons from NADH and FADH2 to the

ETC may result in oxidative stress through formation of reactive

oxygen species (ROS). Primed PSCs may limit ROS to prevent

damage to proteins, lipids, and importantly DNA within the cell.

However, steady-state ROS levels also increase with PSC differentia-

tion and can help drive differentiation at later stages of precursor

cell development (Cho et al, 2006; Saretzki et al, 2008). The addi-

tion of antioxidants to the culture medium of hiPSCs enhances their

genomic stability, consistent with a benefit for maintaining low ROS

in PSCs (Luo et al, 2014). Vitamin C, an antioxidant, also enhances

the efficiency of iPSC reprogramming (Esteban et al, 2010),
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although vitamin C may also impact reprogramming efficiency

through epigenetic mechanisms described below.

ATP and ROS production by OXPHOS is further limited by

several mechanisms in hPSCs, such as by the expression of uncou-

pling protein 2 (UCP2) (Zhang et al, 2011). UCP2 transports four

carbon TCA cycle intermediates out of the mitochondria, effectively

reducing carbon substrates for use in OXPHOS (Vozza et al, 2014).

Also, nuclear genes encoding multiple subunits of cytochrome C

oxidase (complex IV of the ETC), which donates electrons to O2, are

expressed at a lower level in mEpiSCs compared to mESCs (Zhou

et al, 2012). DMSO-induced differentiation of mPSCs increases ETC

complex I and complex IV activities along with mitochondrial

biogenesis to support an increase in mitochondrial ATP production

(Han et al, 2014). The ETC maintains the mitochondrial inner

membrane electrochemical potential, Dw, which is required to

prevent mitochondrial outer membrane permeabilization (MOMP)

and the release of proapoptotic intermembrane space (IMS)

proteins, such as cytochrome c, that induce apoptosis (Green &

Kroemer, 2004). When ETC activity is low, Dw can be additionally

supported by the hydrolysis of ATP in the complex V ATP synthase,

which results in the translocation of protons from the mitochondrial

matrix to the IMS to increase Dw (Hatefi, 1985). hPSCs have rela-

tively low respiration and ETC activity; therefore, ATP hydrolase

activity of the ATP synthase helps to maintain Dw and sustain cell

viability (Zhang et al, 2011). Interestingly, hPSCs maintain a higher

Dw than their differentiated derivatives (Chung et al, 2007;

Armstrong et al, 2010; Prigione et al, 2011), which has been

proposed to enable rapid metabolic changes during differentiation

(Folmes Clifford et al, 2012b; Folmes et al, 2012a) and possibly to

maintain a fragmented mitochondrial network (Mattenberger et al,

2003).

iPSC reprogramming of mouse embryonic fibroblasts (MEFs)

causes major changes in the expressed proteome in two stages. ETC

complex I and complex IV proteins are reduced early during repro-

gramming, in contrast to components of ETC complexes II, III, and

V, which are transiently induced during a second, intermediate

reprogramming phase (Hansson et al, 2012). The efficiency and

speed of iPSC reprogramming is enhanced when OXPHOS is

decreased by inhibition of any of the ETC respiratory complexes,

consistent with a required shift toward glycolysis (Fig 1) (Son et al,

2013b).

An increase in OXPHOS capacity is required for proper cardio-

myocyte lineage-directed differentiation from PSCs. Cardiomyocyte

differentiation induces the expression of nucleus-encoded genes for

mtDNA transcription factors, mtDNA replication factors, compo-

nents of the fatty acid oxidation (FAO) machinery, enzymes of the

TCA cycle, and ETC subunits (St John et al, 2005; Chung et al,

2007; Tohyama et al, 2013). Cardiomyocyte-directed differentiation

is enhanced by the generation of ROS by NADPH oxidase-like

enzymes (Sauer et al, 2000; Crespo et al, 2010). Agonists of peroxi-

some proliferator-activated receptor a (PPARa), a highly expressed

nuclear hormone receptor in the heart associated with FAO,

promote cardiomyogenesis of mESCs through increasing ROS

production (Sharifpanah et al, 2008).

Differences in carbon substrate types can be used to purify meta-

bolically mature mouse cardiomyocytes following differentiation

from mPSCs because of key differences in metabolite handling

capacity between mouse cardiomyocytes and mPSCs. Fetal

cardiomyocytes preferentially consume lactate for the production of

ATP (Fisher et al, 1981; Werner & Sicard, 1987). Therefore, cardio-

myocytes derived in vitro from PSCs can utilize lactate in the

absence of glucose to produce ATP, whereas mESCs and MEFs are

unable to use lactate for ATP production. When cultured in glucose-

free media supplemented with lactate, functional mouse cardio-

myocytes can be recovered at ~99% purity (Tohyama et al, 2013).

Mitochondrial dynamics

The dynamic fusion and fission/fragmentation of an interlacing

mitochondrial network enables mixing of mitochondrial contents

and the degradation of damaged mitochondria to maintain robust

energy and metabolite production (Twig et al, 2008; Westermann,

2012). Mitochondrial network fusion status is a determinant of

maximal respiratory capacity (Chen et al, 2005; Yu et al, 2006).

PSCs show a punctate, fragmented mitochondrial network that

progressively fuses during differentiation, which increases respira-

tory capacity (Zhang et al, 2011). The GTPase dynamin-related

protein 1 (DRP1), which causes mitochondrial fission, can be inhib-

ited to induce a fused mitochondrial network. Pharmacological inhi-

bition of Drp1 to maintain a fused mitochondrial network inhibits

iPSC reprogramming (Vazquez-Martin et al, 2012a), although

shRNA knockdown of Drp1, also resulting in mitochondrial fusion,

did not impair iPSC reprogramming of MEFs (Wang et al, 2014).

These paradoxical results could be reconciled by off target effects of

the Drp1 inhibitor, insufficient Drp1 shRNA knockdown, or a

combination of these or other confounders. Interestingly, reduced

expression 1 (REX1) is a zinc finger-containing protein that is

required to maintain PSC self-renewal and is repressed during line-

age non-specific retinoic acid-induced differentiation. REX1 expres-

sion also increases the expression of cyclin B1, which leads to the

phosphorylation and activation of DRP1, fission of the mitochon-

drial network, and increased glycolytic metabolism that is character-

istic of PSCs (Son et al, 2013a). The expression pattern of REX1 is

concordant with DRP1 activation and mitochondrial fission associ-

ated with pluripotency.

Mitochondrial network fusion requires fusion of the outer mito-

chondrial membrane, mediated by mitofusin-1 and -2 (MFN1 and

MFN2), and fusion of the inner mitochondrial membrane, mediated

by optic atrophy 1 (OPA1) (Westermann, 2010). Mfn1, Mfn2, and

Opa1 are all required for viable embryonic mouse development

(Chen et al, 2003; Alavi et al, 2007). Opa1 also helps to remodel

cristae folds of the inner mitochondrial membrane to help mitochon-

dria adapt to changing metabolic demands (Patten et al, 2014). At

least five different isoforms of the Opa1 protein exist due to differen-

tial splicing and proteolytic cleavage. Prohibitin 2 (Phb2), a nucleus-

encoded mitochondrial protein, is expressed at high levels in mESCs

and promotes expression of the long isoforms of Opa1. Ectopic

expression of Phb2 in mESCs inhibits lineage-directed differentiation

toward neurons and endoderm and causes mitochondrial swelling

(Kowno et al, 2014).

Mfn2 and Opa1 are required for the differentiation of mESCs into

beating cardiomyocytes (Kasahara et al, 2013), suggesting that shift-

ing to OXPHOS during cardiomyogenesis also requires mitochon-

drial network fusion. Mfn2 also tethers mitochondria to the

sarcoplasmic reticulum, which is required for Ca2+ signaling and

The EMBO Journal Vol 34 | No 2 | 2015 ª 2014 The Authors

The EMBO Journal Pluripotent stem cell energy metabolism: an update Tara Teslaa & Michael A Teitell

142



energy metabolism in cardiomyocytes (Chen et al, 2012a). Juncto-

philin 2 (Jph2), which is also part of the junctional membrane

complexes that physically link mitochondria with the sarcoplasmic

reticulum, is required for proper mitochondria function, Ca2+

homeostasis, and the differentiation of mESCs into cardiomyocytes

(Liang et al, 2012). Opening of the mitochondrial permeability tran-

sition pore (PTP) enables macromolecular diffusion across the mito-

chondrial inner membrane, which inhibits ATP production by

OXPHOS (Hunter et al, 1976; Kim et al, 2003). Inhibition of the PTP

promotes cardiomyocyte differentiation of mPSCs through increas-

ing mitochondrial function (Hom Jennifer et al, 2011; Cho et al,

2014). Interestingly, antioxidant exposure during PTP inhibition

synergistically enhances cardiomyogenesis by an unknown mecha-

nism(s) (Cho et al, 2014).

AMPK, mTOR, and autophagy

Adenosine monophosphate (AMP)-activated protein kinase (AMPK)

is a sensor of the AMP/ATP and ADP/ATP energy charge ratio in

cells and coordinates the cellular response to changes in energy

status. In response to increasing AMP/ATP and ADP/ATP ratios,

AMPK becomes phosphorylated by liver kinase B1 (LKB1) to acti-

vate catabolic pathways that generate ATP and inhibit anabolic

pathways that consume ATP (Hardie et al, 2012). Phosphorylated

AMPK inhibits protein translation by inactivating the mammalian

target of rapamycin (mTOR) signaling pathway. mTOR exists as two

distinct protein complexes, complex 1 (mTORC1) and complex 2

(mTORC2). mTORC1 is an amino acid sensor that regulates protein

translation and autophagy. Autophagy is a process that degrades

cytoplasmic macromolecules and organelles to provide substrates

for energy production, or to remodel cellular functions with changes

in differentiation or activation state, and provides a rapid cellular

response to changing environmental conditions (Mizushima &

Levine, 2010). Chemical activation of AMPK in mouse and human

fibroblasts decreases iPSC reprogramming efficiency, potentially

from a failure to fully induce Oct4 gene expression (Vazquez-Martin

et al, 2012b). mTOR activity decreases during iPSC reprogramming

whereas rapamycin, an inhibitor of the mTOR pathway, enhances

iPSC reprogramming of mouse fibroblasts (Fig 1) (Chen et al, 2011;

He et al, 2012; Morita et al, 2013). Concordantly, hyperactivation of

mTORC1 by knockout of tuberous sclerosis 2 (Tsc2), an upstream

kinase inhibitor of mTOR, suppresses iPSC reprogramming (He

et al, 2012). Inhibition of the mTOR pathway leads to activation of

autophagy and enhances iPSC reprogramming efficiency, possibly

from assisted cellular remodeling. Another inducer of autophagy,

exposure to spermine, also enhances miPSC reprogramming effi-

ciency (Chen et al, 2011). Moreover, the reprogramming transcrip-

tion factor Sox2 inhibits mTOR gene expression, which in turn

activates autophagy during iPSC reprogramming. Sox2-induced

mTOR gene repression occurs by recruitment of the nucleosome

remodeling and deacetylase (NuRD) repressor complex to the mTOR

gene promoter (Wang et al, 2013a). Although mTOR activation

impairs iPSC reprogramming, its inhibition with rapamycin

also disrupts expression of OCT4, SOX2, and NANOG genes in

hESCs and promotes the expression of endoderm and mesoderm

lineage differentiation genes (Zhou et al, 2009b). In contrast, DEP

domain-containing mTOR (DEPTOR)-interacting protein, a negative

regulator of mTORC1/2, maintains pluripotency for mESCs and

hESCs (Agrawal et al, 2014).

The AMPK/mTORC1 pathway regulates mitochondrial biogenesis

in somatic cells, and therefore, its role in hPSC differentiation merits

further consideration as a mechanism to regulate cell type-specific

mitochondrial content and function (Zong et al, 2002; Reznick &

Shulman, 2006; Morita et al, 2013). In addition, AMPK can directly

regulate gene expression through histone phosphorylation (Bungard

et al, 2010). Studies to determine the mechanism(s) that regulate

energy-sensing pathway activation and deactivation during iPSC

reprogramming and PSC differentiation may reveal how these

changes occur in vivo to control organismal and lineage-specific

development.

Other molecular players

c-Myc is one of the original four reprogramming transcription factors

used in iPSC reprogramming of fibroblasts, but it can be removed

and/or replaced by Lin28a or other transfactors (Takahashi et al,

2007; Yu et al, 2007; Nakagawa et al, 2008; Wernig et al, 2008).

miPSCs reprogrammed with Oct4, Sox2, Klf4, and c-Myc transfactors

show an increase in glycolytic metabolism compared to miPSC

reprogramming that excludes c-Myc (Folmes et al, 2013b). While

the metabolic influence of c-Myc in PSCs has not been further char-

acterized, c-Myc promotes RNA splicing of PKM2 in cancer cells,

which activates biosynthetic anabolic pathways (David et al, 2010;

Chaneton & Gottlieb, 2012). c-Myc also has a large role in stimulat-

ing glutamine metabolism in lymphocytes and cancer cells (Gao

et al, 2009; Le et al, 2012; Liu et al, 2012; Murphy et al, 2013).

LIN28 is an evolutionarily conserved regulator of microRNAs

(miRNAs) that can be used for iPSC reprogramming in combination

with Oct4, Sox2, and Klf4 (Yu et al, 2007; Viswanathan et al,

2008). Lin28 knockout mice have defects in growth and glucose

metabolism (Shinoda et al, 2013). LIN28 expression is regulated by

let-7, a miRNA that is also post-transcriptionally repressed by

LIN28a in a feedback regulatory loop. Knockdown of let-7 in

fibroblasts enhances iPSC reprogramming (Melton et al, 2010).

LIN28 preferentially binds to the mRNAs of metabolic enzymes to

control their translation, which influences cell growth and survival.

Metabolic enzymes targeted by LIN28a in hPSCs include enzymes

involved in glycolysis, cholesterol biosynthesis, and mitochondrial

metabolism (Peng et al, 2011). Lin28a also enhances the translation

of enzymes involved in OXPHOS during the repair of damaged

tissues (Shyh-Chang et al, 2013b).

Adenosylmethionine decarboxylase 1 (Amd1) participates in the

biosynthesis of polyamines. Polyamines are positively charged

metabolites that can bind to acidic sites of macromolecules includ-

ing nucleic acids, proteins, and phospholipids. Elevated levels of

Amd1 are required for self-renewal of mESCs. Additionally, transla-

tional inhibition of Amd1 by miR-762 is required for the differentia-

tion of NPCs (Zhang et al, 2012).

Metabolic influence on epigenetics

Differentiation from and reprogramming to pluripotency, along with

transdifferentiation between lineage-specific cell types, involves
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changes in the structure, function, and expression of the nuclear

genome. Binding of transcriptional regulators to their target genes

before, during, and after these cell fate changing processes depends

on dynamic alterations in DNA methylation, histone modifications

and variants, chromatin remodeling complex activities, and global

and local three-dimensional chromosome topologies (Papp & Plath,

2013). Cellular metabolism directly influences the epigenetic land-

scape of a cell by modulating the level and activity of metabolite

cofactors and substrates for enzymes that control at least DNA and

histone modifications (Kaelin William & McKnight Steven, 2013).

Therefore, cellular metabolite levels and flux help determine cellular

fate during iPSC reprogramming and PSC differentiation.

DNA and histone methylation is a major regulator of gene

expression and chromatin remodeling (Cedar & Bergman, 2009).

Methyltransferase enzymes that methylate DNA and histones utilize

S-adenosyl methionine (SAM) as a methyl donor for transferring

methyl groups. Interestingly, SAM levels are elevated in both

human and mouse PSCs compared to fibroblasts, but are even

higher in hiPSCs when compared to hESCs (Panopoulos et al, 2012;

Shyh-Chang et al, 2013a). Additionally, SAM levels increase in the

late stages of iPSC reprogramming, indicating coordinate accumula-

tion with increasing pluripotent potential (Shyh-Chang et al,

2013a). Global DNA methylation is also higher in some hiPSC lines

when compared to hESCs, suggesting that SAM levels participate in

regulating the extent of global DNA methylation (Deng et al, 2009).

In mESCs, SAM is generated by uptake of extracellular threonine,

which is converted to glycine by threonine dehydrogenase (Tdh)

(Fig 2). Therefore, threonine uptake and Tdh activity are required

to maintain high levels of SAM in mPSCs. Cleavage of glycine, the

product of Tdh, produces SAM by fueling methionine production,

which leads to the conversion of methionine plus ATP into SAM via

methionine adenosyltransferases (Fig 2) (Shyh-Chang et al, 2013a).

mESCs cannot survive in culture medium lacking threonine (Wang

et al, 2009) at least partially because histone 3 lysine 4 di- and

trimethylation (H3K4me2 and H3K4me3) is lost in mESCs deprived

of threonine, whereas MEFs remain unaffected (Shyh-Chang et al,

2013a). The human TDH gene is a nonfunctional pseudogene due to

two splice acceptor mutations and one nonsense mutation. There-

fore, threonine cannot be used for SAM production or level regula-

tion in human cells (Wang et al, 2009). hESCs instead depend on

the uptake of extracellular methionine for SAM production, with

methionine deprivation resulting in a loss of H3K4me3 that predis-

poses hESCs to differentiation into any of the three embryonic germ

layers (Figs 1 and 2). Long-term methionine deprivation leads to

cell apoptosis through a p53/p38 mitogen-activated protein kinase

(MAPK)-mediated stress signaling response (Shiraki et al, 2014).

Therefore, adequate methionine in culture media is required to

maintain SAM levels and global DNA and histone methylation.

Short-term removal of methionine from hPSC culture media may be

used to inhibit enzymatic methyltransferase reactions.

DNA and histone methylations are also susceptible to demethy-

lation reactions. Vitamin C, 2-oxoglutarate (a-ketoglutarate,
aKG), and Fe(II) act as cofactors for 2-oxoglutarate(2-OG)-

dependent dioxygenases, which include ten–eleven translocation

(TET) methylcytosine dioxygenases and Jumonji domain-containing

(JMJC) histone demethylases (Fig 2). TET methylcytosine

dioxygenases oxidize 5-methylcytosine (5mC) in DNA to form

5-hydroxymethylcytosine (5hmc), which is an initial modification

on the pathway to cytosine demethylation (Delatte et al, 2014).

Vitamin C enhances iPSC reprogramming (Fig 1), and Tet1 can

replace Oct4 in the iPSC reprogramming cocktail because its

expression activates the transcription of Oct4 (Esteban et al, 2010;

Gao et al, 2013). Interestingly, the absence of vitamin C impairs

hiPSC reprogramming by Tet1, whereas the converse is also

observed. With vitamin C, Tet1 inhibits the mesenchymal-

to-epithelial transition (MET), but in conditions lacking vitamin C,

Tet1 promotes reprogramming without activating the MET (Chen

et al, 2013). The differences in the role of Tet1 that depend on the

level of vitamin C in the culture media highlight the importance of

optimizing vitamin C levels during iPSC reprogramming, PSC

differentiation, and transdifferentiation protocols. Tet dioxygenases

can also promote the MET in combination with thymine DNA

glycosylase, which enhances iPSC reprogramming (Hu et al, 2014).

Moreover, Tet1 can enhance reprogramming by interacting with

Nanog to increase expression of key pluripotency-associated target

genes (Costa et al, 2013).

The pattern of DNA 5hmc differs between hESCs and hiPSCs at

large hotspots where hiPSCs have been incompletely hydroxymethy-

lated (Wang et al, 2013b). mESCs lose DNA 5hmc when cultured

without vitamin C, and addition of vitamin C leads to a rapid Tet1-

and Tet2-dependent increase in DNA 5hmc and DNA demethylation

(Blaschke et al, 2013; Minor et al, 2013). Resulting vitamin

C-induced changes in DNA methylation occur in genomic regions

that tend to gain DNA methylation after in vitro culture in contrast

to blastocysts in vivo (Blaschke et al, 2013). Consequently, vitamin

C may be an important component of culture media to use to more

closely replicate the in vivo environment. Vitamin C levels can also

modulate the activity of the JmjC class of 2-oxoglutarate(2-OG)-

dependent dioxygenases (Fig 2). JmjC family member proteins

Jhdm1a/b enhance iPSC reprogramming in a vitamin C-dependent

manner (Wang et al, 2011). Further investigations on the regulation

of other JmjC demethylase family member proteins by vitamin C

levels may show similar activities.

Surprisingly, the non-essential amino acid L-proline influences

the epigenetic state of PSCs. Culturing of mESCs with L-proline

causes a mesenchymal-like invasive phenotype while maintaining

expression of pluripotency genes. L-proline-treated cells show

augmented levels of H3K36me2 and K3K9me3, which can be

reversed by vitamin C exposure (Comes et al, 2013). Another poten-

tial link between cellular metabolism and histone methylation is

lysine-specific demethylase 1 (LSD1), which requires flavin adeno-

sine dinucleotide (FAD) for enzymatic activity. Therefore, FAD

levels, which also serve as a concentration-dependent cofactor for

FAO and respiration, can control the activity of LSD1. LSD1 is

required for the maintenance of hESC pluripotency and occupies

gene promoters that also bind OCT4 and NANOG transfactors

(Adamo et al, 2011).

Histone acetylation is generally associated with gene activation

and can often block histone methylation. Sodium butyrate, a

histone deacetylase inhibitor, enhances iPSC reprogramming effi-

ciency, emphasizing the importance of dynamic regulation of

histone acetylation (Mali et al, 2010; Hou et al, 2013). Sirtuins, a

family of NAD-dependent deacetylases, can remove acetyl groups

from histones depending on the metabolic state of a cell. The

NAD+/NADH ratio is significantly higher in hESCs compared to

fibroblasts (Salykin et al, 2013), and therefore, the sirtuins may
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have differential activity in PSCs versus differentiated cells. Sirt1 is

required for genomic stability and telomere elongation of iPSCs (De

Bonis Maria et al, 2014). SIRT6 can improve the iPSC reprogram-

ming efficiency of fibroblasts obtained from older patients (Sharma

et al, 2013).

How intermediate metabolites from programmed patterns of

metabolism and environmental influences regulate epigenome-

modifying enzyme activities, such as the sirtuins, requires further

study in early development and PSCs. Many studies, especially in

cancer, have investigated the role of specific epigenetic enzymes,

and their mutant forms, through genetic manipulation. The link

between acetyl-CoA levels and protein acetylation has been studied

in cancer, but its role has not been investigated in pluripotency,

iPSC reprogramming, or hPSC differentiation (Fig 2) (Wellen et al,

2009; Choudhary et al, 2014). In addition to vitamin C, aKG is an

important cofactor for dioxygenases. aKG is a TCA cycle intermedi-

ate and can also be produced through conversion from glutamate

by aminotransferases involved in other metabolic pathways in

the cytosol. In some cancers, the majority of aKG is produced by

phosphoserine aminotransferase 1 (PSAT1) (Possemato et al,

2011).

Mitochondrial disease modeling with hiPSCs

mtDNA is maternally inherited and encodes genes for 13 protein

subunits in 4 of 5 ETC complexes, 2 rRNAs, and 22 tRNAs. Disease-

causing mutations in these mtDNA genes occur in an estimated 1 in

5,000 children and adults (DiMauro & Schon, 2003; Schaefer et al,

2004). Mammalian cells may contain up to ~5–10 mtDNAs with

sequence variations, a mixture state that is termed heteroplasmy

(Legros et al, 2004). The heteroplasmy ratio, or the ratio mtDNA

carrying a mutant gene to mtDNA carrying the wild-type (WT) gene,

varies in cells of each individual, and afflicted patients with the

same mtDNA mutation can exhibit a very different range and sever-

ity of symptoms (Pickrell Alicia & Youle Richard, 2013). Cells with

the highest energy requirements, such as muscle and brain, are

most often affected, but patients may not manifest symptoms until

their cells accumulate enough of the disease-causing mutant mtDNA

through cell proliferation over time. When the mtDNA mutation

burden accumulates to roughly 60–90% of the total mtDNA present

in a cell, OXPHOS may become compromised and symptoms ensue

(Mishra & Chan, 2014). Accurate mouse models of mtDNA muta-

tions are infrequent, and iPSCs have emerged as a potentially good
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Figure 2. Influence of metabolites on pluripotent stem cell epigenetics.
Intermediate metabolism sets and maintains levels of metabolites that serve as substrates or cofactors for epigenetic modifying enzymes. Uptake of threonine and
methionine from the culture media is required to maintain S-adenosylmethionine (SAM) levels in mPSCs and hPSCs, respectively. SAM is a methyl donor for histone
methyltransferases (HMT) and DNA methyltransferases (DNMTs). Vitamin C is a cofactor for the JMJC family of demethylases and TET methylcytosine dioxygenases (TET).
Acetyl-CoA, a TCA cycle intermediate, is an acetyl group donor for histone acetyltransferases (HAT). NAD+, generated through glycolysis or by the electron transport chain (ETC),
is a cofactor for the sirtuin (SIRT) family of deacetylases.
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model system to study the different cellular manifestations of

mutant mtDNA diseases.

The most common mtDNA mutation is a heteroplasmic 3243A>G

mutation in the tRNA-Leu(UUR) gene, which can result in two distinct

patient phenotypes. Maternally inherited diabetes and deafness

(MIDD) is one manifestation of this mutation, whereas the other

main manifestation is mitochondrial encephalomyopathy, lactic

acidosis, and stroke-like episodes (MELAS syndrome) (Goto et al,

1990; Chae et al, 2004). hiPSCs were successfully generated with

heteroplasmic mtDNA 3243A>G of variable mutational loads. While

mitochondrial transcripts are unaffected in fibroblasts derived from

MELAS patients due to their low energy requirements, there was a

decrease in mitochondrial transcripts in hiPSCs with high muta-

tional loads (MELAS-high iPSCs) and in neurons derived from the

MELAS-high iPSCs. Respiratory ETC complex activity, however,

was decreased in MELAS fibroblasts and not in MELAS-high iPSCs

or neurons derived from MELAS-iPSCs (Folmes et al, 2013a;

Hämäläinen et al, 2013). Interestingly, MELAS-mutant mtDNA and

WT mtDNA had a bimodal segregation pattern at the end of hiPSC

reprogramming, resulting in hiPSCs containing either more WT

or more mutant mtDNA (Fig 3). Therefore, there is a mtDNA

“bottleneck” during hiPSC reprogramming (Cherry et al, 2013),

perhaps similar to the mtDNA “bottleneck” that occurs during acti-

vated oocyte cleavage divisions in early mammalian development

(Shoubridge, 2000; Smith et al, 2002; Cree et al, 2008; Carling et al,

2011), and there is no selection for or against the MELAS mutation

(Fig 3) (Hämäläinen et al, 2013). The extent of heteroplasmy in

hiPSCs decreases with increasing passage number in vitro (Folmes

et al, 2013a).

Fibroblasts from mtDNA “mutator” mice, which carry a mutation

in the polymerase gamma (Polg) gene, carry a high mtDNA muta-

tion load due to errors in mtDNA replication (Trifunovic et al,

2004). Mutator iPSCs reprogrammed from mutator MEFs with heavy

mtDNA mutational loads proliferate at lower rates and reduced abil-

ity to form EBs, teratomas, and chimeric mice. EBs generated from

mutator iPSCs are more skewed to glycolytic metabolism than are

EBs from WT iPSCs, which could account for their decrease in

differentiation potential (Wahlestedt et al, 2014).

Defects in the function of mitochondria may also be caused

by mutations in nuclear-encoded genes with roles in mitochondrial

energy metabolism, mitochondrial dynamics, mitochondrial

transport, apoptosis, or mitophagy. One disease associated with

mitochondrial dysfunction by perhaps one or more of these mech-

anisms is the neurodegenerative disease, Parkinson’s disease (PD).
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Figure 3. Somatic cell reprogramming to pluripotency causes a mtDNA “bottleneck”.
mtDNA undergoes a genetic bottleneck, or reduction in copy number, during de-differentiation, similar to the mtDNA bottleneck that occurs during normal female germ line
oogenesis. This reduction has an unresolved mechanism that results in a shift from a heteroplasmic toward a homoplasmic state with no clear preference for wild-type
or mutant mtDNA. This shift does not occur during the continuous culturing of fibroblasts in which characteristic levels of heteroplasmy are maintained over time.

The EMBO Journal Vol 34 | No 2 | 2015 ª 2014 The Authors

The EMBO Journal Pluripotent stem cell energy metabolism: an update Tara Teslaa & Michael A Teitell

146



iPSCs have been generated from fibroblasts of PD patients caused

by multiple different mutations including parkin (PARK2), PTEN-

induced putative kinase 1 (PINK1), and leucine-rich kinase 2

(LRRK2) (Seibler et al, 2011; Cooper et al, 2012; Imaizumi et al,

2012). PINK1 and Parkin proteins interact to regulate mitophagy,

the process of selectively targeting poorly functioning mitochondria

with low Dw for engulfment by an autophagosome and eventual

degradation (Clark et al, 2006; Park et al, 2006). PARK2, an E3

ubiquitin ligase, is recruited to damaged mitochondria in a

PINK1-dependent manner to polyubiquitinate mitochondrial outer

membrane proteins (Narendra et al, 2008, 2010; Chan et al, 2011).

Neurons differentiated from PINK1 mutant iPSCs have abnormali-

ties in mtDNA copy number (Seibler et al, 2011). Additionally,

neurons differentiated from both mutant PINK1 and LRRK2 hiPSCs

are vulnerable to oxidative stress when exposed to PD-associated

toxins. Mitochondria in mutant LRRK2 iPSC-differentiated neurons

respire less and are more mobile than those from healthy subjects.

Sensitivity of PD iPSC-differentiated neurons to PD-associated

toxins is rescued by treatment with either an LRRK2 inhibitor,

coenzyme Q10, or rapamycin (Cooper et al, 2012). PARK2 mutant

iPSC-differentiated neurons show increased oxidative stress,

a-synuclein accumulation and Lewy body formation, which are

clinical manifestations of PD, providing a model for this aspect of

PD pathophysiology (Imaizumi et al, 2012).

Concluding remarks

Shifts in cellular metabolism accompany shifts in cell identity and

facilitate changes in cell function. Applications in regenerative medi-

cine will likely require a fuller understanding of metabolic mecha-

nisms that can alter cellular identity, function, and longevity.

Glycolytic metabolism generally accommodates a high rate of

biosynthesis and cell proliferation, whereas OXPHOS generates ATP

more efficiently for functioning differentiated cells. While progress

has been made in understanding how cellular energy metabolism is

correlated with pluripotent and differentiated states, most cause-

and-effect features have not yet been determined. Glycolysis is

linked to the primed pluripotent state which is favored in hypoxic

environments and by HIF transfactor stabilization. Further work is

necessary to identify the transcription factors and signaling path-

ways that regulate glycolytic flux and overall capacity in PSCs and

during induced differentiation. Additionally, the mitochondria in

PSCs are rudimentary and the mechanism(s) regulating their matu-

ration or return to immaturity are only starting to be discovered.

How the mitochondrial fusion/fission machinery is regulated, what

causes changes in mitochondrial localization, what senses and

instructs lineage-specific differential mitochondrial mass accumula-

tion and maintenance, and what factors facilitate transitions in

metabolism and cell fates remains a significant area of ongoing and

future investigations.

PSC metabolism regulates the activities of epigenetic modifying

enzymes and therefore influences gene expression patterns, differ-

entiation potential, and functional competence. While the influence

of metabolism on SAM levels and global methylation patterns is

more heavily studied, the regulation of other key metabolites, such

as acetyl-CoA, has not been thoroughly investigated in PSCs and

iPSCs. As the connections between energy metabolism and cell fate

become unearthed, methods for manipulating PSC metabolism may

be harnessed to improve efficiencies and functional outcomes for

nuclear reprogramming, PSC differentiation, and transdifferentia-

tion.
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