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Abstract

Plutus is a cryptographic storage system that enables se-
cure file sharing without placing much trust on the file
servers. In particular, it makes novel use of cryptographic
primitives to protect and share files. Plutus features highly
scalable key management while allowing individual users
to retain direct control over who gets access to their files.
We explain the mechanisms in Plutus to reduce the num-
ber of cryptographic keys exchanged between users by
using filegroups, distinguish file read and write access,
handle user revocation efficiently, and allow an untrusted
server to authorize file writes. We have built a prototype
of Plutus on OpenAFS. Measurements of this prototype
show that Plutus achieves strong security with overhead
comparable to systems that encrypt all network traffic.

1 Introduction

As storage systems and individual storage devices them-
selves become networked, they must defend both against
the usual attacks on messages traversing an untrusted, po-
tentially public, network as well as attacks on the stored
data itself. This is a challenge because the primary pur-
pose of networked storage is to enable easy sharing of
data, which is often at odds with data security.

To protect stored data, it is not sufficient to use tradi-
tional network security techniques that are used for secur-
ing messages between pairs of users or between clients
and servers. Thinking of a stored data item as simply a
message with a very long network latency is a misleading
analogy. Since the same piece of data could be read by
multiple users, when one user places data into a shared
storage system, the eventual recipient of this “message”
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(stored data item) is often not known in advance. In addi-
tion, because multiple users could update the same piece
of data, a third user may from time-to-time update “the
message” before it reaches its eventual recipient. Stored
data must be protected over longer periods of time than
typical message round-trip times.

Most existing secure storage solutions (either encrypt-
on-wire or encrypt-on-disk [40]) require the creators of
data to trust the storage server to control all users’ access
to this data as well as return the data intact. Most of these
storage systems cater to single users, and very few allow
secure sharing of data any better than by sharing a pass-
word.

This paper introduces a new secure file system,Plutus,
which strives to provide strong security even with an un-
trusted server. The main feature of Plutus is that all data
is stored encrypted and all key distribution is handled in
a decentralized manner. All cryptographic and key man-
agement operations are performed by the clients, and the
server incurs very little cryptographic overhead. In this
paper we concentrate on the mechanisms that Plutus uses
to provide basic filesystem security features — (1) to de-
tect and prevent unauthorized data modifications, (2) to
differentiate between read and write access to files, and
(3) to change users’ access privileges.

Plutus is an encrypt-on-disk system where all the key
management and distribution is handled by the client. The
advantage of doing this over existing encrypt-on-wire sys-
tems is that we can (1) protect against data leakage attacks
on the physical device, such as by an untrusted adminis-
trator, a stolen laptop, or a compromised server; (2) al-
low users to set arbitrary policies for key distribution (and
therefore file sharing); and (3) enable better server scala-
bility because most of the computationally intensive cryp-
tographic operations are performed at end systems, rather
than in centralized servers.

By using client-based key distribution, Plutus can al-
low user-customizable security policies and authentica-
tion mechanisms. Relative to encrypt-on-wire systems,
clients individually incur a higher overhead by taking on
the key distribution, but the aggregate work within the
system remains the same. Our previous analysis with fi-
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legroups [40], which aggregates keys for multiple files,
shows that the number of keys that any individual needs
can be kept manageable.

Instead of encrypting and decrypting files each time
they are exchanged over the network, Plutus pre-computes
the encryption only when data is updated; this is a more
scalable solution as the encryption and decryption cost is
distributed among separate users and never involves the
server.

We have built a prototype of Plutus in OpenAFS [37].
This enhancement to OpenAFS retains its original access
semantics, while eliminating the need for clients to trust
servers. Measurements on this prototype show that strong
security is achievable with clients paying cryptographic
cost comparable to that of encrypt-on-wire systems, and
servers not paying any noticeable cryptographic overhead.
Since the cryptographic overhead is shifted completely to
the clients, the server throughput is close to that of native
OpenAFS. Note that these modifications have no impact
on the way end applications access files; they change only
the way users set sharing permissions on files.

The rest of the paper is organized as follows. Section 2
describes our threat model and assumptions. Section 3
presents the mechanisms and design of Plutus. Section 4
describes a number of subtle attacks that remain possible
and outlines potential solutions, and Section 5 describes
protocols for creating, reading and writing files, and re-
voking users. Section 6 describes the implementation and
usage of Plutus, and Section 7 evaluates the prototype. We
discuss related work in Section 8 and conclude in Sec-
tion 9.

2 Threat model

This section discusses the assumptions and threat model
of Plutus. This paper will use the terminology introduced
previously [40] withowners(create data),readers(read
data),writers (write and possibly read data), andservers
(store data).

2.1 Untrusted servers and availability

In Plutus, we trust servers to store data properly, but not
to keep data confidential. While a server in Plutus may
attempt to change, misrepresent, or destroy data, clients
will detect the malicious behavior.

Cryptography alone, however, cannot prevent destruc-
tion of data by a malicious server. Replication on multiple
servers can ensure preservation of data even when many
of the servers are malicious. Systems such as BFS [7],
Farsite [1], OceanStore [25], PASIS [17], PAST [12], and
S4 [47] address techniques for secure availability through
replication. Though, in this paper, we restrict our focus

to securing data on a single untrusted file server, the ideas
could be generalized for a set of replicated file servers.

2.2 Trusted client machine

Users must trust their local machine. This is, however,
difficult to guarantee: providing for a secure program ex-
ecution environment in an untrusted computing platform
is an open problem. Some previous work aims to securely
monitor loaded applications [48] or provide partitioned
virtual machines to isolate vulnerabilities [10, 48, 50].

2.3 Lazy revocation

Plutus allows owners of files to revoke other people’s
rights to access those files. Following a revocation, we
assume that it is acceptable for the revoked reader to read
unmodified or cached files. A revoked reader, however,
must not be able to read updated files, nor may a revoked
writer be able to modify the files. Settling for lazy revoca-
tion trades re-encryption cost for a degree of security. We
elaborate on lazy revocation in Section 3.4.

2.4 Key distribution

We assume that users authenticate each other to obtain rel-
evant keys to read and write data on the disk via a secure
channel – we do not introduce new authentication mech-
anisms in this paper. Furthermore, all these exchanges
are carried out on-demand; if users want to read/write a
file, they contact the file owner (or possibly other read-
ers/writers) to obtain the relevant key. Keys are never
broadcast to all users.

2.5 Traffic analysis and rollback

We do not address the issue of traffic analysis in this pa-
per; that is, we do not make any explicit attempt to obfus-
cate users’ access patterns. However, Plutus does support
options to encrypt filenames, and encrypts all I/O requests
to the server. Recently SUNDR [32] introduced the notion
of a rollback attack, wherein an untrusted server tricks a
user into accepting version-wise inconsistent or stale data
relative to other users. We defer the discussion of rollback
protection to a future work [15].

3 Design

In an encrypted file system, we need techniques to (1)
differentiate between readers and writers; (2) prevent de-
struction of data by malicious writers; (3) prevent known
plaintext attacks with different keys for different files; (4)
revoke readers and writers; and (5) minimize the num-
ber of keys exchanged between users. The following core
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mechanisms together achieve these functions: filegroups,
lockboxes, keys, read-write differentiation, lazy revoca-
tion, key rotation, and server-verified writes.

3.1 Filegroups and lockboxes

Plutus groups files (not users) intofilegroupsso that keys
can be shared among files in a filegroup without com-
promising security. Filegroups serve as a file aggregation
mechanism to prevent the number of cryptographic keys a
user manages from growing proportional to the number
of files1. Aggregating keys into filegroups has the ob-
vious advantage that it reduces the number of keys that
users need to manage, distribute, and receive. This is im-
portant if users have to perform all key management and
distribution themselves. Key aggregation is also neces-
sary to support semi-online users: as in today’s systems,
Plutus assumes that users are frequently online, but not al-
ways. This means that we need an easy mechanism to let
an owner share a group of related files, so that the other
user may be able to access the related files even when the
owner is not online. Additionally, as described in Sec-
tion 3.2, we associate a RSA key pair with each filegroup.
If files were not aggregated and each file had its own key
pair, from the measurements in Section 7, each create op-
eration would incur a 2.5 seconds latency to generate the
RSA key pair – in comparison, it takes 2.9 seconds to en-
crypt/decrypt a 20M file with 3DES.

With filegroups, all files with identical sharing at-
tributes are grouped in the same filegroup and are pro-
tected with the same key. This exploits the fact that even
though a user typically owns and accesses many files, the
number of equivalence classes of files with different shar-
ing attributes is small; this enables multiple files to share
the same set of keys.

Using filegroups dramatically reduces the number of
keys that a user needs to keep track of and the number of
keys users must obtain from other users. In the context of
the sharing semantics of current UNIX file systems, if two
files are owned by the same owner, the same group, and
have the same permission bits, then they are authorized
for access by the same set of users. All such files could
logically be placed in the same filegroup, and encrypted
with the same key.

In general there is no relation between the directory hi-
erarchy and the files in a filegroup, though it may be some-
times convenient to define filegroups based on the set of
files in one directory (which is, for instance, how AFS
defines access rights). Specifically, two encrypted files
from two different directories may belong to the same fi-
legroup. Thus, filegroups can be viewed as an invisible
overlay on the directory structure.

1A previous study [40] mistakenly attributes the filegroup concept to
Cepheus [13] instead of itself.

Filegroups uniquely identify all keys that a user needs
to perform an operation on a file. This filegroup informa-
tion can be located together with the rest of the meta-data
about the file, for instance, in the UNIX FFS inode (re-
placing the group and mode bits), or by adding an entry in
the disk vnode in AFS [43].

On the downside, using the same key to encrypt mul-
tiple files has the disadvantage that the same key en-
crypts more data, potentially increasing the vulnerability
to known plaintext and known ciphertext attacks. How-
ever, this is not an issue if these keys are actually thefile-
lockboxkeys, and the real file encryption keys are differ-
ent for different files. The lockbox can then securely hold
the different keys; Section 3.3 explains further.

Filegroups also complicate the process of revoking
users’ access to files because now there are multiple files
that the revoked user could have access to. It is tempting
to simplify revocation of users by having one key per file.
Though this scheme is seemingly more secure (losing a
key compromises one file only), managing these keys is a
challenge. At best they can be organized into some sort
of hierarchy such that the users have to keep fewer keys
securely, but this clearly resembles filegroups. Plutus’ so-
lution for this problem is discussed in more detail in Sec-
tion 3.4.

3.2 Keys

Figure 1 illustrates the different objects in Plutus, and how
different keys operate on them. Here we describe the
structures; later sections discuss these design decisions in
more detail. Every file in Plutus is divided into several
blocks, and each block is encrypted with a unique sym-
metric key (such as a DES key), called afile-block key.
The lockbox, based on ideas in Cepheus [13], holds the
file-block keys for all the blocks of the file and is read and
written byfile-lockboxkeys. File-lockbox keys are sym-
metric keys and are given to readers and writers alike. Al-
ternatively, Plutus could use a single file-block key for all
blocks of a file and include an initialization vector. File-
lockbox keys are the same for all the files in a filegroup.
In order to ensure the integrity of the contents of the files,
a cryptographic hash of the file contents is signed and ver-
ified by a public-private key pair, which we callfile-verify
keysandfile-sign keys. The file-sign keys are the same for
all the files in a filegroup. As an optimization, a Merkle
hash tree [34] is used to consolidate all the hashes, with
only the root being signed.

Unlike files, which are encrypted at the block level, en-
tries of directories are encrypted individually. This allows
the server to perform space management without involv-
ing the clients, such as allocating inodes and performing
a fsck after a crash. Also, this allows users to browse di-
rectories and then request the corresponding keys from
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Figure 1: Keys in Plutus. The keys are all highlighted in bold and are linked to the objects that they operate on using
bold lines. Dashed lines indicate object pointers.File-name keyscan encrypt the names of files in directories. An inode
contains the names of the filegroup that the file belongs to, and thefilegroup-name keycan encrypt filegroup names.
The header contains the Merkle hash tree. The leaves of the hash tree are lockboxes containing thefile-block keys,
which are encrypted with thefile-lockbox key. The signature of the root is computed and verified using thefile-sign
keyandfile-verify key, respectively.

the file’s owner. The filegroup and owner information
is located in the inode, as in the case of UNIX. The
names of files and filegroups can be encrypted with the
file-name keyand filegroup-name key, respectively. En-
crypting the names of files and filegroups protects against
attacks where the malicious user can glean information
about the nature of the file.

All the above described keys are generated and dis-
tributed by the owners of the files and filegroups. In
addition, currently in Plutus, readers and writers can
(re)distribute the keys they have to other users. Plutus in-
tentionally avoids specifying the protocols needed to au-
thenticate users or distribute keys: these are independent
of the mechanisms used to secure the stored data and can
be chosen by individual users to match their needs.

3.3 Read-write differentiation

One of the basic security functions that file systems sup-
port is the ability to have separate readers and writers to
the same file. In Plutus, this cannot be enforced by the
server as it itself is untrusted; instead we do this by the
choice of keys distributed to readers and writers. File-
lockbox keys themselves cannot differentiate readers and
writers, but can do so together with the file-sign and file-
verify key pairs. The file-sign keys are handed to writers
only, while readers get the file-verify keys. When updat-
ing a data block, a writer recomputes the Merkle hash tree
over the (current) individual block hashes, signs the root
hash, and places the signed hash in the header of the file.
Readers verify the signature to check the integrity of the
blocks read from the server. Though using public/private

keys for differentiated read/write access was mentioned
in the work on securing replicated data [49], the design
stopped short of finding a cryptosystem to implement it.

Note that though the file-verify key is same as the pub-
lic key in a standard public-key system, it is not publicly
disseminated. Owners of files issue the file-verify key
only to those they consider as authorized readers; simi-
lar is the case with the file-sign key.

In our implementation, we use RSA for the sign/verify
operations. Then only the readers and writers knowN
(the RSA modulus). The file-verify key,e, is not a
low-exponent prime number (it has to be greater than
N1/4 [6]). Writers get(d, N), while readers get(e,N).

3.4 Lazy revocation

In a large distributed system, we expect revocation of
users to happen on a regular basis. For instance, accord-
ing to seven months of AFS protection server logs we
obtained from MIT, there were 29,203 individual revo-
cations of users from 2,916 different access control lists
(counting the number of times a single user was deleted
from an ACL). In general, common revocation schemes,
such as in UNIX and Windows NT, rely on the server
checking for users’ group membership before granting ac-
cess. This requires all the servers to store or cache infor-
mation regarding users, which places a high trust require-
ment on the servers and requires all the servers to maintain
this authentication information in a secure and consistent
manner.

Revocation is a seemingly expensive operation for
encrypt-on-disk systems as it requires re-encryption (in
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Plutus, re-computing block hashes and re-signing root
hashes as well) of the affected files. Revocation also in-
troduces an additional overhead as owners now need to
distribute new keys to users. Though the security seman-
tics of revocation need to be guaranteed, they should be
implemented with minimal overhead to the regular users
sharing those files.

To make revocation less expensive, one can delay re-
encryption until a file is updated. This notion of lazy re-
vocation was first proposed in Cepheus [13]. The idea is
that there is no significant loss in security if revoked read-
ers can still read unchanged files. This is equivalent to the
access the user had during the time that they were autho-
rized (when they could have copied the data onto floppy
disks, for example). Expensive re-encryption occurs only
when new data is created. The meta-data still needs to be
immediately changed to prevent further writes by revoked
writers. We discuss subtle attacks that are still possible in
Section 4.

A revoked reader who has access to the server will still
have read access to the files not changed since the user’s
revocation, but will never be able to read data updated
since their revocation.

Lazy revocation, however, is complicated when multi-
ple files are encrypted with the same key, as is the case
when using filegroups. In this case, whenever a file gets
updated, it gets encrypted with a new key. This causes
filegroups to get fragmented (meaning a filegroup could
have more than one key), which is undesirable. The next
section describes how we mitigate this problem; briefly,
we show how readers and writers can generate all the pre-
vious keys of a fragmented filegroup from the current key.

3.5 Key rotation

The natural way of doing lazy revocation is to generate a
new filegroup for all the files that are modified following
a revocation and then move files to this new filegroup as
files get re-encrypted. This raises two issues: a) there is
an increase in the number of keys in the system following
each revocation; and b) because the sets of files that are
re-encrypted following successive revocations are not re-
ally contained within each other, it becomes increasingly
hard to determine which filegroup a file should be moved
to when it is re-encrypted. We address the first issue by
relating the keys of the involved filegroups. To address
the second issue, we set up the keys so that files are al-
ways (re)encrypted with the keys of the latest filegroup;
then since keys are related users need to just remember
the latest keys and derive previous ones when necessary.
We call the latter processkey rotation.

There are two aspects of rotating the keys of a filegroup
a) rotating file-lockbox keys, and b) rotating file-sign and
file-verify keys. In either case, to make the revocation se-

cure, the sequence of keys must have the following prop-
erties:

a) Only the owner should be able to generate the next
version of the key from the current version. This is
to prevent anyone from undoing the revocation.

b) An authorized reader should be able to generate all
previous versions of the key from the current ver-
sion. Then readers maintain access to the files not
yet re-encrypted, and readers may discard previous
versions of the key.

In Plutus, each reader has only the latest set of keys.
Writers are directly given the newest version of the keys,
since all file encryptions always occur with the newest set
of keys. The owners could also do the new-key distribu-
tion non-interactively [14], without making point-to-point
connections to users.

To assist users in deciding which keys to use, each key
has a version number and an owner associated with it.
Each file has the owner information, and the version num-
ber of the encryption key embedded in the inode. Note
that this serves only as a hint to readers and is not required
for correctness. Readers can still detect stale keys when
the block fails to pass the integrity test.

Next we will describe how we achieve key rotation for
file-lockbox keys and file-sign/file-verify keys.

3.5.1 Rotating file-lockbox keys

Whenever a user’s access is revoked, the file owner gener-
ates a new version of the file-lockbox key. For this discus-
sion, letv denote the version of the file-lockbox key. The
owner generates the next version file-lockbox key from
the current key by exponentiating the current key with the
owner’s private key(d,N): Kv+1 = Kd

v mod N . This
way only the owner can generate valid new file-lockbox
keys.

Authorized readers get the appropriate version of the
file-lockbox key as follows. (Figure 2 illustrates the rela-
tion between the different file-lockbox key versions.) Let
w be the current version of the file-lockbox key that a user
has.

• If w = v then the reader has the right file-lockbox
key to access the file.

• If w < v then the reader has an older version of the
key and needs to request the latest file-lockbox key
from the owner.

• If w > v then the reader needs to generate the older
version of the file-lockbox key using the following
recursion. IfKw is the file-lockbox key associated
with versionw, thenKw−1 = Ke

w mod N , where
(e,N) is the owner’s public key. Readers can recur-
sively generate all previous file-lockbox key from the
current key.
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Figure 2: Key rotation for file-lockbox keys. Using RSA, an owner can rotate a keyKi forward. Users can only rotate
keys backwards in time.(e,N) is the owner’s public key and(d, N) is the owner’s private key

In the above protocol, we use RSA encryption as a
pseudorandom number generator; repeated encryption is
not likely to result in cycling, for otherwise, it can be used
to factor the RSA modulusN [33]. Though we use RSA
for our key rotation, the property we need is that there be
separate encryption and decryption keys, and that the se-
quence of encryptions is a pseudorandom sequence with
a large cycle; most asymmetric cryptosystems have this
property.

Though this scheme resembles Lamport’s password
scheme [27], our scheme is more general. Our scheme
provides for specific users (owners) to rotate the key for-
ward, while allowing some other users (readers) to rotate
keys backwards.

3.5.2 Rotating file-sign and file-verify keys

By using the file-lock box key generated above as a seed,
we can bootstrap the seed into file-sign and file-verify
keys as follows. Let the versionv file-sign key be(ev, Nv)
and the corresponding file-verify key be(dv, Nv). In Plu-
tusNv is stored in file’s header in the clear, signed by the
owner to protect its integrity. Note that all files in the file-
group with the same version have the same value forNv.

When a user is revoked, the owner picks a new RSA
modulusNv, and rotates the file-lockbox key forward to
Kv. Using the latest seedKv, owners and readers gener-
ate the file-verify key as follows. Given the seedKv, ev

is calculated by usingKv as a seed in a pseudo-random
number generator. The numbers output are added to

√
Nv

and tested for primality. The first such number is chosen
asev. The conditions thatev ≥

√
Nv andev is a prime

guarantee thatgcd(ev, φ(Nv)) = 1 [28], making it a valid
RSA public key. (Notice that the latter test cannot be per-
formed by readers because they do not knowφ(Nv)). The
pair (ev, Nv) is the file-verify key.

Owners generate the corresponding RSA private keydv

and use it as the file-sign key. Since writers never have to
sign any data with old file-sign keys, they directly get the
latest file-sign key(dv, Nv) from the owner. If the writers
have no read access, then they never get the seed, and so it
is hard for them to determine the file-verify key from the
file-sign key.

Given the current version seedKv, readers can generate

previous version file-verify keys(du, Nu), for u < v as
follows. They first rotate the seedKv backwards to get the
seedKu, as described in the previous section. They read
(and verify) the modulusNu from the file header. They
then use the procedure described above to determineeu

from Nu andKu.
The reason for changing the modulus after every revo-

cation is to thwart a subtle collusion attack involving a
reader and revoked writer – if the modulus is fixed to, say
N ′, a revoked writer can collude with a reader to become
a valid writer (knowingev, dv, andN ′ allows them to
factorN ′, and hence compute the new file-sign key).

3.6 Server-verified writes

The final question we address is how to prevent unautho-
rized writers from making authentic changes to the persis-
tent store. Because the only parties involved in the actual
write are the server and the user who wishes to write, we
need a mechanism for the server to validate writes.

In traditional storage systems, this has been accom-
plished using some form of an access control list (ACL);
the server permits writes only by those on the ACL. This
requires that the ACL be stored securely, and the server
authenticates writers using the ACL.

In Plutus, a file owner stores a hash of a write token
stored on the server to validate a writer. This is semanti-
cally the same as a shared password.

Suppose a filenameF is not encrypted. The owner of
the file creates a write-verification keyKw as the write
token. Then,F and the hash of the write token,H[Kw],
are stored on the server in the file’s inode.

Upon authentication, writers get the write tokenKw

from the owner. When writers issue a write, they pass
the token to the server. To validate the write, the server
can now computeH[Kw] and compare it with the stored
value. Readers cannot generate the appropriate token be-
cause they do not knowKw. The token is secure since
the hash value is stored only on the server. Optionally the
server can cache the hashed write tokens to speed up write
verification.

One problem with the above scheme is that from
H[Kw], anyone can learn useful structural information
such as which files belong to which filegroup even when
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the filegroup name is encrypted. This is undesirable given
that storage system itself can be stolen and it does not
do any authentication of the readers. Such attacks can be
thwarted by replacingH[Kw] with H[Kw, F ] and the fi-
legroup name withH[Kg, F ], whereKg is the filegroup-
name key.

The write token used above is similar to the capabilities
used in NASD [19] and many systems before [29]. How-
ever capabilities in general are given out by a centralized
server whereas write tokens are generated by individual
file owners and are given to writers in a distributed man-
ner.

The benefit of this approach is that it allows an un-
trusted server to verify that a user has the required au-
thorization, without revealing the identity of the writer to
the server. The scheme also makes it easy for the server to
manage the storage space by decoupling the information
required to determine allocated space from the data itself.
Though the actual data and (possibly) filenames and file-
group names are encrypted and hidden, the list of physical
blocks allocated is visible to the server for allocation de-
cisions.

There are several file systems such as Cedar [18], Ele-
phant [41], Farsite [1], Venti [38], and Ivy [36], which
treat file data as immutable objects. In a cryptographic
storage file system with versioning, server-verified writes
are less important for security. Readers can simply choose
to ignore unauthorized writes, and servers need worry
only about malicious users consuming disk space. In non-
versioning systems, a malicious user could corrupt a good
file, effectively deleting it.

4 Security analysis

This section explores the set of attacks that remain pos-
sible and explains how to adapt Plutus to thwart these at-
tacks. We also argue that some of the remaining attacks
can never be handled within the context of our system at
any reasonable additional cost.

In decreasing order of severity, an attacker may:

(a) write new data with a new key
(b) write new data with an old key
(c) write old data with an old key; that is, revert to an old

version
(d) destroy data
(e) read updated data
(f) read data that has not yet been updated.

These attacks can be prevented by some combination of
the following mechanisms: change the read/write verifica-
tion token (T), re-encrypt the lockbox with a new key (L),
and re-encrypt the file itself with a new key (D). Table 1

presents the possible attacks classified into those that a re-
voked reader could mount, or those that a revoked writer
could mount. In each case, the attacker may act alone or
in collusion with the server. The attacks that writers can
mount depend upon whether an unsuspecting reader has
the updated keys or not.

If a system uses lazy revocation, we can prevent re-
voked readers from accessing data that has been updated.
However to prevent them from accessing data that has not
been updated, we would need some form of “read veri-
fication” — verification of read privileges on each read
access, analogous to write-verification. If this verifica-
tion were done by the storage server then the reader could
not get to the data alone, but could do so in collusion
with the server. To prevent this attack, the file must be
re-encrypted, re-encrypting just the lockbox would be in-
sufficient.

The problem with revoked writers is more severe.
Again, we can prevent revoked writers from updating data
by verifying each write. But if this verification is done by
the server – as in server-verified writes – the system is
subject to an attack by a revoked writer colluding with the
server to make valid modifications to data. The only way
to prevent this would be to broadcast the changed key to
all users aggressively . Otherwise, a revoked writer will
always be able to create data that looks valid and cheat
(unsuspecting) readers who have not updated their key.

From the above discussion, it should be clear that lazy
revocation is always susceptible to attacks mounted by re-
voked users in collusion with the server, unless a third
(trusted) party is involved in each read and write access.

Finally, the server could mount the following attack,
which we consider very difficult for the system to handle.
In a forking attack[31], a server forks the state of a file
between users. That is, the server separately maintains
file updates for the users. The forked users never see each
other’s changes, and each user believes its state reflects re-
ality. A higher level Byzantine agreement protocol, which
is potentially expensive, might be necessary to address
this issue [11]. Recently Mazières and Shasha [32] in-
troduced the notion offork consistencyand a protocol to
achieve it. Though their scheme does not prevent a fork-
ing attack, it makes it easier to detect.

5 Protocols

We now summarize the steps involved in protocols for
creating, reading and writing as well as revoking users.
We would like to remark again that all the keys and to-
kens in these protocols are exchanged between owners
and readers/writers via a secure channel with a session
key – for instance, mutual authentication based on pass-
words. However, file data is not encrypted over the wire,



Appears in the Proceedings of the 2nd Conference on File and Storage Technologies (FAST’03). pp. 29–42 (31 Mar –
2 Apr 2003, San Francisco, CA). Published by USENIX, Berkeley, CA

Users Key freshness Collusion None D L LD T TD TL TLD

revoked reader old keys
alone f f f – – – – –
w/ server c,d,f c,d,f c,d,f c,d,f c,d,f c,d c,d,f c,d,f

revoked writer
old keys

alone c,b,d c,b,d c,b,d c,b,d – – – –
w/ server c,b,d c,b,d c,b,d c,b,d c,b,d c,b,d c,b,d c,b,d

updated keys
alone n/a n/a d d n/a n/a – –
w/ server n/a n/a d d n/a n/a d d

Table 1: Attacks tabulated against what is changed following a revocation. The heading row presents different choices
in the component that is changed following a revocation: the read/write verification token is changed (T), the file’s
lockbox is changed (L), or the file itself is re-encrypted with a new key (D). The entries in the table correspond
to the most serious attack that can be mounted, the letter code corresponding to those described in the main text.
“n/a” indicates an impossible combination – such as readers having updated keys but files not being re-encrypted or
lockboxes not changed. A “–” is used to denote that no attack is possible.

but only integrity-protected with the session key.

1. Initialize filegroup: To initialize a filegroup, a user
generates a pair of dual keys (file-sign and file-verify
keys) for signing and verifying the contents of files in
the filegroup. The user also generates the symmetric
file-lockbox key.

2. Create file: First, the owner selects a filegroup for
the new file. If there is no appropriate filegroup
the owner initializes one and uses the corresponding
keys (file-sign, file-verify, and file-lockbox keys) for
this file. The owner also generates a write token and
sends it to the server so that the server can verify all
writes to this file.

3. Read file: A reader first obtains the name of the
owner and the filegroup of the file he wishes to ac-
cess, possibly after browsing the file system. The
reader then checks if the version of the keys she has
cached is greater then the version of the keys used
to encrypt the file (which is stored in the header),
in which case she does a key rotation to get the
right version key. Otherwise, the reader gets the lat-
est version key from the owner after appropriate au-
thentication (via a secure channel). The reader then
fetches the encrypted blocks of the desired file from
the server, opens the lockboxes with the file-lockbox
key, retrieves file-block keys from the lockbox, and
decrypts the individual blocks. The integrity of the
root hash (of the Merkle tree) provided by the server
is first verified by using the file-verify key. To verify
the integrity of the data, this root hash is compared
against the root hash obtained by recomputing the
Merkle hash tree using the file blocks retrieved from
the server.

4. Write file: The writer obtains the latest version file-
lockbox key and file-sign key, possibly from the
owner if it is not cached. The writer then gener-
ates the file-block keys, encrypts individual blocks

of the file using the corresponding file-block keys,
and stores the encrypted blocks with the lockbox in
the server. The server uses the write-token, provided
by the writer at this time, to authorize the write. The
writer then sends the entire Merkle hash tree in the
clear to the server; the hash tree includes the root
hash, signed with the file-sign key.

5. Revoke user:To revoke a user from accessing files
in a filegroup, the owner generates the next version of
the file-sign, file-verify, and file-lockbox keys. The
owner then labels all files in the filegroup as need-
ing re-encryption. If the revoked user is a writer, the
owner changes the write-tokens in all the files of the
filegroup as well.

6 Implementation

Using the protocols and ideas discussed in Section 3, we
have designed Plutus and developed a prototype using
OpenAFS [37]. In this section, we describe the architec-
ture and the prototype of Plutus in detail.

6.1 Architecture of Plutus

Figure 3 summarizes the different components of Plu-
tus, and where (server side or client side) they are im-
plemented. Both the server and the clients have a network
component, which is used to protect the integrity of all
messages. In our implementation we protect the integrity
of packets in the AFS RPC using HMAC [4]. Addition-
ally, some messages such as those initiating read and write
requests are encrypted. A 3DES session key, exchanged
as part of the RPC setup, is optionally used to encrypt
these packets. The identities of all entities are established
using 1024 bit RSA public/private keys.

The server has an additional component that validates
writes. As described in Section 3.6, this component com-
putes the SHA-1 hash of write tokens to authorize writes.
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Figure 3: Architecture of Plutus.

This hashed token is passed on to the server, when the
file is created, and is stored in the file’s vnode (UNIX in-
ode extension in AFS). Storing the token in the vnode in-
stead of the directory simplifies write verification2. Own-
ers change the stored token using a special ioctl call.

Most of the complexity of the implementation is at the
client-side. We extended the OpenAFS kernel module by
adding a key cache per user and a component to handle
file data encryption and decryption. The key cache holds
all keys used by the user, including file keys and iden-
tity keys (users’ and servers’ public keys). Currently all
the encryptions and decryptions are done below the AFS
cache; that is, we cache clear-text data. By doing this
we encrypt (decrypt) file contents only when it is being
transmitted to (received from) the server. The alternative
of caching encrypted data would mean that each partial
read/write would incur a block encryption/decryption, as
would multiple reads/writes of the same block. We ex-
pect this to incur a substantial cryptographic overhead. Of
course, caching unencrypted data opens up a security vul-
nerability on shared machines.

The other components of the client – revocation and key
exchange – are implemented in user space. These compo-
nents interact with the key cache through an extension to
AFS’s ioctl interface. The same client-server RPC inter-
face is used for all inter-client communication.

Files are fragmented, and each fragment (blocks of size
4 KB) is encrypted independently with its own file-block
(3DES) key. This 3DES key is kept in the fragment’s lock-
box together with the length of the fragment. The hashes
of all the fragments are arranged in a Merkle hash tree,
and the root signed (1024 bit RSA) with the file-sign-key.
The leaves of the tree contain the lockbox of the corre-
sponding fragment. The tree is kept in a “shadow file,”

2A similar problem was encountered in the context of storing inodes
and small files together [16].

on the server, and is shipped to the client, when the corre-
sponding file is opened. On the client side, when blocks
are updated, the respective new hashes are spliced into the
tree. Then, the root hash is recomputed and signed when
the cache is to be flushed to the server. At this time, the
new tree is also sent back to the server.

6.2 Prototype

In building the Plutus prototype, we have made some
modifications to the protocols to accommodate nuances
of AFS. However, these modifications have little impact
on the actual evaluation reported in the next section. For
instance, currently AFS’s RPC supports only authentica-
tion of the client by the server through a three step proce-
dure. Recall that in Plutus design, the server never needs
to authenticate a client. We use only the last two steps of
this interface to achieve reverse authentication (i.e., client
authenticating server) and session key exchange. To do
this we need the server’s public key, which can be suc-
cinctly implemented with self certifying pathnames [30],
thus securely binding directories to servers.

The prototype uses a library that was built from the
cryptographic routines in GnuPGP, with the following
choice of primitives: 1024-bit RSA PKCS#1(version
1.5)3 for public/private key encryption, SHA-1 for hash-
ing and 3DES with CBC with Cipher Text Stealing [45]
for file encryption.

7 Performance evaluation

In the preceding sections, we analyzed protocols of Plutus
from a security perspective. We now evaluate Plutus from

3For better security guarantees, RSA-OAEP is required; see Shoup’s
proposal [46] for more details.
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a performance perspective. In particular, we evaluate the
design and the prototype of Plutus using (a) a trace from
a running UNIX system, and (b) synthetic benchmarks.
Using (a), the trace statistics, we argue the benefits of fi-
legroups and the impact of lazy revocation. By measuring
the overhead of Plutus using (b), synthetic benchmarks,
we argue that though there is an overhead for the encryp-
tion/decryption, Plutus is quite practical; in fact, it com-
pares favorably with SFS.

7.1 Trace evaluation

The trace that we use for evaluation is a 10-day com-
plete file system trace (97.4 million requests, 129 GB
data moved and 24 file systems) of a medium-sized work-
group using a 4-way HP-UX time-sharing server attached
to several disk arrays and a total of 500 GB of storage
space. This represents access to both NFS filesystems that
the server exported, and accesses to local storage at the
server. The trace was collected by instrumenting the ker-
nel to log all file system calls at the syscall interface. Since
this is above the file buffer cache, the numbers shown will
be pessimistic to any system that attempts to optimize key
usage on repeated access.

Key sharing
System User

mean max mean max

key/file 1,700 9,200 900 41,100
key/filegroup 11 57 6 23

Table 2: Using filegroups to aggregate keys.

KEYS AND FILEGROUPS

Table 2 presents the number of keys distributed among
users. We classified all the user-ids in the system into
System (such as root, bin, etc.) and User (regular users).
The first row represents the number of keys that need to
be distributed if a different key is used for each file in the
system; the second row represents the number of keys dis-
tributed if filegroups are used. In this evaluation, we used
the (mode bits, owner, group) tuple to define filegroups.
The table presents numbers for both the maximum num-
ber of keys distributed by any user, and the mean num-
ber of keys distributed (averaged across all users who dis-
tributed at least one key). The table demonstrates the ben-
efit of using filegroups clearly: the maximum number of
keys distributed is reduced to 23, which is easy to man-
age. Note that even this is a pessimistic evaluation as it
assumed acold key cache.

OVERHEAD OF REVOCATION

Table 3 presents parameters of the traced system that af-
fect the overhead of performing a revocation. In this con-
text we focus on the case where the owner of a filegroup

wants to revoke another user’s permission to read/write
files in the owner’s filegroup. We use these parameters to
evaluate the overhead of performing a revocation, both in
terms of carrying out the operations immediately follow-
ing a revocation, and re-distributing the updated keys to
other users. In the case of revoking a reader, the time spent
immediately following a revocation is the time required to
mark all files in the filegroup as “to be re-encrypted.” In
the case of revoking a writer this is the time to change the
write verification key of all the files in the filegroup. For
the system we traced, if a user revokes another user, this
would involve marking 4,800 files to be re-encrypted, on
average, and about 119,000 files, maximum. When a user
(reader or writer) is revoked, other users (readers/writers)
need to be given the updated key. Our evaluation shows
that this number is typically very small: 2 on average and
at most 11 in the worst case.

7.2 Cryptographic cost

Table 4 presents the impact of encryption/decryption on
read and write latency. These are measurements of the
cryptographic cost that includes write verification, data
encryption, and wire-transmission overheads. These were
done using code from Plutus’ cryptography library on a
1.26 GHz Pentium 4 with 512 MB memory. In this evalu-
ation, we used 4 KB as the size of the file fragment (cor-
responding to that of the prototype). As in the prototype,
for data encryption, we used 1,024-bit RSA with a 256-bit
file-verify key for reading and a 1,019-bit file-sign key for
writing and 3DES CBC/CTS file-block key for bulk data
encryption.

Owners incur a high one time cost to generate the
read/write key pair; this is another reason why aggre-
gating keys for multiple files using filegroups is benefi-
cial. Though the write verification latency is negligible
for writers and owners, if we choose to hide the identities
of filegroups, then we pay an additional cost of decrypt-
ing it. The time spent in transmitting the Merkle hash tree
depends on the size of the file being transmitted. In Plu-
tus, block hashes are computed over 4 KB blocks, which
contribute to about 1% overhead in data transmission.

For large files, the block encryption/decryption time
dominates the cost of writing/reading the entire file.
Though Plutus currently uses 3DES as the block cipher,
from Dai’s comparison of AES and 3DES [9], we expect
a 3X speedup if AES were used.

7.3 Benchmark evaluation

We used a microbenchmark to compare the performance
of Plutus to native OpenAFS and to SFS [30]. The micro-
benchmark we used is modeled on the Sprite LFS large
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Parameters
User System

Highest Second Mean Highest Second Mean

number of files 119,000 101,200 4,800 1,561,000 94,000 29,800
total bytes 17 GB 11 GB 0.6 GB 29 GB 14 GB 1.3 GB

number of readers 5 4 1.2 27 22 5.4
number of writers 6 5 0.7 15 14 1.7

Table 3: Parameters of the system that affect revocation. These are statistics indicating the number of files in a single
filegroup owned by a user, the total size of all these files, the number of other users who have read permission to at least
one of these files, and the number of other users who have write permission to at least one of these files. The number
of readers and writers were determined by considering the accesses in the 10-day trace, while the static information
was gathered by considering a snapshot of the filesystem taken at the end of the 10 days. The table separates statistics
for regular users and system users.

File system operation Crypto operation Crypto cost Incurred by Frequency
Filegroup creation RSA key generation 2500 ms owner per filegroup

File write

Block hash 0.11 ms writer per 4 KB block
Block encrypt 0.59 ms writer per 4 KB block
Merkle root sign 28.5 ms writer per file
Write verify 0.01 ms server per file

File read
Block hash 0.11 ms reader per 4KB block
Block decrypt 0.61 ms reader per 4 KB block
Merkle root verify 8.5 ms reader per file

Wire integrity
Message encrypt 0.01 ms all per 100 byte message
Message decrypt 0.01 ms all per 100 byte message
Message hash 0.003 ms all per 100 byte message

Table 4: Cryptographic primitive cost. This table lists the cost of the basic cryptographic primitives, and the file
systems operations where they are incurred. The root signature and verification is done only once per file read or
write, irrespective of the size of the file. Wire integrity is needed only for messages, not for file contents.

file benchmarks. These involve reading and writing mul-
tiple 40 MB files with sequential and random accesses.

We used two identically configured machines, as in the
previous section, connected with a Gigabit ethernet link.
In all these experiments we restarted the client daemon,
before reading/writing any file. We present the mean of 6
out of 10 runs, ignoring the top and bottom two outliers.

Table 5 presents the results of this evaluation. First, the
table shows that the overhead of Plutus is primarily de-
pendent on the choice of block cipher used. For instance,
it takes 5.9s to decrypt 40MB with 3DES, which is about
75% of the average sequential read latency. Thus Plutus
with no-crypto is faster than that with DES, which is in
turn faster than with 3DES.

Second, Plutus performs as well as (if not better than)
the other two encrypt-on-wire systems. In these compar-
isons it is important to compare systems that use block ci-
phers with similar security properties. In particular, the
performance of Plutus with DES is slightly better than
that of OpenAFS with fcrypt as the cipher: the fcrypt
cipher is similar to DES. Though Plutus with 3DES is
about 1.4 times slower than SFS, the latter uses ARC4,

which is known to have a throughput about 14 times that
of 3DES [9]. This leads us to believe that if Plutus were
modified to use ARC4 or AES, it would compare well
with SFS.

Note that this experiment is a pessimistic comparison
between Plutus and the other two encrypt-on-wire sys-
tems. In the setting where there are several clients ac-
cessing data from the same server, Plutus would provide
better server throughput because the server does not per-
form much crypto. This would translate to lower average
latencies for Plutus.

8 Related work

Most file systems including those in MS Windows, tra-
ditional UNIX systems, and secure file systems [19,
22, 30] do not store files encrypted on the server. Of
course, the user may decide to encrypt files before stor-
age but this overwhelms the user with the manual en-
cryption/decryption and sharing the file with other users
– while trying to minimize the amount of computation.
This is precisely the problem that Plutus addresses.
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File systems Crypto options
Read Write

seq rand seq rand

Plutus
w/ 3DES cipher 7.84 s 7.78 s 7.92 s 8.13 s
w/ DES cipher 4.58 s 4.54 s 4.27 s 4.79 s
w/o crypto 1.39 s 1.51 s 1.59 s 2.64 s

OpenAFS
w/o wire-crypto 1.28 s 1.31 s 1.57 s 1.67 s
w/ wire-crypto 4.66 s 4.90 s 5.34 s 5.43 s

SFS w/ crypto 5.55 s 5.30 s 4.47 s 7.21 s

Table 5: Performance of Plutus, OpenAFS (version 1.2.8) and SFS (version 0.7.2) accessing 40 MB files with random
and sequential access. The crypto option for Plutus indicates the cipher used for block encryption; the OpenAFS
crypto option indicates whether it uses wire-crypto or not; SFS uses wire-crypto. OpenAFS uses fcrypt [3] for block
encryption whereas SFS uses ARC4 [23]. The version of Plutus w/o crypto still performed all the operations required
to manage and maintain the Merkle hash tree; the results indicate that this overhead is small.

Though MacOS X and Windows CIFS offer encrypted
disks, they do not allow group sharing short of sharing a
password.

8.1 Secure file systems

In encrypt-on-disk file systems, the clients encrypt all di-
rectories and their contents. The original work in this
area is the Cryptographic File System (CFS) [5], which
used a single key to encrypt an entire directory of files
and depended on the underlying file system for authoriza-
tion of writes. Later variants on this approach include
TCFS [8], which uses a lockbox to protect only the keys,
and Cryptfs [51]. Cepheus [13] uses group-managed lock-
boxes with a centralized key server and authorization at
the trusted server. SNAD [35] also uses lockboxes and
introduces several alternatives for verifying writes. The
SiRiUS file system layers a cryptographic storage file sys-
tem over heterogenous insecure storage such as NFS and
Yahoo! Briefcase [21].

Encrypt-on-wire file systems protect the data from ad-
versaries on the communication link. Hence all commu-
nication is protected, but the data is stored in plaintext.
Systems that use encryption on the wire include NASD
(Networked Attached Storage) [20], NFS over IPSec [24],
SFS (Self-Certifying File System) [30], iSCSI [42], and
OpenAFS with secure RPC.

In these systems the server is trusted with the data and
meta-data. Even if users encrypt files, the server knows
the filenames. This is not acceptable if the servers are un-
trustworthy, as in a distributed environment where servers
can belong to multiple administrative domains. On the
positive side, this simplifies space management because
it is easy for the server to figure out the data blocks that
are in use. A comprehensive evaluation of these systems
appear in a previous study [40].

8.2 Untrusted servers

One way to recover from a malicious server corrupting the
persistent store is to replicate the data on several servers.
In the state machine approach [26, 44], clients read and
write data to each replica. A client can recover a corrupted
file by contacting enough replicas. The drawback to this
method is that each replica must maintain a complete copy
of the data.

Rabin’s Information Dispersal Algorithm divides a file
into several pieces, one for each replica [39]. While the
aggregate space consumed by all the replicas is minimal,
the system does not prevent or detect corruption.

Alon et al. describe a storage system resistant to cor-
ruption of data by half of the servers [2]. A client can
recover from integrity-damaged files as long as a thresh-
old number of servers remain uncorrupted.

9 Conclusion

This paper has introduced novel uses of cryptographic
primitives applied to the problem of secure storage in
the presence of untrusted servers and a desire for owner-
managed key distribution. Eliminating almost all require-
ments for server trust (we still require servers not to de-
stroy data – although we can detect if they do) and keep-
ing key distribution (and therefore access control) in the
hands of individual data owners provides a basis for a se-
cure storage system that can protect and share data at very
large scales and across trust boundaries.

The mechanisms described in this paper are used as
building blocks to design Plutus, a comprehensive, secure,
and efficient file system. We built a prototype implemen-
tation of this design by incorporating it into OpenAFS,
and measured its performance on micro-benchmarks. We
showed that the performance impact, due mostly to the
cost of cryptography, is comparable to the cost of two pop-
ular schemes that encrypt on the wire. Yet, almost all of
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Plutus’ cryptography is performed on clients, not servers,
so Plutus has superior scalability along with stronger se-
curity.
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