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Background. Lung fibrosis is a severe lung disorder featured by chronic nonspecific inflammation of the interstitial lung and
deposition of collagen, leading to lung dysfunction. It has been identified that ferroptosis is involved in the progression of lung
injury. Particulate matter (PM2.5) is reported to be correlated with the incidence of pulmonary fibrosis. However, mechanisms
underlying ferroptosis in PM2.5-related lung fibrosis is unclear. In this study, we aimed to explore the effect of PM2.5 on
ferroptosis in lung fibrosis and the related molecular mechanisms. Methods. PM2.5-treated mouse model and cell model were
established. Fibrosis and tissue damage were measured by Masson’s trichrome staining and HE staining. Fibrosis biomarkers,
such as α-SMA, collagen I, and collagen III, were examined by histological analysis. The ferroptosis phenotypes, including the
levels of iron, Fe2+, MDA, and GSH, were measured by commercial kits. ROS generation was checked by DCFH-DA. The
oxidative stress indicators, 3-nitro-L-tyrosine (3′-NT), 4-HNE, and protein carbonyl, were checked by enzyme linked
immunosorbent assay (ELISA). The thiobarbituric acid reactive substances (TBARS) and GSH/GSSG ratio were assessed by
TBARS assay kit and GSH/GSSG assay kit, respectively. TGF-β signaling was detected by Western blotting. Results. PM2.5
induced the lung injury and fibrosis in the mice model, along with elevated expression of fibrosis markers. PM2.5 enhanced
oxidative stress in the lung of the mice. The SOD2 expression was reduced, and NRF2 expression was enhanced in the mice by
the treatment with PM2.5. PM2.5 triggered ferroptosis, manifested as suppressed expression of GPX4 and SLC7A11, decreased
levels of iron, Fe2+, and MDA, and increased GSH level in mouse model and cell model. The TGF-β and Smad3 signaling was
inhibited by PM2.5. ROS inhibitor NAC reversed PM2.5-regulated ROS and ferroptosis in primary mouse lung epithelial cells.
Conclusions. Therefore, we concluded that PM2.5 exposure induced lung injury and fibrosis by inducing ferroptosis via TGF-β
signaling.

1. Introduction

Pulmonary fibrosis serves as a prevalent interstitial lung dis-
order featured by chronic nonspecific inflammation of the
interstitial lung and deposition of collagen, resulting in lung
function impairment, and severely impaired the health and
life quality of patients [1]. Unlike other kinds of lung disor-
ders, the mechanisms of the progression of pulmonary fibro-
sis are still unclear [2]. Pulmonary fibrosis presents a high
mortality rate and has been identified as a “tumor-like dis-
ease” [3]. The recently approved treatments for pulmonary
fibrosis, such as nintedanib and pirfenidone, are indicated
to repress the event of lung dysfunction [4, 5]. However,

no effective strategy is currently available to improve the sur-
vival rate of patients with pulmonary fibrosis [4, 5]. There-
fore, it is imperative to explore the mechanisms for
prevention and treatment of pulmonary fibrosis.

Recently, the frequency of pulmonary fibrosis has
expanded with the growing hardness of air pollution [6].
Epidemiological investigations have revealed that the devel-
opment in the incidence of pulmonary fibrosis is correlated
with progressing delicate particulate matter (PM2.5,
aerodynamic diameter ≤ 2:5 μm) levels in the atmosphere
[7]. Due to its small diameter, PM2.5 can quickly enter the
alveoli or even the blood after being breathed. PM2.5 can
destroy antioxidant proteins by absorbing toxic ingredients
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and induce injury by elevating reactive oxygen species (ROS)
level, which eliminates the functions of the alveolar epithelial
cells [8]. It has been reported that PM2.5 can lead to mito-
chondrial and DNA damage and promote autophagy of
alveolar epithelial cells [9]. PM2.5 contributes to pulmonary
fibrosis in mice through ROS/AKT signaling [10]. However,
the understanding of the function of PM2.5 in the regulation
of pulmonary fibrosis remains limited.

Ferroptosis is a newly identified programed cell death
that characterized by abnormal iron metabolism, lipid
metabolism, oxidative stress, and glutathione (GSH) [11].
Increasing evidence has demonstrated that ferroptosis is cor-
related with various diseases, including cancer, cardiovascu-
lar diseases, and neurodegenerative diseases [12–14].
Besides, previous study has identified that ferroptosis partic-
ipate in the progression of lung injury [15, 16]. Noteworthy,
PM2.5 induces injury of endothelial cells through triggering
ferroptosis, manifested by abnormal intracellular iron con-
tent, ROS accumulation, and lipid peroxidation [17].

Transforming growth factor (TGF)-β is a critical regula-
tor that participate in numerous biological processes such as
tissue regeneration, development, tumorigenesis, and
immune responses [18, 19]. Studies on multiple mouse
models have indicated that TGF-β is necessary for organo-
genesis and homeostasis of lung [20, 21]. TGF-β modulates
epithelial cell growth, cell differentiation, extracellular
matrix remodeling, and fibroblast activation [22]. Treatment
with TGF-β1 suppressed expression of System xc, the critical
regulator of ferroptosis, in hepatocellular carcinoma cells
through regulating Smad3 [23].

This study is aimed at exploring the effect of PM2.5 on
lung fibrosis and the related mechanism. We identified the
significant function of PM2.5 in the regulation of lung fibro-
sis and ferroptosis by modulating TGF-β signaling.

2. Materials and Methods

2.1. Cell Culture. The human normal lung epithelial cell line
BEAS-2B and non-small-cell lung cancer cell line A549 were
purchased from Shanghai Cell Bank of Chinese Academy of
Science. The primary mouse alveolar epithelial cells (AECs)
were isolated from C57BL/6J mouse following a previously
reported procedure [24]. In brief, the lung tissues were iso-
lated from mouse and digested by dispase (Sigma, USA)
and collagenase (Sigma) at 37°C for 30minutes. The cell sus-
pension was then probed by antibodies against EPCAM
(eBioscience, USA), CD24, SFTPC, CD31, CD34, and
CD45. The AEC2 cell population was sorted by flow cytom-
etry as CD24− SFTPC+ subset, apart from the EPCAM+-

CD31−CD34−CD45− subset of epithelial cell populations.
The obtained AECs were then cultured in Matrigel-coated
6-well plate (Corning) and bronchial epithelial cell growth
medium (BEGM) that contains 1% FBS (Gibco, USA),
50 ng/mL FGF, and 30ng/ml HGF (Sigma).

2.2. Animal Model. All animal experiments were authorized
by the Ethics Committee of the Animal Experimental Center
of Harbin Medical University Cancer Hospital (approval No.
2021-0031). Female C57BL/6J mice aged 8-weeks old were

brought from Charles River Laboratory (USA), and ran-
domly divided into three groups, including the control
group of which the mice were treated with standard refer-
ence materials (SRMs), and the PM 2.5 groups of which
the mice were treated with PM 2.5 for 15 or 30 days, respec-
tively. To establish PM2.5 injury, each mouse was intratra-
cheally instilled with 50μg PM2.5 every 5 days in 30 days.
The PM 2.5 was purchased from the National Institute for
Standards and Technology (NIST) (USA).

2.3. Histological Analysis. The lung tissues of mice were
collected, fixed in paraformaldehyde, embedded by paraf-
fin, and sectioned into 5μm slices. The lung injury in tis-
sue samples were checked by H&E staining (Thermo,
USA). The fibrosis of lung tissues was assessed by Mas-
son’s trichrome (Thermo, USA) following the manufactur-
er’s instruction.

For immunohistochemical evaluation of collagen I, col-
lagen III, and α-SMA levels, the slices were processed with
antigen retrieval, then the endogenous peroxidase was inac-
tivated by 3% H2O2. After that, the samples were incubated
with specific primary antibodies against collagen I, collagen
III, and α-SMA (Abcam, USA) at 4°C overnight. Next day,
the samples were hatched with biotin-labeled secondary
antibodies, followed by visualization by DAB staining kit
(Beyotime, China).

2.4. Reactive Oxygen Species Detection. To determine the
ROS level, the lung tissues were digested to generate cell sus-
pension as was mentioned above. The ROS level was deter-
mined by DCFH-DA staining (Thermo) in accordance
with the manufacturer’s instruction. In brief, the cell suspen-
sion was mixed with diluted DCFH-DA reagent (10μmol/l)
and reacted at 37°C for 30 minutes. The cells were then
detected by flow cytometry (BD Biosciences, USA).

2.5. Determination of Oxidative Stress and Ferroptosis
Biomarkers. The levels of 3-nitro-L-tyrosine (3′-NT), 4-
HNE, and protein carbonyl were checked by enzyme-linked
immunosorbent assay (ELISA) using commercial kits follow-
ing the manufacturer’s instruction. The thiobarbituric acid
reactive substances (TBARS) and GSH/GSSG ratio were
assessed by TBARS assay kit (Abnova, USA) and GSH/GSSG
assay kit (Abcam), respectively. The levels of iron, Fe2+, and
MDA were measured by the related kit (Abcam, USA).

2.6. Western Blotting. Total proteins were extracted from
lung tissues or cells by using an ice-cold RIPA lysis buffer
(Thermo) that contains protease inhibitors (Thermo). Pro-
tein concentration was determined by a BCA Protein Assay
Kit (Thermo). Equal amounts of proteins were divided by
SDS–PAGE and blotted to nitrocellulose membrane,
followed by block with 5% skim milk. The blots were then
hatched with primary antibodies against TGF-beta1 (Pro-
teintech, China), smad3 (Abcam, USA), TET2 (Abcam,
USA), GPX4 (Abcam, USA), SLC7A11 (Abcam, USA), and
tubulin (Abcam, USA) at 4°C overnight. Proteins were then
visualized with corresponding horseradish peroxidase-
(HRP-) conjugated secondary antibodies and ECL reagents
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(Millipore, USA) on a gel image system. The intensity of
protein bands was quantified by Image J software.

2.7. Cell Viability. The cell viability was determined by cell
counting kit-8 (CCK-8) (Beyotime, China) in line with the
manufacturer’s protocols. In short, the A549 or AECs were
seeded in 96-well plates at a density of 5,000 cells per well
and incubated for 24, 48, and 72 hours, At the end time
points, CCK-8 reagent (20μl) was added into each well
and incubated for another 2 hours. The optical density at
450nm was assessed by a microplate reader (Thermo).

2.8. Detection of 5hmC Level. The levels of 5hmC in lung tis-
sues and AECs were measured by ELISA assay kit following
the manufacturer’s description.

2.9. Statistics. Data in this study are shown asmean ± SD and
analyzed by GraphPad Prism 6 (USA) software and SPSS 20.0
software. Student’s t-test or one-way analyses of variance
(ANOVA) was used to compare differences between two or
more groups if they followed a normal distribution; otherwise,
the nonparametric Mann–Whitney test was adopted. Statisti-
cally significant data are defined as ∗p < 0:05.

3. Results

3.1. PM2.5 Promotes Lung Fibrosis in Mice. To decipher the
role of PM2.5 in the regulation of lung fibrosis, the mice
were treated with PM2.5. H&E staining showed that the
treatment of PM2.5 induced the lung injury in the mice
(Figure 1(a)). Masson staining revealed that the lung fibrosis
was enhanced by the treatment of PM2.5 in the mice
(Figure 1(b)). Meanwhile, the fibrosis markers, such as α-
SMA, collagen I, and collagen III, were promoted by the
treatment of PM2.5 in the mice (Figure 1(c)).

3.2. PM2.5 Enhances Ferroptosis in the Lung of the Mice. We
then evaluated the function of PM2.5 in the modulation of
ferroptosis in the mice. We found that the expression of fer-
roptosis negative markers, such as GPX4 and SLC7A11, was
repressed by PM2.5 in the lung tissues of the mice
(Figure 2(a)). The treatment of PM2.5 induced the levels of
iron, Fe2+, and MDA but reduced the GSH levels in the
model (Figures 2(b)–2(e)).

We observed that the treatment of PM2.5 promoted the
levels of ROS in the mice (Figure S1A). The levels of 3′-NT,

Ctrl 15 d 30 d

HE

(a)

Masson

Ctrl 15 d 30 d

(b)

Alpha-SMA

Collogen I

Collogen III

Ctrl 15 d 30 d

(c)

Figure 1: PM2.5 promotes lung fibrosis in mice. (a–c) The mice were treated with PM2.5 for 15 days or 30 days. (a) The lung injury was
measured by H&E staining. (b) The lung fibrosis was detected by Masson staining. (c) The levels of α-SMA, collagen I, and collagen III were
analyzed by IHC staining.
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4-HNE, TBARS, protein carbonyl, and GSH/GSSG ratio
were enhanced by the treatment of PM2.5 in the mice
(Figure S1B). The SOD2 expression was reduced, and
NRF2 expression was enhanced by the treatment of PM2.5
in the mice (Figure S1C).

3.3. PM2.5 Increases TGF-beta1/smad3 Expression and
Decreases TET2 and 5hmC Expression in the Lung of the
Mice. Next, we explored the potential mechanism of
PM2.5-mediated lung fibrosis and oxidative stress in the
mice. We observed that the TGF-β and Smad3 expression
was enhanced, and TET2 expression was reduced by the
treatment of PM2.5 in the mice (Figures 3(a) and 3(b)).
Consistently, the levels of 5hmC were induced by the treat-
ment of PM2.5 in the mice (Figure 3(c)).

3.4. PM2.5 Promotes Ferroptosis Primary Mouse Lung
Epithelial Cells. Then, we evaluated the effect of PM2.5 on fer-
roptosis primary mouse lung epithelial cells. We found that
the treatment of PM2.5 slightly affected the cell viability of
A549 cells and primary mouse lung epithelial cells
(Figures 4(a) and 4(c)). Significantly, the levels of ROS were
induced by the treatment of PM2.5 in A549 cells and primary
mouse lung epithelial cells (Figures 4(b) and 4(d)). Moreover,

the expression of ferroptosis negative markers, such as GPX4
and SLC7A11, were inhibited by PM2.5 in primary mouse
lung epithelial cells (Figure 4(e)). The treatment of PM2.5
enhanced the levels of iron, Fe2+, and MDA but decreased
the GSH levels in the model (Figures 4(f)–4(i)).

3.5. PM2.5 Increases TGF-beta1/smad3 Expression and
Decreases TET2 and 5hmC Expression in Primary Mouse
Lung Epithelial Cells. Next, we observed that the treatment
of PM2.5 increased TGF-β and Smad3 expression and
decreased TET2 expression in primary mouse lung epithelial
cells (Figures 5(a) and 5(b)). Meanwhile, the levels of 5hmC
were promoted by the treatment of PM2.5 in primary mouse
lung epithelial cells (Figure 5(c)).

3.6. NAC Reverses PM2.5-Regulated ROS in Primary Mouse
Lung Epithelial Cells. We then assessed the effect of ROS
inhibitor NAC on PM2.5-mediated ROS levels in primary
mouse lung epithelial cells. We observed that the levels of
ROS were increased by PM2.5 and decreased by NAC in pri-
mary mouse lung epithelial cells, in which NAC was able to
reverse the effect of PM2.5 (Figure 6(a)). Meanwhile, the
treatment of PM2.5 increased TGF-β and Smad3 expression
and decreased TET2 expression, but NAC presented
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Figure 2: PM2.5 enhances ferroptosis in the lung of the mice. (a–e) The mice were treated with PM2.5 for 15 days or 30 days. (a) The
expression of GPX4 and SLC7A11 was measured by Western blot. (b–e) The levels of iron, Fe2+, MDA, and GSH were detected in the
mice. ∗∗p < 0:01.
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reversed function in primary mouse lung epithelial cells
(Figures 6(b) and 6(c)). In addition, the treatment of
PM2.5 induced the levels of 5hmC, while the treatment of
NAC reversed the effect in primary mouse lung epithelial
cells (Figure 6(d)). Moreover, the PM2.5-induced ferroptosis
phenotypes was reversed by the treatment of NAC in pri-
mary mouse lung epithelial cells (Figures 6(e)–6(i)).

4. Discussion

Lung fibrosis serves as a severe lung disorder featured by
chronic nonspecific inflammation of the interstitial lung and
deposition of collagen, leading to lung dysfunction, which is
closely associated with air pollution. PM2.5 has been identified
as a challenging environmental problem, but the understand-
ing of the function of PM2.5 in the regulation of lung fibrosis

remains limited. Here, we discovered the crucial effect of
PM2.5 on oxidative stress in lung fibrosis.

The previous studies have reported the correlation of
PM2.5 with lung fibrosis. It has been reported that small
GTPase RAB6 deficiency contributes to alveolar progenitor
cell renewal and represses PM2.5-related lung fibrosis [25].
Adipose mesenchymal stem cell-derived extracellular vesi-
cles relieve PM2.5-stimulated lung fibrosis [26]. DNA repair
enzyme OGG1 attenuates PM2.5-associated lung fibrosis
and enhances alveolar progenitor cell renewal [27]. PM2.5
causes vascular remodeling, lung inflammation, and exacer-
bates transition of left ventricular failure to right ventricular
hypertrophy [28]. Consistent with previous studies, in this
work, we found that the treatment of PM2.5 induced the
lung injury in the mice. The lung fibrosis was enhanced by
the treatment of PM2.5 in the mice. Meanwhile, the fibrosis
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Figure 3: PM2.5 increases TGF-beta1/smad3 expression and decreases TET2 and 5hmC expression in lung of the mice. (a–c) The mice were
treated with PM2.5 for 15 days or 30 days. (a, b) The expression of TGF-β, Smad3, and TET2 was analyzed by Western blot analysis. (c) The
levels of 5hmC were examined by ELISA assays. ∗∗p < 0:01.
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Figure 4: Continued.
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Figure 4: PM2.5 promotes ferroptosis in primary mouse lung epithelial cells. (a, b) The A549 cells were treated with PM2.5 at the indicated
doses. (a) The cell viability was measured by CCK-8 assays. (b) The ROS levels of were analyzed by flow cytometry analysis. (c–i) The
primary mouse lung epithelial cells were treated with PM2.5 at the indicated doses. (c) The cell viability was measured by CCK-8 assays.
(d) The ROS levels were analyzed by flow cytometry analysis in the cells. (e) The expression of GPX4 and SLC7A11 was measured by
Western blot. (f–i) The levels of iron, Fe2+, MDA, and GSH were detected in the cells. ∗∗p < 0:01.
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Figure 5: PM2.5 increases TGF-beta1/smad3 expression and decreases TET2 and 5hmC expression in primary mouse lung epithelial cells.
(a–c) The primary mouse lung epithelial cells were treated with PM2.5 at the indicated doses. (a, b) The expression of TGF-β, Smad3, and
TET2 was analyzed by Western blot analysis. (c) The levels of 5hmC were examined by ELISA assays. ∗∗p < 0:01.
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Figure 6: Continued.

8 Disease Markers



RE
TR
AC
TE
D

markers, such as α-SMA, collagen I, and collagen III, were
promoted by the treatment of PM2.5 in the mice. PM2.5 ele-
vated the level of ROS in the mice lung tissue. Besides, the
levels of 3′-NT, 4-HNE, TBARS, protein carbonyl, GSH/
GSSG ratio, and the oxidative response biomarkers were
enhanced by the treatment of PM2.5 in the mice. The
SOD2 expression was reduced, and NRF2 expression was
enhanced by the treatment of PM2.5 in the mice. These data
present an innovative role of PM2.5 in the promotion of
lung fibrosis and oxidative stress, providing crucial evidence
for the important function of PM2.5 in lung injury.

Moreover, it has been identified that oxidative stress
plays a crucial role in the modulation of lung fibrosis. Pter-
ostilbene reduces LPS-induced pulmonary fibrosis through
inhibiting apoptosis, inflammation, and oxidative stress
[29]. SIRT3 deficiency contributes to lung fibrosis by induc-
ing mitochondrial DNA damage and apoptosis of alveolar
epithelial cells [30]. GHK-Cu attenuates bleomycin-
induced pulmonary fibrosis by anti-inflammation and anti-
oxidative stress signaling [31]. Diosmin relieves lung fibrosis
by targeting oxidative stress in mice [32]. Meanwhile, the
function of TGF-β in the progression of lung fibrosis has
been reported. It has been reported that curdione attenuates
bleomycin-stimulated lung fibrosis via inhibiting TGF-β-
related fibroblast to myofibroblast differentiation [33].
Biochanin-A suppresses lung fibrosis by repressing the
TGF-β-mediated collagen deposition, myofibroblasts differ-
entiation, and EMT [34]. Paeoniflorin relieves TGF-β-medi-
ated EMT by Smad signaling in lung fibrosis [35]. In the
present study, we found that the TGF-β and Smad3 expres-
sion was enhanced, and TET2 expression was reduced by the
treatment of PM2.5 both in vitro and in vivo. The levels of
ROS were induced by the treatment of PM2.5 in A549 cells
and primary mouse lung epithelial cells. Besides, ROS inhib-
itor NAC reversed PM2.5-regulated ROS in primary mouse
lung epithelial cells. These findings provide crucial evidence
of the crucial function of ROS and TGF-β signaling in
PM2.5-mediated lung fibrosis. Nevertheless, the modulation
of TGF-β by PM2.5 treatment needs further study with cel-
lular experiments. Other potential mechanisms in the regu-
lation of PM2.5-regulated lung tissue ferroptosis should be
further explored.

In conclusion, we discovered that PM2.5 exposure
induced lung injury and fibrosis by regulating oxidative
stress and TGF-β signaling. Our finding provides new
insight into the mechanism by which PM2.5 regulates lung
injury and fibrosis by oxidative stress and TGF-β signaling.
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