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Abstract

PatchMatch is a simple, yet very powerful and successful method for optimizing

continuous labelling problems. The algorithm has two main ingredients: the update of

the solution space by sampling and the use of the spatial neighbourhood to propagate

samples. We show how these ingredients are related to steps in a specific form of belief

propagation in the continuous space, called Particle Belief Propagation (PBP). However,

PBP has thus far been too slow to allow complex state spaces. We show that unifying the

two approaches yields a new algorithm, PMBP, which is more accurate than PatchMatch

and orders of magnitude faster than PBP. To illustrate the benefits of our PMBP method

we have built a new stereo matching algorithm with unary terms which are borrowed

from the recent PatchMatch Stereo work and novel realistic pairwise terms that provide

smoothness. We have experimentally verified that our method is an improvement over

state-of-the-art techniques at sub-pixel accuracy level.

1 Introduction
This paper draws a new connection between two existing algorithms for estimation of cor-

respondence fields between images: Belief Propagation [15, 19] and PatchMatch [1, 2].

Correspondence fields arise in problems such as dense stereo reconstruction, optical flow

estimation, and a variety of computational photography applications such as recoloring, de-

blurring, high dynamic range imaging, and inpainting. By analysing the connection between

the methods, we obtain a new algorithm which has performance superior to both its an-

tecedents, and in the case of stereo matching, represents the current state of the art on the

Middlebury benchmark at sub-pixel accuracy. The first contribution of our work is a detailed

description of PatchMatch and belief propagation in terms that allow the connection between

the two to be clearly described. This analysis is largely self-contained, and comprises the

first major section of the paper. Our second contribution is in the use of this analysis to

define a new algorithm: PatchMatch Belief Propagation (PMBP) which, despite its relative

simplicity, is more accurate than PatchMatch and orders of magnitude faster than PBP.
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Belief propagation (BP) is a venerable approach to the analysis of correspondence prob-

lems. The correspondence field is parametrized by a vector grid {us}
n
s=1, where s indexes

nodes, typically corresponding to image pixels, and us ∈R
d parametrizes the correspondence

vector at node s. We shall consider a special case of BP, viewed as an energy minimization

algorithm where the energy combines unary and pairwise terms

E(u1, . . . ,un) =

n
∑

s=1

ψs(us) +

n
∑

s=1

[

∑

t∈N(s)

ψst (us,ut )

]

, (1)

with N(s) being the set of pairwise neighbours of node s. The unary energy ψs(us), also

called the data term, computes the local evidence for the correspondence us. For example, if

us = (us,vs) is a parametrization of a 2D flow field between images I1 and I2, then one might

define a weighted patch data term (where (xs,ys) are the image coordinates of pixel s)

ψwpf
s (

[

us

vs

]

) =

h
∑

i=−h

h
∑

j=−h

wsi j

∥

∥

∥
I1

(

xs + i, ys + j
)

− I2

(

xs + i + us, ys + j + vs

)

∥

∥

∥
. (2)

Here, the weights wsi j are precomputed based on the intensity values surrounding pixel s,

and the norm ‖ · ‖ represents magnitude of difference in an appropriate colour space. For

stereo correspondence, with us = [∆s] being the single scalar disparity, the equivalent data

term is ψ
wps
s ([∆s]) = ψ

wpf
s ([∆s,0]⊤). The problem with such a data term is that it implic-

itly assumes a constant correspondence field in the (2h + 1)× (2h + 1) patch surrounding

every pixel. For large h, this oversmooths the solution, even with clever choices of wsi j.

The oversmoothing can be addressed by using more complex parametrizations of the field

within the patch (see ψ
pms
s below), but within traditional BP frameworks, this comes at in-

tractable computational cost. Alternatively, h may be reduced, but as h decreases, the data

term becomes increasingly ambiguous. This ambiguity is addressed by the introduction of

pairwise terms, typically encouraging piecewise smoothness of the correspondence field, by

assigning low energy to neighbouring nodes with similar parameter vectors, for example

ψst (us,ut ) := min(τst ,ωst‖us − ut‖
2) for image-derived constants τst ,ωst . It is generally un-

derstood that the presence of such pairwise term makes energy minimization difficult. For

discrete problems, where the u live in a finite set of size D, this is clearly true in prin-

ciple: without pairwise terms, minimization can be computed in O(nD) time, while with

pairwise terms, the worst-case complexity becomes O(Dn). In practice, although BP offers

no strong guarantees, it often finds good minimizers in time far below this worst case predic-

tion. For correspondence problems, however, the u live in an effectively continuous space,

so D must be very large (say 102–105), meaning that even the O(nD) complexity of tabulat-

ing the unary costs is extremely high. Some algorithms have been proposed to address this

complexity [7, 13, 14, 17], and it is on this class of methods that we improve in this paper.

First, however, let us consider another school of related work.

The PatchMatch algorithm [1] was initially introduced as a computationally efficient

way to compute a nearest neighbour field (NNF) between two images. The NNF is then

used for image editing operations such as denoising, inpainting, deblurring, as illustrated in

figure 1. In terms of energy minimization, the NNF is the global minimizer of an energy

comprising unary terms only (ψst = 0). The PatchMatch algorithm computes good minima

while evaluating the unary term many fewer than D times per node. With such a powerful

optimizer, more complex unary terms can be defined, yielding another class of state-of-the-

art correspondence finders, exemplified by the recent introduction of PatchMatch Stereo [3].
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(a) Source (b) Displacem. field (c) Warped target (d) EPE = 4.63×106 (e) PSNR = 37.39

(f) EPE = 0.44×106 (g) PSNR = 38.36
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Figure 1: Example: denoising with a reference image. (a) Source image. (b) Synthetic displace-

ment field u
gt
s := [sinxs,0]⊤. (c) Warped target image with 10% Gaussian noise added. (Note, red

rectangle is a zoom of the top left corner. All images can be found in supplementary material).
Estimated displacement field using PatchMatch (d) and our method (f), with total end-point error

EPE =
∑

s ‖us − u
gt
s ‖

2. Reconstructed target image using PatchMatch (e) and our method (g), with
peak signal-to-noise ratio (PSNR). Our method is considerably better for both error measures. The
difference between (e) and (g) is especially noticeable in the smooth, green background where
PatchMatch suffers from the ambiguous data term. (h,i) Plots error and energy for patchmatch and
our method. It is noticeable that the full energy with pairwise terms is a much better fit for the task,
since in (i) both error measures are well correlated with the regularized energy, in contrast to (h),
where the error curves increase as the PatchMatch iterations decrease the unary-only energy.

There, disparity is overparametrized by a 3-dimensional vector at each node us = [as,bs,cs]
⊤,

parametrizing a planar disparity surface ∆s(x,y) = as(x − xs) + bs(y − ys) + cs, giving a unary

cost whose essential form is:

ψpms
s ([as,bs,cs]

⊤) =

h
∑

i=−h

h
∑

j=−h

wsi j

∥

∥

∥
I1

(

xs + i, ys + j
)

− I2

(

xs + i + (asi + bs j + cs), ys + j
)

∥

∥

∥
. (3)

Without PatchMatch, optimization of an energy containing such a data term, even without

pairwise terms, would be computationally demanding, requiring millions of operations per

pixel. Intriguingly, the key operations to which PatchMatch owes its efficiency are very close

to those used in continuous BP, and in particular to the message-passing that is central to op-

timization in the presence of pairwise terms. Conversely, a key deficiency of PatchMatch is

that it lacks an explicit smoothness control on the output field. Indeed, recent developments

of PatchMatch have noted that PatchMatch “has difficulty finding reliable correspondences

in very large smooth regions” [5]. He et al. [6] require a smooth field when applying Patch-

Match to an alpha matting problem, but impose smoothness as a postprocess, by solving the

matting Laplacian. Boltz et al. [4] achieve smoothness by dividing the images into super-

pixels and running PatchMatch on these, meaning that a failure of superpixelization cannot
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be recovered from. A related deficiency is the tendency of PatchMatch to require a form of

“early stopping”: the global optimum of the unary energy is not necessarily the best solution

in terms of image error, as we show in figure 1(h), and as can be seen in figure 9 of [12].

These difficulties are exacerbated by more powerful PatchMatch algorithms [2, 10] which,

although getting closer to the globally optimal NNF, lose the implicit smoothness that early

stopping provides. We characterize this tradeoff by looking at error versus energy: the cor-

relation between ground-truth errors (e.g. peak signal-to-noise ratio (PSNR) for denoising

problems, end-point error (EPE) for 2D correspondence fields, or disparity error for stereo)

and the values of the energy functions the algorithms implicitly or explicitly minimize.

The contribution of this paper is to define a new family of algorithms, called PatchMatch

Belief Propagation (PMBP), which combine the best features of both existing approaches,

and which includes the existing methods as special cases. We first describe both existing

algorithms using a unified notation, showing the close relations between the two (also il-

lustrated as an “algorithm by numbers” in table 1). We then investigate the combination

in various experimental settings, in order to explore the key terms which contribute to the

combined algorithm’s performance. The paper closes with a discussion of future directions.

Notation To simplify the descriptions below, the following notation will be helpful. De-

fine the application of a function f to a set S by f (S) := { f (s)|s ∈ S}. Define the function

fargminK(S, f ) as the function that returns the K elements of S which minimize f :

fargminK(S, f ) := SK ⊂ S s.t. |SK | = min(K, |S|) and max f (SK)≤min f (S\SK) (4)

1.1 PatchMatch with Particles

In this section we describe Generalized PatchMatch [2] in terms that will allow easy unifica-

tion with standard descriptions of continuous-domain BP. With each node s, we associate a

set of K particles Ps ⊂R
d , where each particle p∈ Ps is a candidate solution for the minimiz-

ing correspondence parameters u∗
s . Initializing these sets uniformly at random gives good

performance, which may be improved slightly by using some more data-driven strategy, as

discussed in §3.1.

One PatchMatch iteration then comprises a linear sweep through all nodes. The order in

which nodes are visited is defined by a schedule function φ(s), so that s is visited before s′ if

φ(s) < φ(s′). We also define the predecessor set Φs = {s′|φ(s′) < φ(s)}. On odd-numbered

iterations, the typical choice of scheduling function φ(·) defines a top-left to bottom-right

ordering, while even-numbered iterations reverse the ordering, from bottom-right to top-left.

If iter is an iteration counter, we write φiter(·) to select the appropriate schedule. At node s,

two update steps are performed: propagation and resampling:

• In the propagation step, the particle set is updated to contain the best K particles from

the union of the current set and the set Cs of already-visited neighbour candidates

Cs =
⋃

{

Pt | t ∈ N(s)∩Φs
}

, (5)

where “best” is defined as minimizing the unary cost ψs(·):

Ps← fargminK(Ps∪Cs,ψs). (6)

• The local resampling step (called “random search” in [2]) perturbs the particles lo-

cally according to a proposal distribution which we model as a GaussianN (0,σ). The
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second step of the PatchMatch iteration updates PS with any improved estimates from

the local resampling set, for m resampling steps:

Rs = {p +N (0,σ) | p ∈ Ps} (7)

Ps← fargminK(Ps∪Rs,ψs). (8)

After several alternating sweeps, the best particle in each set typically represents a good

optimum of the unary-only energy. At first sight, it may appear surprising that such a simple

algorithm can effectively minimize complex energies such as
∑

sψ
pms
s , but as the analysis

in [1] shows, the piecewise smoothness in typical image flow fields1 effectively shares the

optimization burden among neighbouring pixels in the same smooth segment, without any

need to identify those segments in advance.

1.2 Particle Belief Propagation (PBP)

As mentioned above, our view of belief propagation is as a minimizer of the energy (1).

Thus we present a rather spartan description of max-product BP, sufficient to derive our new

algorithm. BP is a message-passing algorithm, where messages are defined as functions

from nodes to their neighbours, so that the message Mt→s(us) represents, in words, “node t’s

opinion of the [negative log of the] likelihood that node s has value us”. Before defining the

messages, which are themselves defined recursively, it is useful to define the log disbelief 2

at node s as

Bs(us) := ψs(us) +

∑

t∈N(s)

Mt→s(us), (9)

in terms of which the messages are defined as

Mt→s(us) := min
ut

ψst (us,ut ) + Bt (ut ) − Ms→t (ut ) (10)

or, in words: “the belief at t, modified by the pairwise term, and neglecting s’s contribution

to t’s belief”. When implemented as an iterative algorithm, messages are updated according

to a schedule, like PatchMatch, and messages on the right-hand side of (10) are those of the

previous iteration, or those computed earlier in the current iteration. Messages are typically

initialized to all-zero. At convergence, ûs := argminu Bs(u) is the estimate of the minimizer.

The key to implementing BP for continuous state variables u is in the representation cho-

sen for the messages and beliefs. Isard et al. [8] propose a solution by discretizing the space

in a way that minimises a Kullback-Leibler (KL) divergence measure. Noorshams et al. [13]

work on large discrete spaces, and use a randomisation step to incrementally and stochas-

tically update partial messages, reducing the complexity from quadratic to linear. Pal et al.

[14] also operate on large discrete spaces, and maintain sparse local marginals by using Kro-

necker delta functions, keeping only labels carrying the highest probability mass. Sudderth

et al. [17] extend particle filters to Loopy BP, and use a regularisation kernel to ensure that

message products are well defined. Particle Convex BP [16] uses a local resampling step like

PBP, but instead of keeping the K best particles per node, or drawing from a distribution, it

1Note that “flow field” is intentionally left imprecise here. The key is that the globally optimum NNF is not

smooth, but the approximate NNF found by PatchMatch tends to be, due to the smoothness of the underlying

real-world physical process which generates the image correspondences.
2This energy-based formulation can be converted to a probabilistic form using the conversions: belief bs(us) :=

exp(−Bs(us)) and message mt→s(us) = exp(−Mt→s(us)).
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Let Ps be the set of particles at node s, and K the desired number of particles.

Let N be the number of iterations, and m the number of randomization iterations.

Let I be the initialization distribution: uniform or local potentials ψ.

PM PBP PMBP Steps

• • • 1 for all nodes s ∈ {1..n}, repeat K times: // initialization

• • • 2 Draw p∼ I, add to Ps

• • • 3 for i = 1 to N: // main loop

• • • 4 for all nodes s ∈ {1..n} orderby φi: // PatchMatch schedule

• • • 5 for all proposal sets Rs in:

• - • 6 Rs =
⋃
{Pt | t ∈ N(s)∩Φi(s)} // resampling using neighbours

• • • 7 Rs = Ps // local resampling

• • • 8 do

• • • 9 for all particles p ∈ Rs:

• • • 10 repeat m times // Possibly different m for each Rs

• • • 11 p′ = p +N (0,σ)

• - - 12 Compute Bs(p′) = ψs(p′)

- • • 13 Compute Bs(p′) = ψs(p′) +

∑
t∈N(s) Mt→s(p′)

• - • 14 Ps = fargminK(Ps∪{p′},Bs) // Update best K in Ps.

- • - 15 if Bs(p′) < Bs(p) − log(rand): p← p′ // MCMC sampling

- • - 16 Replace p with p′ in Ps // Only after MCMC

• • • 17 for all nodes s ∈ 1..n: // read out the final solution

• - - 18 return fargmin(Ps,Bs) where Bs(p) = ψs(p)

- • • 19 return fargmin(Ps,Bs) where Bs(p) = ψs(p) +

∑
t∈N(s) Mt→s(p)

Table 1: Pseudo-code for different algorithms. PM is PatchMatch; PBP is Max Product Particle
BP; PMBP is PatchMatch BP. Note that whenever Bs is computed, for PBP and PMBP, we have to
also recompute the minimizations in the messages Mt→s.

keeps the one particle which optimizes a discrete MRF with K candidate particles per node.

Very recently, Yamaguchi et al. [18] apply it to dense stereo estimation, combining the plane

parameterization from (3) with a discrete line process. However, to allow tractable inference,

they use a superpixelization into 1200 regions, meaning the results are strongly dependent

on an accurate segmentation.

In our case, a natural representation already presents itself, closely related to the Max

Product Particle BP of Kothapa et al. [11], based in turn on [7]. For brevity, we refer to [11]

as “PBP”. As above, we associate with each node s a particle set Ps. Then all messages and

beliefs evaluated at any node η are in terms of the particles Pη , so the message definition

becomes

Mt→s(us) := min
ut∈Pt

ψst (us,ut ) + Bt (ut ) − Ms→t (ut ). (11)

We note that this definition is still in terms of a continuous us, not restricted to the current

particle set Ps, but the continuous minimization over ut in (10) is replaced by a discrete

minimization over the particles Pt .

The final step of each iteration at node s is to choose a new set of particles Ps to represent

the belief at s. The ideal set of particles would be a draw (including the mode, as our goal

is to minimize the energy) from the true belief b∗
s (·), which is of course unavailable. As an

alternative, Kothapa et al. [11] propose MCMC sampling from the current belief estimate

with a Gaussian proposal distribution. We show that other alternatives can be valuable.
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Figure 2: Message calculation. Green bars

represent the set of particles at s, Ps =

(s1,s2,s3) and the red bars represent Pt =

(t1, t2, t3). In PBP [7, 11], the continuous

message m∗
t→sus is evaluated only at particles

in Ps, and minimized only over Pt , evaluated

at the yellow dots. When Ps and Pt differ,

much of the message may be uninformative

(represented by the green particles mPs
t→s).

If the pairwise potential favours smoothness,

including particles from Pt increases the like-

lihood that high probability parts of the mes-

sage are included.

2 PatchMatch Belief Propagation

We are now in a position to make the second of our contributions, combining the PatchMatch

and PBP algorithms. We shall consider PBP our base, as the goal is to minimize a more

realistic energy than PatchMatch, that is to say, an energy with pairwise terms encouraging

piecewise smoothness. Referring to table 1, two key differences between PM and PBP are

evident.

First, PM resamples Ps from the neighbours of node s, while PBP’s resampling is only via

MCMC from the elements of Ps. As illustrated in figure 2, this may be viewed as sampling

from the continuous incoming messages at s, with the property that important modes of the

belief may be uncovered, even when Ps lacks particles at those modes. It should be clarified

that the samples are evaluated using Bs, so this is a resampling of the particle set under the

current belief, as proposed in PBP, but with a quite different source of particle proposals.

Thus PMBP augments PBP with samples from the neighbours (or, as argued in Figure 2,

samples from the incoming messages). This can also viewed as a return to the sampling

strategies of Nonparametric BP [17], but with a much simpler message representation. One

way to look at this contribution is simply to say we are running some form of NBP but with

algorithm settings (number of particles, number of samples) that would never make sense

for NBP, and that this in itself is a useful contribution. Note that taking directly particles

from the neighbouring node only works because our pairwise term is a smoothing term, i.e.

has the lowest value when both entries are the same. Hence for arbitrary pairwise terms this

strategy has to be modified.

Second, PBP uses an MCMC framework where particles are replaced in Ps with proba-

bility given by the Metropolis acceptance ratio, while PatchMatch accepts only particles with

higher belief than those already in Ps. We have found that this non-Metropolis replacement

strategy further accelerates convergence, so it is included in PMBP.

Making these two modifications yields “PatchMatch BP”, a powerful new optimization

algorithm for energies with pairwise smoothness terms. In the case of a zero pairwise term

ψst = 0, PMBP exactly yields Generalized PatchMatch. Conversely, running PMBP with a

nonzero pairwise term is a strict generalization of GPM, allowing the incorporation of an

explicit smoothness control which directly addresses the deficiencies of PatchMatch while

retaining its speed.

Note that we can also use any external information to get reasonable candidate particles,

such as matching nodes between image pairs in the stereo matching case, similarly to [3].
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3 Experiments
Experiments were performed to quantify the effects of the various algorithm components, as

well as real-world performance on a stereo benchmark.

3.1 Initialization

As mentioned above, there are two ways of initializing the particles: using a uniform distri-

bution, or using the local potentials, as suggested in [7]. However, sampling from the local

potentials is not an easy task, as they are defined on a continuous, high dimensional space.

The original PatchMatch agorithm, optimizing only the unary energy, can be used to find an

approximation of these local potentials. A benchmark can be seen in figure 3, which shows

that PMBP outperforms PBP, with both types of initializations, and that convergence is or-

ders of magnitude faster. Furthermore, we
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Figure 3: Comparison of the energies produced
by the different algorithms on a denoising exper-
iment. Notice that PBP cannot reach the energy
of PMBP even if allowed four orders of magni-
tude longer, supporting our claim that previous
BP implementations were intractable.

show that resampling using the neighbours

is the key step of our algorithm. To do so,

we run PMBP with MCMC instead of using

the PM randomisation mechanism, which

in effect replicates PBP, the only difference

now being the use of the neighbours for re-

sampling, and we see that although much

slower than PMBP, it converges to the same

energy.

3.2 Stereo

In the following we demonstrate the bene-

fits of introducing smoothness for the stereo

matching case, and by doing so we are able

to achieve state-of-the art results.

For the data term we use the same en-

ergy as in PatchMatch Stereo [3]. The

weight wsi j is defined as

wsi j = exp(− ‖ I(xs,ys) − I(xs + i,ys + j) ‖ /ω). (12)

In this equation ω is a user-defined parameter and ‖ Is − It ‖ is the L1 distance between s and

t in RGB space. The image difference is adapted to include an image gradient term, so that

‖I1(x,y) − I2(x′,y′)‖ in (3) is replaced by

(1 −α)min(‖I1(x,y) − I2(x′,y′)‖, τcol) +αmin(‖∇I1(x,y) −∇I2(x′,y′)‖, τgrad) (13)

where ‖∇I −∇I′‖ is the L1-distance between the grey-level gradient, and α is a parameter

controlling the influence of the colour and the gradient terms. τcol and τgrad are the truncated

costs used to add robustness.

The pairwise term captures the deviation between the two local planes in (x,y,disparity)

space. Let the plane normal at node s be ns = orth([as,bs,−1]⊤), where orth(v) := v/‖v‖, and

let xs = [xs,ys,cs]
⊤ be a point on the plane. Then the pairwise energy is given by

ψst (us,ut ) = βwst

(

|ns · (xt − xs)|+ |nt · (xs − xt )|
)

. (14)

The data-dependent term wst is defined as in eqn. (12) with i = xt − xs and j = yt − ys. The

weight β is a constant weighting of the pairwise term with respect to the unary term. Note,
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Tsukuba Venus Teddy Cones

nocc all disc nocc all disc nocc all disc nocc all disc

PM Stereo 15.0 45 15.4 44 20.3 56 1.00 6 1.34 6 7.75 9 5.66 2 11.8 2 16.5 2 3.80 2 10.2 2 10.2 2

Ours 11.9 27 12.3 24 17.8 29 0.85 5 1.10 3 6.45 6 5.60 1 12.0 3 15.5 1 3.48 1 8.88 1 9.41 1

Table 2: Results on the Middlebury dataset with subpixel threshold (t=0.5). Bold entries indicates
where our algorithm is ranked first. Our method has the first rank, with an average rank of 8.5, in
contrast to 14.9 for PatchMatch Stereo.

for β = 0 we obtain PatchMatch Stereo.

The energy ψpms is augmented to symmetrize left and right views, and we label the left

and right images in two consecutive steps. To be precise, the main loop at line 3 in table 1 is

first executed for the left view and then for the right view. Furthermore, as in the PatchMatch

Stereo algorithm, we have implemented the concept of “view propagation”. The idea is that

a good particle for a pixel s in the left view, may be in the particle set Pt of the corresponding

(warped) pixel t in the right view, and vice versa. In terms of code, lines 5 − 8 in table 1

are duplicated, with the change that in line 5, the neighbourhood N(s) is t = (xs + cs,ys).

Finally, after optimizing the energy, there is a post-processing which is the same left-right

consistency check as in [3] in order to fill-in occluded pixels.

We use the same parameters as [3], which are {ω,α,τcol , τgrad} = {10,0.9,10,2}, with a

larger patch size of 40x40 pixels. The weighting of the pairwise terms is set to β = 7.5.

We tested our algorithm on stereo pairs of the Middlebury dataset. We run our PMBP on

the full energy and compare it to PatchMatch Stereo with no smoothness cost, i.e. β = 0. In

both cases we use the same number of particles K = 5. The results are summarized in table 2

and figure 4. We observe that we are superior to PM Stereo in all cases. For the sub-pixel

accuracy level, we are overall Rank 1 of all methods. Note that we perform particularly well

on the challenging datasets “Teddy” and “Cones”.

Figure 5 illustrates again the importance of the smoothness term. As expected, Patch-

Match stereo struggles in areas of low textures (e.g. middle of the bowling ball (top row),

and white pages of the book (bottom row)). By increasing the weight β of the pairwise term,

the output becomes increasingly smoother. Naturally, overshooting occurs after a certain a

point, which can be seen in figure 5 for large values of β. Please refer to the supplementary

material for further results. There we also demonstrate the positive effect of using a large

number of particles.

A comment on the perfomance, PMBP has a 20% overhead compared to PM, due to the

message computations being more expensive.

4 Conclusion
In this work we have made the link between the popular PatchMatch method and the very

well-known Belief propagation algorithm. By doing so, we were able to extend the Patch-

Match algorithm by introducing additional pairwise terms. We validated experimentally that

we achieve state-of-the art results for stereo matching at sub-pixel accuracy level.

There are many exciting avenues for future work, both in terms of applications, such as

optical flow, as well as algorithms, such as different forms of message passing e.g. Tree-

reweighted message passing [9].

Acknowledgements We thank Christoph Rhemann and Michael Bleyer for their help with

the PatchMatch Stereo code and also for fruitful discussions.
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Figure 4: Qualitative results of PMBP on the Middlebury dataset.
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Figure 5: Evolution of the disparity map (before post-processing) with different weightings of the
smoothness: (a) β = 0 (PatchMatch stereo). (b) β = 5. (c) β = 17.5. (d) Corresponding disparity
error, for both raw and post-processed outputs. See supplementary material for the input images.
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