
 

 

 
Abstract 

 
In this paper, a novel haze removal algorithm based on a 

new feature called the patch map is proposed. 

Conventional patch-based haze removal algorithms (e.g. 

the dark channel prior) usually performs dehazing with a 

fixed patch size. However, it may lead to several problems 

such as oversaturation and color distortion. Therefore, in 

this paper, we designed an adaptive and automatic patch 

size selection model called the Patch Map Selection 

Network (PMS-Net) to select the patch size corresponding 

to each pixel. This network is designed based on the 

convolutional neural network (CNN), which can generate 

the patch map from the input image. Experimental results 

on both synthesized and real-world hazy images show that, 

with the combination of the proposed PMS-Net, the 

performance in haze removal is much better than that of 

state-of-the-art algorithms and we can address the 

problems caused by the fixed patch size. 

 

1. Introduction 
Haze is an atmospheric phenomenon which compose of 

smoke, dust and other floating particles. They may degrade 
the visibility and lead to the poor performance of image 
processing such as object detection and classification. 
Narasimhan et al. [1] modeled the hazy scene as: 

      ( ) 1I x J x t x A t x                   (1) 
where J(x) is the haze-free image, I(x) is the observed hazy 
image, A is the global atmospheric light which indicates the 
luminance of the light source from infinite distance away, 
and t(x) is the transmission map which can be denoted as 
t(x)=e-βd(x), where β is the scattering coefficient and d(x) is 
the path length. We can rewrite (1) as: 

                             ( )
( )

I x A
J x A

t x


  .                            (2) 

Then, one can notice that, to get better recovered results in 
haze removal, the critical parameters are t(x) and A. 
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           SSIM: 0.769                    SSIM: 0.592                 SSIM = 0.9       

 
                                   (f)                          (g) PSNR:28.74  
                                                                      SSIM: 0.947          
Figure 1: Dehazing results of the proposed patch map compare to 
the method with fixed patch size. (a) Input image; (b) the ground 
truth; (c)-(e) recovered by the fixed patch sizes of 1, 120, 15; (f) 
the patch map determined by the proposed algorithm; (g) 
recovered image by the patch map.  
 

There have been many algorithms [2-22] addressing the 
image dehazing problem. Tarel et al. [2] applied the special 
bilateral filter to investigate the atmospheric veil. He et al. 
[4] proposed the dark channel prior (DCP) based on the 
statistical results of natural haze-free images to compute the 
transmission map. In [14], Tang et al. applied machine 
learning techniques to predict the transmission map. In 
recent years, several deep-learning based dehazing 
methods [15-22], including the DehazeNet [15], the 
multi-scale CNN (MSCNN) [16], the residue learning 
technique [18], the quad-tree CNN [19], and the densely 
connected pyramid dehazing network [21], were proposed 
for haze removal. For haze removal in the night time case, 
various algorithms [23-27] were proposed to solve this 
problem. 

Although there have been many dehazing algorithms, 
there are still several limitations that constrain the 
performance of recovered results. Traditional algorithms  
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Figure 2: Comparing the performance with state-of-the-art 
algorithms by using the patch map based DCP. 
 
are usually based on the prior related to human perception. 
However, these priors may be invalid in some scenarios. 
For example, the DCP may have limited performance in 
sky regions or white scenarios because the transmission 
map cannot be well predicted in these cases. On the other 
hand, for the learning-based methods, without using 
human- selected features, the transmission map may not be 
predicted accurately in general since they may bound the 
mapping space with less haze-relevant features. 
 In this paper, inspired by the DCP, we proposed a novel 
algorithm based on the new feature called the patch map, 
which can select the patch size adaptively for each pixel. In 
the traditional DCP algorithm, a fixed patch size is applied 
to estimate the atmospheric light and the transmission map. 
However, from Fig. 1, one can see that when we perform 
the DCP with the fixed-size patch (in this figure, we use 1, 
15, and 120) to recover the hazy scene, the performance is 
limited. However, when we apply the patch map to estimate 
the dark channel with the adaptive patch size, the 
performance of the DCP can be effectively enhanced. In 
Fig. 2, we use the SOTS dataset in [30] to compare the 
performance of the patch map-based DCP with other 
algorithms. From Fig. 2, one can see that the performance 
of the traditional DCP with the fixed patch size is not better 
than that of other state of the art algorithms. Nevertheless, 
when we applied the patch map to choose the patch size in 
each pixel, the performance become the best among all 

algorithms. From this analysis, we can conclude that, with 
the use of the proposed patch map, the performance of the 
DCP can be effectively improved.  

Therefore, in this article, first, we analyze the reasons 
why the DCP is invalid in the certain scenarios and why 
using a fixed patch size will lead to the bad performance. 
Second, we define a new feature named the patch map to 
address this problem. Third, we proposed the patch map 
selection network (PMS-Net) to generate the patch map. In 
order to enhance the performance of this network, the 
Multiscale U-module with pyramid style is proposed. Then, 
with the patch map, the more precise atmospheric light and 
the transmission map can be predicted. With the proposed 
architecture, the problems of the traditional DCP can be 
avoided (e.g. the error recovery in white or bright scenes) 
and the quality of the recovered images is higher than that 
of other algorithms. Last, we analyze the properties of the 
patch map and conclude the rule of selecting the patch size 
in the DCP. To the best of our knowledge, this is the first 
work to perform the CNNs for patch map generation to 
remove haze. Simulations show that, compared to other 
existing algorithms, the proposed method has the best 
performance in both the synthetic dataset and the real world 
images.  

This article is organized as follows. In Section 2, we will 
review several related works. In Section 3, the detailed 
procedure of our proposed algorithm will be demonstrated. 
In Section 4, the experimental results compared to other 
state of the art haze removal algorithms are provided. In 
Section 5, a conclusion is given. 

2. Related Works 

2.1. Dark Channel Prior 
From statistical analysis, He et al. [4] found that the dark 

channels of natural haze-free images are close to zero: 

    , ,
( ) min min ( ) 0.k

Dark
k r g b y x

J x J x
 

             (3) 

where Jk(x) is one of the color channel in the haze-free 
image and Ω(x) is a local patch centered at x. We call (3) the 
dark channel prior (DCP). According to the DCP, we can 
reformulate (1) as: 

   ( ) , , ( ) , ,

( ) ( )min min min min ( ) 1 ( )
k k

k ky x k r g b y x k r g b

I y J y
t x t x

A A   

   
     

   
 

                                 1 ( ).t x                                         (4) 
Then, we can estimate the transmission map from: 

                     
   

 
, ,

1 min min
k

ky x k r g b

I y
t x

A


 

 
    

 
               (5) 

where ω is a constant. With the estimation of the 
transmission map, the haze-free results can be recovered.

11682



 

 

 
Figure 3: The flowchart of the proposed haze removal algorithm. 

 
Although this method is powerful, it may be invalid in 

some scenarios, which lead to some problems such as 
oversaturation and underestimation of the transmission 
maps. From our analysis, the patch size selection for each 
hazy pixel may affect the recovered result a lot. Thus, 
instead of using a fixed patch size, we propose a network to 
learn the proper patch size automatically and adaptively for 
each hazy pixel. 

2.2. Traditional Algorithms for Haze Removal 
In addition to the DCP method [4], Tarel et al. [2] 

applied the bilateral filter and white balanced technique and 
Tan et al. [3] adopted the Markov random field to cope with 
the haze problem. Fattal et al. [5, 6] estimated the albedo of 
the scene and used the color-line concept to recover hazy 
images. Ancuti et al. [7-9] used the semi-inverse image 
method and the fusion method to perform dehazing. Zhu et 

al. [10] proposed a color attenuation prior based dehazing 
method. Meng et al. [11] applied the boundary constraint 
derived from the haze model and Berman et al. [12] 
proposed a non-local image dehazing method. Chen et al. 
[13] proposed the Gradient Residual Minimization (GRM) 
recover the hazy scene and minimize the visual artifacts. 

2.3. Learning-Based Haze Removal 
Recently, many haze and smoke removal algorithms 

based on learning techniques have been proposed. Tang et 

al. [14] used the random forest regression [29] to predict 
the transmission map by extracting several haze-relevant 
features (e.g. the dark channel, saturation, contrast, and the 
hue disparity). They found that the dark channel is the most 
dominant feature while predicting the transmission map.  

For deep learning based methods, Cai et al. [15] built an 
end to end CNN-based haze removal system, which is 
called the DehazeNet to predict the transmission map of 
hazy images. Ren et al. [16] developed the multi-scale 
CNN (MSCNN) composed of the coarse-scale and the 
fine-scale networks. Moreover, instead of computing the 

transmission map and the atmospheric light value 
separately, Li et al. [17] combined these two variables. 
Yang et al. [20] proposed the proximal dehaze-net, which 
combined the haze model, the dark channel, and the 
transmission prior by using the energy function. Zhang et al. 
[21] developed the densely connected pyramid dehazing 
Network (DCPDN) to evaluate the transmission map, the 
atmospheric light, and the dehazed image jointly. For 
smoke removal, Chen et al. [28] proposed a novel model 
based on the random forest regression [29] and 
channel-based smoke removal. 

3. Proposed Method 
In this section, we illustrate the details of the proposed 

dehazing algorithm and the flow chart is shown in Fig. 3. 

3.1. Wrong Recovery in the Dark Channel Prior 
Although the conventional DCP is powerful and can deal 

with the hazy scenario effectively, it usually leads to some 
problems, including the oversaturation problem and the 
color distortion in white scenes or ordinary scenes. (see Fig. 
8) The reasons causing these problems are as follows. In 
the original assumption, the minimum of three color 
channels in the local patch is close to zero for haze-free 
images. Then, with this prior, (4) can be reduced to (6).  

          
   

 
, ,

1 min min
k

ky x k r g b

I y
t x

A 

 
    

 
.       (6) 

However, this reduction is the main reason causing the 
problems mentioned above since conventionally one 
usually set a fixed patch size. If a small or a medium patch 
size such as 5 or 15 is chosen, the value of the dark channel 
may not always be zero, especially for the regions with 
larger intensity (see the examples in Fig. 6). 

Eq. (6) is derived based on the assumption that the dark 
channel is near to zero. If the patch size is small, the 
assumption will fail and (6) may be invalid. In this case, 
instead of (6), the transmission map t(x) is formulated as
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Figure 4: The overview of our proposed PMS-Net. 
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Figure 5: The structure of the proposed Multi-W-ResBlock and the Multi-Deconv block. 

 

 
Figure 6: White scenes may have the dark channel far from zero. 
(1st column is the input; 2nd and 3rd is the dark channel estimated 
by the patch size 15 and 120). 
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.                           (7) 

However, since Jk(y) is usually unable to know, the 
transmission map cannot be determined from (7). Note that 
t(x) determined from (6) will be smaller than that 
determined from (7) since the denominator in (7) is less 
than 1. Therefore, using (6) may underestimate the 
transmission map if the patch is fixed to a small size, 
especially for the regions with white and bright color.  

By contrast, if the patch size is fixed to a large size, 
although the dark channel is usually near to zero, the halo 
artifacts [4] is caused and the computation is increased. As  
a result, selecting the patch size adaptively for each pixel is 
crucial to get high quality recovered results.  

Therefore, we propose the Patch Map Selection Network 
(PMS-Net) to select the patch size adaptively. Its 
architecture is shown as in Fig. 4. 
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Figure 7: The patch map generated by the method in sub-section 
3.2. (The upper row: input hazy images; The lower row:  
corresponding patch maps) 

3.2. Patch Map Generator 
To train the PMS-Net, we need to generate the patch map 

from the training data. Thus, we propose the patch map 
generator (PMG). 

The design of the PMG is that, initially, we apply (8) and 
(9) to recover the image with different patch sizes.  

 ( ) , ,

( )( ) 1 min min
( )i

k

i ky x k r g b
i

I y
t x

A y


 

 
   

 
, 1,...,i n         (8)  

  ( )
( )

k

ki

i i

i

I x A
J x A

t x


  , { , , }k r g b 1,...,i n       (9) 

where I(x) is the input, ti(x), Ji(x), Ai
k(x) are the transmission 

maps, the haze-free images and the atmospheric light 
values with different patch sizes i, respectively. Then, we 
calculate the error function between the recovered results 
and the ground truth by:  

            ( ) ( ) ( )i gth iE x J x J x  , 1,...,i n                  (10) 

where Ei(x) is the error function of the recovered result with 
patch size i and Jgth(x) is the ground truth. We determine the 
error functions for different patch sizes i and find the patch 
size with the lowest error function for each pixel and assign 
it as the patch map value of the pixel:  

( )PMG x k , k  .s t   ( ) min ( )k iE x E x , 1,...,i n     
(11) 

where PMG(x) is the patch map and k is the patch size that 
can minimize the error function at the location x. In this 
case, we set the n as 120. With this operation, we can 
produce the patch map for all images and use them for the 
training procedure. 
 The examples of patch map are shown in Fig. 7. One can 
see that, in the white, gray, bright, and sky region, the patch 
size prefers to be higher in order to fit the dark channel 
prior. (see the sky and white region) Otherwise, in the other 
dark region, the patch size is preferred to be small. 
 

3.3. Patch Map Selection Net 
The structure of the proposed PMS-Net is shown in Fig. 

4. It can be divided into the encoder part and the decoder 
part. Originally, the input hazy image will be projected to 
the higher dimension space by convolving a 3×3 kernel 
with 16 filters. Then, the proposed Multiscale U-module is 
applied to extract the features from this higher dimension 
data. 

The design of the multiscale U-module is shown in Fig. 4. 
The input will pass several Multiscale–W-ResBlocks 
(MSWR) which are shown in the left side of Fig. 5. For the 
design of the MSWR, inspired by the Wide-ResNet (WRN) 
[31], which improves the ResNet [32] by increasing the 
width and decrease the depth of the network, we apply the 
WRN in our network. In each block, we perform the 
Conv-BN-ReLu-Dropout-Conv-BN-ReLu with a shortcut to 
extract the information. Moreover, the design of the 
multi-scale concept in the MSWR is inspired by 
Inception-ResNet [42] and [9, 14, 15, 16, 17, 21] which 
adopted the multi-level technique to enhance the variety of 
the information and extract the detailed information. By 
this operation, the network can find the transmission map 
or the haze-free image more effectively. Although in this 
network, the output is different from previous works, we 
still apply this technique because we believed that the patch 
map is the haze-related feature.  

Besides, instead of using the same architecture of the 
MSWR, the pyramid style is performed in order to extract 
the information in different level. More specifically, for the 
first block, we connect three convolutional kernels with 
various sizes (5×5, 3×3, 1×1) because we need to preserve 
more information in different scale in the higher layer. For 
the second and the third blocks, the convolutional kernels 
with (3×3, 1×1) and (1×1) are adopted respectively. By this 
operation, the use of parameters can be reduced as well.  

For the other part in the Multiscale U-module, we use the 
Multi-Deconv module to concatenate the information with 
the output of the MSWR instead of the traditional 
deconvolution, since the deconvolution layer can help the 
network to reconstruct shape information of the input data 
[33]. Therefore, with the combination of the multiscale 
deconvolution, we can reconstruct more precise feature 
maps from the previous layers. In addition, in the design of 
the Multi-Deconv, we also performed the pyramid style to 
up-scale the information to concatenate with MSWR. The 
reason is the same as the design of the MSWR. That is, the 
feature maps in the different levels should be deconvolved 
with various scale (see the right side in Fig. 5) 

To preserve the high resolution features, the outputs of 
the MSWR and the Multi-Deconv module are concatenated 
directly. Then, the feature maps will be fed into the 
Multi-Deconv in the higher layers and the decoder. For the 
design of the decoder, we adopt the global 
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Table 1: Qualitative analysis on the Test A dataset. 
 CAP 

[10] 
MSCNN 

[16] 
AOD-Net 

[17] 
NL 
[12] 

FVR 
[2] 

GRM 
[13] 

Meng 
[11] 

DEFADE 
[39-41] 

DCP 
[4] 

Ours 

MSE 0.0509 0.0627 0.0703 0.0526 0.0441 0.0398 0.0246 0.0604 0.0249 0.0139 
SSIM 0.6906 0.7028 0.7115 0.6635 0.6915 0.7863 0.7749 0.6435 0.8234 0.8684 
PSNR 13.735 12.7597 12.396 13.3394 14.24 14.862 16.4119 12.7167 16.553 19.2121 

CIEDE2000 13.331 15.8265 16.063 15.3333 15.045 11.381 10.1913 16.4385 8.9547 6.0652 
 

Table 2: Qualitative analysis on the Test B dataset. 
 CAP 

[10] 
MSCNN 

[16] 
AOD-Net 

[17] 
NL 
[12] 

FVR 
[2] 

GRM 
[13] 

Meng 
[11] 

DEFADE 
[39-41] 

DCP 
[4] 

Ours 

MSE 0.0363 0.02083 0.0264 0.02833 0.0283 0.0315 0.0342 0.03693 0.0307 0.0139 
SSIM 0.6838 0.85407 0.8644 0.74903 0.7944 0.8088 0.7859 0.7428 0.8131 0.8775 
PSNR 14.973 18.3836 17.244 16.8172 15.999 16.293 15.564 15.7237 16.568 20.152 

CIEDE2000 13.275 9.04877 10.282 11.8897 12.402 11.822 12.7754 13.949 11.351 7.2965 
 
Table 3: Quantitative MSE evaluation for ablation study on the 

set of Test A+B 
 Module A Module B Module C 

MSE 0.04415 0.0398 0.03635 
 
convolutional network modules (GCN) [34]. The boundary 
refinement module (BR) [34] is also applied to preserve the 
edge information. For the up-scale layer, the up-sampling 
operation is adopted. Furthermore, the densely connected 
style [35, 36] is applied to merge the high-resolution and 
the low-resolution information. With the proposed 
PMS-Net, the patch map can be predicted well. 

4. Experimental Results 
In this section, we will demonstrate the performance of 

our proposed haze removal algorithm. We will adopt two 
different state-of-the-art synthetic haze datasets and one 
real world hazy image dataset to compare the performance.  

4.1 Datasets and the Training Implementation 
In this work, we adopt the NYU-depth2 dataset [37] and 

the RESIDE dataset [30]. In the training procedure, we use 
2192 images in total which consists of 1200 images from 
the NYU-depth2 dataset, 492 images from the RESIDE 
dataset, and 500 synthesized images as our training data. In 
the training model, the learning rate is e-4 and the Adam 
optimizer [38] is adopted. The batch size is set to 4 and the 
loss function is the mean square error (MSE). In each epoch, 
we adopt early stopping and use the 10 % of the original 
data as the validation set. Similar to other works of 
dehazing, for the test dataset, we use the remained images 
in these datasets as the test set. We ensure that none of these 
test images was used in the training process. We take 150 
images from the NYU-depth2 dataset and apply 
synthesized haze on these images as Test A. Then, we take 
200 outdoor images and 100 indoor images from RESIDE 
dataset and NYU-depth2 dataset as Test B.   

4.2 Qualitative Comparison on Synthetic Data 
We apply four assessment metrics: the mean square error 

(MSE), the structural similarity (SSIM), the peak-to-peak 
signal to noise ratio (PSNR), and the CIEDE2000 color 
difference. Then, we perform nine existing dehazing 
algorithms which are the DCP [4] (CVPR’ 09), the CAP 
[10] (TIP’ 15), the MSCNN [16] (ECCV’ 16), the NL [12] 
(CVPR’ 16), the Meng [11] (ICCV, 13), the FVR [2] 
(CVPR’ 09), the GRM [13] (ECCV’ 16), the DEFADE 
[39-41] (TIP’ 15), and the AOD-Net [17] (ICCV’ 17). 

The comparison results are shown in Table 1 and Table 2. 
One can find that our proposed method has the best 
performance in haze removal in all metrics comparing to 
other methods in both two test datasets. Note that the 
proposed method has high fidelity for color preservation 
since it has much lower values of the CIEDE2000 color 
difference than other methods. Furthermore, comparing to 
the conventional DCP, with the fixed patch size, the 
performance of proposed method is much better (the MSE 
is 49% less, the SSIM is increased by 6%, the PSNR is 
19% higher, and the CIEDE2000 color difference is 34% 
less). Thus, our proposed method can enhance the 
performance of the conventional DCP effectively. 

4.3 Dehazed Results in Real World Images  
We demonstrate the improvement of the proposed 

method by comparing the recovered images with other 
methods visually in Fig. 8. We adopt the images which 
were also used as the test data in previous works.  

From Fig. 8, one can see that our proposed method can 
well remove the haze from images without hurting the 
image quality (see the 1st (waterfall), 3rd (mountain), 5th 
(stadium), 6th (girls)). Moreover, with the proposed method, 
the color shift problem and the oversaturation problem can 
be well avoided. Especially, one can observe that our 
proposed algorithm can prevent losing the color fidelity in 
the white hazy scenes (see the pictures in the 1st(waterfall),  
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        Input             FVR[2]           CAP[10]         Meng[11]      MSCNN[16]   AOD-Net[17]      DCP[4]             Ours 

Figure 8: Comparison of dehazing results of state-of-the-art methods and our proposed method. 
 
2nd(canyon), 6th (girls), 7th(city), and 8th rows (marble)). 

In Fig. 9, we amplify the scenarios which contain the 
white, bright, and sky scenes. One can see that, when using 
the original DCP with fixed patch size, the color distortion 
is severe (see the red bounding boxes in the 2nd and 4th 
columns). However, with the use of the proposed patch 
map, the color distortion problems in these scenarios can be 
well avoided (see the blue bounding boxes in the 3rd and 4th 
columns). One can notice that the image presented in the 3th 
row is the picture which is used to demonstrate the 
limitation of the DCP in [4]. The reasons why our proposed 
method can solve the color distortion problem is that the 
PMS-Net can select the proper patch size for each pixel in 
the haze removal process. More specifically, in white or 

bright part, the patch map will be bigger in order to make 
the dark channel be near to zero (see the pictures in 5th 
column). 

With this mechanism, the transmission map in the white 
and bright scenes may be higher comparing to original 
DCP method since the estimation of the transmission map 
in (5) can be applied without the error caused from the 
nonzero value of the dark channel.  

4.4. Ablation Study 
In this subsection, to demonstrate the improvement of 

using the proposed Multiscale U-module with the pyramid 
style in our PMS-Net, we perform the ablation study. This  
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Figure 9: The comparison of the recovered results in white and bright scenes. (1st column): the input image; (2nd column): the recovered 
results by the conventional fixed patch size DCP; (3rd column): the recovered results by our proposed method; (4th column): the 
amplification of the white or bright portion in the 2nd and the 3rd columns; (5th column): the patch map; (6th and 7th columns): the 
transmission maps estimated by the DCP and our proposed method, respectively.  
 
experiment includes five modules: 1) The PMS-Net 
without the Multiscale U-module and the pyramid style 
(Module A); 2) The PMS-Net with Multiscale U-module 
but without pyramid style (Module B); 3) The proposed 
algorithm using the Multiscale U-module with the pyramid 
style (Module C). We combine both Test A and Test B as 
one dataset in this experiment and apply the MSE for 
evaluation.  

The results are shown in Table 3. The results show that, 
when we apply the multiscale U-module, comparing to 
Module A, the MSE be reduced by 8.7%. Therefore, the 
proposed Multiscale U-module can enhance the accuracy 
of the patch map prediction effectively. Moreover, in our 
proposed Multiscale U-module, we perform the pyramid 
style in our network. One can notice that this architecture 
can not only improve 8.6% accuracy of the network but 
also decrease 30% of the parameters. 

5. Conclusion and Analysis 
In this paper, we demonstrate a novel haze removal 

algorithm by introducing a new feature-patch map. First, 
we investigate the reasons that limit the quality of the 
dehazed images when applying the conventional DCP 
based method. We find that the bad performances in white 
and bright scenes are due to the fixed patch size. Then, we 
notice that, after selecting the patch size properly and 
adaptively for each pixel, the recovered images can have 
outstanding performance comparing to other methods. 
Therefore, we define the patch map, and design the patch 
map selection network (PMS-Net) to estimate the proper 
patch size. In the design of the PMS-Net, we proposed the 
Multiscale U-module architecture, which consists of the 

Multiscale-W-ResBlocks and the Multi-Deconv blocks, to 
improve the performance. Moreover, in the design of the 
Multiscale U-module, we adopt the pyramid style to 
enhance the performance. With the patch map, a more 
accurate transmission map and a high-quality reconstructed 
results can be achieved. Furthermore, the bad performance 
in white and bright scenes can be well addressed by the 
patch map.  

In experimental results, both qualitative evaluations and 
visual results show that our proposed method have better 
performance than existing methods. Moreover, with the 
ablation study, the Multiscale U-module with the pyramid 
style show that it can enhance the performance of the 
PMS-Net effectively. 
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