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ABSTRACT This paper presents a current shaping method for torque ripple and mean air-gap radial force-

shape harmonics reduction, under minimum Joule losses, used for air-born and structure-born vibration

reduction in 3-phase PMSM electric drives. The main source for structure-born noise in electric powertrains

is the torque ripple, while the main source for air-born noise are the radial air-gap forces. The proposed

method uses a Fourier-decomposed LUT model obtained from updating the 2D electromagnetic FE model

using test-bench results. Modal testing is used to update the structural model, and the vibration response

on the machine full RPM range is determined using the vibration-synthesis method. The proposed current

shaping algorithm is deterministic and can be used on any topology of 3-phase PMSMs. The torque and

mean air-gap force harmonics that are intended for reduction can be arbitrary selected and their minimization

can be fully completed if the maximum current and voltage constraint are respected. On the machine under

test, vibration reduction is accomplished, especially for the mechanical orders that interact with the second

mode-shape.

INDEX TERMS Current shaping, MTPA, NVH, optimal control, PMSM, radial force control, torque ripple

control;

I. INTRODUCTION

T
HE rapid advancement in automotive electrification re-

quires higher standards for Noise and Vibration (NVH)

target setting and thus development of new methods for

vibration mitigation. These can be categorized as either early-

design stage methods, where the design space is ample, repre-

sented by machine cross-section optimization [1], [2], or late-

design stage methods where few modifications can be made.

For the latter, NVH improvements can be either achieved

through machine design methods [3], where small modifi-

cation, such as rotor notching are made to the cross-section

in order to shape the air-gap forces, or control methods

where different pulse width modulation (PWM) techniques

are adopted [4] or harmonic current control is performed.

On the current control side, it is possible to group by the

desired minimization target: torque ripple, air-gap forces or

both. Current shaping methods that minimizes the torque

ripple under minimum Joule losses exists [5], while on-

line, model-based torque ripple minimization strategies under

Maximum-Torque-Per-Ampere (MTPA) conditions are also

employed [6], by using genetic algorithms and an analytical

PMSM torque ripple model for finding the optimal magni-

tude and phase for the 6th and 12th dq-current harmonics

that represent the set-points to the Proportional-Resonant

controllers, [7], [8] that can also include machine temperature

variation [9]. In the case of Switched Reluctance Motors

(SRMs) the optimal current commutation control problem is

solved offline via a optimization routine for the switching-on

and switching-off angles [10]. For the air-gap force control,

methods based on an analytical models of the air-gap B-field
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in function of fundamental direct/quadrature (dq) currents

[11] together with FE Finite-Element (FE)-correlated analyt-

ical force models exists [12]. In [13] the authors propose a

method of reducing the vibration response caused by specific

radial force-shapes by using a sensitivity analysis on the 6th

dq-current harmonic in the electromagnetic FE simulation

environment at different speed values. The resulting forces

are exported to the structural-dynamics FE model for vibra-

tion computation. Optimization of different current profiles

having different harmonics for air-gap force reduction is

adopted in [14], while a compensation strategy for radial

and tangential forces based on a measured transfer function

model (harmonic currents/vibration displacement) is used in

[15]. A dynamic programming optimization algorithm that

relies on a saturated and rotor position-dependent FE model

that minimizes the torque and radial force harmonics simul-

taneously by harmonic current injection is adopted in [16],

while a coupled electromagnetic and structural-dynamics

Permanent Magnet Synchronous Machine (PMSM) simula-

tion tool-chain is used to achieved the same desired objective

[17].

This paper proposes a new current shaping method that

calculates optimal current set-points references to reduce the

ripple in the torque and mean air-gap radial force (referred

as DC force-shape further on) and Joule losses simultane-

ously. The DC-force shape harmonics reduction is important

because they interact with the stator breathing mode-shape.

The method works across the whole machine torque-speed

envelope, leading to significant NVH improvements. It is

based on Look-Up Tables (LUTs) obtained either from a

pure electromagnetic FEA (Finite Element Analysis) or test-

correlated FEA. The NVH benefits obtained are important

because both structure-born noise caused by the torque ripple

and air-born noise caused by the air-gap forces are reduced

at the same time. The novelty of the method relies on the

deterministic nature, the flexibility of the desired mitigated

harmonics and on the fact that it can be universally applied

to any PMSM having a 3-phase winding system.

The paper structure follows the diagram in Figure 1.

In Section II the machine under study is presented and

the procedures used to update the electromagnetic model

using back-Electromotive Force (EMF) by changing the

Permanent-Magnet (PM) remanence is discussed. Section III

presents the harmonics LUT-based machine model (after the

updating procedure is applied) that is used in Section IV,

where the proposed current shaping algorithm is discussed.

The effectiveness of the proposed algorithm on the vibra-

tion characteristics is tested numerically using the vibration-

synthesis method [18] presented in Section V, where modal

testing data is used to correlate the structural model material

properties via an optimization routine. Results for the ma-

chine full speed range are presented in Section VI, where

the added vibration improvements are better accounted for

by using the updated structural model.
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FIGURE 1. Current shaping algorithm: design and testing diagram.

II. ELECTROMAGNETIC MODEL CORRELATION USING

TEST RESULTS

A. MACHINE UNDER STUDY

The machine under study is a 12/10 (12 stator teeth and

10 poles) Interior Permanent Magnet Synchronous Machine

(IPMSM) with concentrated winding used in electric power

steering applications with the specifications given in Table 1

and cross-section in Figure 2.

TABLE 1. IPMSM parameters

Rated power 800 W

Base speed 1650 RPM

Maximum speed 4000 RPM

Rated current 110 A (rms)

DC-link voltage 12 V

Minimum air-gap 0.5 mm

Stack length 58 mm

B. ELECTROMAGNETIC FE MODEL CORRELATION

A test-bench consisting of two identical machines coupled

at the shaft (Figure 3(a)) is used to measure back-EMF in

order to fit the results of the 2-Dimensional (2D) FE model.

One parameter is changed in order to match the amplitude of

the measured phase voltage at 1000 rpm. The PM remanent

flux density (Br) for the Neodymium-iron-boron (NdFeB)

magnet material is changed using a correction factor (∆Br)

that accounts for 3-Dimensional (3D) effects, such as PM

overhang, as shown in [19]. The B-H linear curve for the

PM magnetic material is modeled in the second quadrant,

where H ′

c = (−Br + ∆Br)/µ0µrec is the coercive field,

µ0 is the vacuum permeability, µrec is the relative recoil

permeability and B/Br = 1 − H/H ′

c. The slot opening

(Figure 3(b)) material has the same electric steel material
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FIGURE 2. Machine cross-section with flux lines at maximum iq current and

id = 0.

(a) Electric motor test-bench.

(b) 2D electromagnetic (left) and 3D strucural (right) modelling of the slot
openning laminations.

FIGURE 3. PM material model updating using measured back-EMF.

properties as the stator (M800-50A), scaled down with a

factor of 3 on the y-axis of the B-H curve. This accounts

for the stator modular design - separated tooth segment. The

back-EMF result for the correlated model is presented in

Figure 4. The model updating procedure is important because

the accuracy of the proposed algorithm relies on the accuracy

of the electromagnetic model.

III. LOOK-UP TABLE BASED NONLINEAR PMSM MODEL

In order to simulate system-level behavior of PMSMs, high-

fidelity reduced-order models [20] are needed that include

saturation, cross-saturation and slotting effect. A series of

magnetostatic FEA that sweep through the current (idq) and

rotor position (θm) range are performed and the resulting

electromagnetic torque (Tem), flux-linkages (λdq) and air-

gap forces (Frad/tan) are post-processeed and stored in LUTs

as shown in [21].

50 100 150 200 250 300 350
rotor position - elec. [deg.]

-5

0

5

lin
e 

ba
ck

-E
M

F 
[V

] correlated FE
measured

FIGURE 4. Back-EMF comparison between measured and correlated FE

model at 1000 RPM.

For a 3-phase machine without homopolar current, the

LUTs are either 3D with dq current and rotor position depen-

dency (id, iq, θe), in the case of the electromagnetic torque

and flux-linkages or 4-Dimensional (4D) - adding the air-gap

position dependency (id, iq, θe, α) in the case of the air-gap

force, where α represents the position along the air-gap.

A. FOURIER-DECOMPOSED PMSM NONLINEAR

MODEL

In order to get a better understanding of the harmonic content

and reduce the size of the model, a further dimensionality

reduction is applied. Specifically, the time dependency in

the case of torque and air-gap force is eliminated from the

LUT together with α (in the case of the force). This can be

achieved by decomposing the variables stored in the LUTs

into Fourier series using the cosine and sine coefficients. The

variables of interest for the current shaping calculation are

the electromagnetic torque (Eq. 1) - decomposed into time

harmonics and the air-gap force (Eq. 2) - decomposed into

space and time harmonics using the 2D Fourier transform:

Tsup(t) =
N
∑

n=0

Tn(t) = T0(t)+

N
∑

n=1

(Tcos,n · cos(nt) + Tsin,n · sin(nt)) and

(1)

Fsup(t, α) =

M
∑

m=0

Fm(t, α) = FDC(t)+

M
∑

m=1

(Fcos,n(t) · cos(mα) + Fsin,n(t) · sin(mα)),

(2)

where Tsup is the superposed torque waveform that in-

cludes all time-dependent harmonic amplitude factors (T0,

Tsin,n, Tcos,n) until the maximum truncated N order and

Fsup is the 2D superposed air-gap force-wave that contains

all space-dependent harmonic amplitude factors (FDC and

Fsin,n, Fcon,n) up to order M .

Additionally, the resulting DC force-shape (FDC) is again

decomposed into time-dependent harmonic amplitude factors

(FDC,0, FDCsin,n, FDCcos,n) as in the torque case (Eq. 3),

where FDCsup is the superposed DC force-shape that con-

tains all factors up to order N :
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FIGURE 5. Torque and DC force-shape position current and position

dependency.

FDCsup(t) =

N
∑

n=0

FDC,n(t) = FDC0(t)+

P
∑

n=1

(FDCcos,n · cos(nt) + FDCsin,n · sin(nt)),

(3)

Figure 5 shows the torque and radial DC force-shape depen-

dency measured in per-unit (p.u.) system, where the base unit

represents the maximum value of each quantity with respect

to id, iq (again, measured in p.u.) and the electrical rotor

position θe. It can be noticed that higher torque ripple appear

in the flux-weakening region (after the base speed) while

higher force ripple appear in the maximum torque region.

A further reduction in the model size is achieved by

truncating the harmonic content of the torque (Eq. 4) and

DC force-shape (Eq. 5) wave by using the most significant

harmonics in the dq frame, in this case the 0, 6th and 12th dq-

frame harmonics, as shown (the time dependency is replaced

with θe):

Tem(id, iq, θe) = T0(id, iq) + Tripple(id, iq, θe) =

T0(id, iq) + Tcos6(id, iq)cos(6θe) + Tsin6(id, iq)sin(6θe)+

+ Tcos12(id, iq)cos(12θe) + Tsin12(id, iq)sin(12 θe),
(4)
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FIGURE 6. Torque harmonic factors: 6th (a-b) and 12th (c-d).
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FIGURE 7. Dimensionality reduction via Fourier decomposition for id = 0.25
p.u. and id = 0.89 p.u.

FDC(id, iq, θe) = FDC0(id, iq) + FDCripple(id, iq, θe)

= FDC0(id, iq) + FDCcos6(id, iq)cos(6θe)+

+ FDCsin6(id, iq)sin(6θe) + FDCcos12(id, iq)cos(12θe)+

+ FDCsin12(id, iq)sin(12θe),

(5)

where the idq dependent torque Fourier cos− sin orthogonal

basis are presented in Figure 6.

The waveform results of the torque and radial DC force-

shape for one specific operating point is shown in Figure 7.

IV. OPTIMAL CURRENT SHAPING FOR TORQUE AND

DC FORCE-SHAPE RIPPLE CONTROL

In order to minimize the torque and force ripple, the idq
current must be shaped in such a way that it contains counter-

acting harmonics to the original ripple. The set-points for the

mean torque (T ∗

0 ), mean component of the DC force-shape

(F ∗

DC0) and given fixed rotor position (θ∗e ) are considered
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input to the problem and the optimal currents represent the

output. This can be formulated as a system of non-linear

equations that are solved for id and iq:

{

T0(id, iq)− T ∗

0 + Tripple(id, iq, θ
∗

e) = 0

FDC0(id, iq)− F ∗

DC0 + Fripple(id, iq, θ
∗

e) = 0.
(6)

By solving two equations for each set of dq currents

(id, iq) at each rotor position (θ∗e ), the solution is fully de-

termined for a specific set of (T ∗

0 , F
∗

DC0, θ
∗

e ). Eq. (6) has

the objective of minimizing the torque ripple (Tripple) and

radial DC force-shape ripple (FDCripple) concurrently. If the

torque ripple is omitted from the formulation, the solution

minimizes the DC force ripple only and, vice-versa, if the

DC force ripple is omitted the solution minimizes the torque

ripple only. Figure 8 shows the harmonic shaped currents for

the 3 different optimization scenarios, with the magnitude

and phase of the introduced current harmonics resulting from

Eq.(6). In this paper only the harmonics shown in Eq.(4)

and Eq.(5) are used because the 6th and 12th harmonics

are the main contributors to the torque and mean air-gap

force ripple. Also, the extension of the algorithm to higher

order harmonics, such as the 18th and 24th, would require a

higher controller bandwidth in practice, which may lead to

implementation issues. It can be noticed that the difference

in the wave-shape is caused by the difference in the 6th and

12th current harmonic amplitude, while the DC component

remains the same. Figure 9 shows that torque and radial

DC force ripple are not fully eliminated because of the

existence of higher harmonics that are originally truncated

in the problem statement.

In order to shape the currents on the full torque-speed

range, including the flux-weakening (FW) region, for each

operating condition (each desired torque set-point and

speed), a MTPA optimization is performed where the degrees

of freedom (DOF) are again (id, iq) and the resulting mean

component of the DC force-shape is stored for each torque
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FIGURE 9. Resulting torque and DC force-shape for different ripple

minimization goals using the shaped currents showed in Figure 8.

and speed set-point (FDC0,MTPA(T
∗

0 , ω
∗

e)):






















minimize Joule losses: Rs(i
2
d + i2q)

equality constraint: T0(id, iq)− T ∗

0 = 0

current limit:
√

(i2d + i2q) ≤ Imax

voltage limit:
√

ud(id, iq, ω∗

e)
2 + uq(id, iq, ω∗

e)
2 ≤ Umax,

(7)

where Rs is the phase resistance, Imax and Umax are the

maximum current and voltage values given by the power

electronics module, and ud, uq are the dq phase voltages.

By including the mean component of the DC force-

shape obtained from solving the optimization problem

(FDC0,MTPA(T
∗

0 , ω
∗

e)) in Eq.(6), a new system of equations

is formed that solves for the dq currents at each rotor posi-

tion, speed and each mean torque reference:










T0(id, iq, ω
∗

e)− T ∗

0 + Tripple(id, iq, θ
∗

e , ω
∗

e) = 0

FDC0(id, iq, ω
∗

e)− FDC0,MTPA(T
∗

0 , ω
∗

e)+

FDCripple(id, iq, θ
∗

e , ω
∗

e) = 0.

(8)

The results from solving this equation set are DC

torque, speed and rotor position-dependent set of currents

idq(T0, ωe, θe). T0, FDC0 and the Joule losses are mapped in

Figure 10 on the idq range together with the (id, iq) current

loci for maximum T0 at different speed values (where the

p.u. system for the losses is constructed using as base unit

the maximum value in the idq range). It can be remarked that

maximum T0 value is decreasing with the increase in speed

after the base speed is reached.

This approach leads to having the same Root-Mean-Square

(RMS) Joule losses as in the case of the MTPA control

strategy as exemplified in Figure 11. It can be remarked

that different idq orbits obtained from the current shaping
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FIGURE 10. Contour plot for T0, FDC0 and Joule losses on the idq plane.
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values (marked with black crosses).

algorithm are formed for different reference mean torque and

speed values, centered around the value obtained from the

MTPA (with flux-weakening) optimization problem.

In order to determine the maximum envelope of the torque-

speed map, the mean torque is set to be the maximum value

for the given speed i
Tmax
0

dq (T0 = Tmax
0 (ωe, θe)). These cur-

rents are shown in Figure 12 representing the idq speed and

rotor position dependent envelope where for each speed, a

harmonic current range that center around the values obtained

0
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FIGURE 12. Harmonic-shaped (black) and constant (red) dq current values

for maximum mean torque across the speed range.

from the standard MTPA (with flux-weakening) is formed.

Until the base speed of 1650 RPM the maximum current

is the only valid constraint, whereas in the flux-weakening

region the voltage limit takes effect.

V. VIBRATION RESPONSE FOR THE FULL

TORQUE-RPM RANGE USING THE

VIBRATION-SYNTHESIS METHOD

A. STRUCTURAL FE MODEL CORRELATION

Experimental Modal Analysis (EMA) is performed on the

machine (with the rotor removed) in order to determine

the modal parameters: natural frequencies, mode shapes

and modal damping. The test output is the measured out-

put/input Frequency Response Functions (FRF) - Ho/i in

free-free boundary conditions. A miniature shaker (LMS

Qsource SN045) is used to excite the structure and 36 evenly-

distributed triaxial (3D) accelerometers (PCB Piezotronics

SN 356A22) placed on the housing’s outer surface are used

to measure the vibration response. Simcenter SCADAS Lab

is used for the data acquisition and the PolyMAX algorithm

[22] is used to determine the modal parameters: modal damp-

ing ζk, residuals Ak and natural frequencies ωk for each

mode k until the maximum truncated mode n, in the desired

frequency range (up to 5000Hz) of the linear modal model

(where ∗ is the complex conjugate):

Ho/i(ω) =
n
∑

k=1

Ak

jω − λk
+

A∗

k

jω − λ∗

k

,

with λk = −ζkωk + j
√

1− ζ2kωk .

(9)

Using the extracted modal parameters, the anisotropic ma-

terial properties of the structural FE model (Youngs modulus,

shear modulus and the Poisson ratio) are updated in order

to match the test results using a optimization routine with

the modal frequency difference and the Modal Assurance

Criterion (MAC) as correlation metrics [23].

Results from the optimization procedure are presented in

Figure 14, where the (a,b) subplots show the deflection for the

in-plane ovalization (2,0) and triangle (3,0) mode-shapes ob-

tained with the PolyMax algorithm. The 3D accelerometers

placement can also be remarked in the mentioned figures. In

the (c,d) subplots the updated FE mode-shapes are shown.

It can be noticed that by updating the material properties
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FIGURE 13. EMA test setup where the electric motor with the removed rotor

is kept in free-free boundary conditions by the elastic bungee cord (marked

with the label 2) and the 3D accelerometers (highlighted in red and marked

with label 1) used to measure vibration.

(a) (2,0) at f = 1192Hz (test) (b) Mode (3,0) at f = 2606Hz (test)

(c) (2,0) at f = 1265Hz (simu.) (d) (3,0) at f = 2674Hz (simu.)

FIGURE 14. Machine operational deflection shapes (a,b) and correlated FE

modal results (c,d).

a relative frequency error below 5% is obtained for each

test/simulation mode-shape pair.

B. SPATIALLY DECOMPOSED AIR-GAP FORCE

The link between electromagnetic and structural physics

computation domain is the radial and tangential air-gap

force densities computed using the Maxwell Stress Ten-

sor. i
Tmax
0

dq is used to interpolate the air-gap B-fields LUTs

(Brad,tan(id, iq, θm, α)) obtained in Section III:

Frad(ωe, t, α) =

1

2µ0

(

B2
rad(i

Tmax
0

dq (θe, ωe), α
)

−B2
tan

(

i
Tmax
0

dq (θe, ωe), α)
)

Ftan(ωe, t, α) =

1

µ0
Brad

(

i
Tmax
0

dq (θe, ωe), α
)

Btan

(

i
Tmax
0

dq (θe, ωe), α
)

.

(10)

The force is expressed as spatially decomposed super-

position of the most important excitation shapes using the

cos− sin orthogonal basis according to Eq. (2) for each

value of the speed, resulting in time and speed dependent

amplitude factors fDC(ωe, t), fcos,m(ωe, t) and fsin,m(ωe, t)
for the maximum torque envelope.

The vibration is calculated as the superposition of dynamic

responses excited by each significant force-shape. This is

achieved with a modal frequency response solution, having

the excitation F[I],shape a unitary force-shape:

vi[I],shape(ωe, f) = Hi(f)F[I],shape(ωe, f), (11)

where vi[I],shape(ωe, f) is the frequency response in node i for

each force-shape excitation, with Hi(f) the output obtained

from modal analysis. The total response in node i - vi(ωe, f)
is the superposition of all frequency responses scaled with

the cos-sin frequency domain amplitude factors:

vi(ωe, f) = vi[I],DC(f)fDC(ωe, f)+

+
M
∑

m=1

(

vi[I],cos,mfcos,m(ωe, f) + vi[I],sin,mfsin,m(ωe, f)
)

,

(12)

where the RMS response for all N nodes is:

vRMS(ωe, f) =

√

√

√

√

1

N

N
∑

i=1

vi(ωe, f)2. (13)

The structural mesh is shown in Figure 15 where 6 output

nodes are selected in order to compute the RMS vibration

response.

VI. RESULTS

A. TORQUE AND FORCE

Run-up results for the maximum torque and corresponding

DC force-shape over the full RPM range are presented in

Figure 16. Two results sets , one with the standard MTPA

(with flux-weakening) control strategy, and one with the

proposed algorithm are shown. It can be observed that both

in the case of the torque and DC force-shape the mechanical

orders f = 30fmech and f = 60fmech (fmech is the base

mechanical frequency) caused by the 6th and 12th dq-current

harmonics are completely reduced, with order-cuts shown in

Figure 17.

B. VIBRATION RESPONSE

The vibration response is computed using the method de-

scribed in Section V. The first result set shown in Figure

VOLUME 4, 2016 7
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FIGURE 15. Structural mesh with the output vibration computation nodes

present on the housing marked in black.
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FIGURE 16. Torque and DC force-shape run-up results.

18 represents the vibration displacement for the full RPM-

frequency range using just the radial DC force-shape as struc-

tural loading (vRMS
DC (ωe, f)). This procedure is done in order

to compare the effect that the proposed algorithm versus the

standard MTPA (with flux-weakening) strategy has on the

vibration response. Figure 18 (c,d) represents the mechanical

order-cuts and show a significant decrease of order 30 and

60 when using the proposed algorithm, where the relative

change in amplitude peak response between the proposed

algorithm and the standard MTPA (with flux-weakening)

control uses the ∆ symbol.

The second result set shown in Figure 19 represents again

the vibration displacement for the full RPM-frequency using

a number of 40 force-shapes (from the 0 to 40) as structural

loading (vRMS(ωe, f)). The upper-bound for the force-shape
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FIGURE 17. Torque and DC force-shape order-cuts for the standard MTPA

with flux-weakening (red) and proposed algorithm (blue, with markers): (a,c) -

30th order and (b,d) - 60th order.
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FIGURE 18. Scaled run-up vibration response spectogram (a,b) and

order-cuts ((c) - 6th order and (d) - 60th order) using only the DC force-shape,

where the MTPA (with flux-weakening) results are represented in (red) and

proposed algorithm in (black) and the peak caused by the resonance effect of

mode (2,0) is marked with a circle symbol and mode (3,0) with a cross symbol.

spatial harmonics (40) is limited by Nyquist criterion with

the number of nodes along the circumference of the structural

mesh. Again, the procedure is adopted for control algorithm

comparison and to determine the total effect of radial DC

force-shape harmonics reduction on the structural response.

Figure 19 (c,d) represents the mechanical order-cuts for the

case where all force-shapes are used to excite the structure,

with the first two orders (8 and 10) sorted in terms of the high-

est vibration peak shown. The first 10 mechanical orders are

quantified in Table 2 in terms of amplitude peak (measured

in 10−3p.u.) and relative peak change ∆. It is observable that

the proposed algorithm is beneficial for decreasing 3 out of 4

orders in terms of peak: 40th, 50th and 70th, where the 20th

order represents the exception.

Because the method can be universally applied to 3-phase

8 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3104859, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

2000 4000
Rotational speed in rpm

0

2000

4000

6000

8000

Fr
eq

ue
nc

y 
in

 H
z

-40

-35

-30

-25

-20

-15

V
ib

. r
es

po
ns

e 
[p

.u
.]

- 
dB

 s
ca

le

(a) MTPA with FW

2000 4000
Rotational speed in rpm

0

2000

4000

6000

8000

Fr
eq

ue
nc

y 
in

 H
z

-40

-35

-30

-25

-20

-15

V
ib

. r
es

po
ns

e 
[p

.u
.]

- 
dB

 s
ca

le

(b) Proposed algorithm

1000 2000 3000 4000
rpm

2

3

4

V
ib

. r
es

po
ns

e 
[p

.u
.] 10-3 f=40f

mech

(c) ∆ = −0.7%

1000 2000 3000 4000
rpm

2

3

4

5

V
ib

. r
es

po
ns

e 
[p

.u
.] 10-3 f=50f

mech

(d) ∆ = −1.3%

FIGURE 19. Scaled run-up vibration response spectogram (a,b) and

order-cuts with the highest vibration-displacement ((c) - 40th order and (d) -

50th order) using all force-shapes, where the MTPA (with flux-weakening)

results are represented in (red) and proposed algorithm in (black), where the

peak caused by the resonance effect of mode (2,0) is marked with a circle

symbol.

TABLE 2. Run-up order-cuts peaks

f 10fmech 20fmech 30fmech 40fmech 50fmech

peak 47 43 34 45 47
∆ 0% +2.54% +1.5% -0.72% -1.29%

f 60fmech 70fmech 80fmech 90fmech 100fmech

peak 24 40 37 21 35
∆ -8% -1.38% +20% +4.03% +13.24%

PMSMs it is reasonable to assume that more significant

decrease in vibration response caused by the minimization of

DC force-shape harmonics will occur in the case of traction

motors. This is explained in [24] where the breathing mode-

shape (mode 0) that is excited by harmonics caused by the

DC force-shape represents the main source of NVH issues in

traction machines.

VII. CONCLUSIONS

In this paper, a novel current shaping method used in 3-

phase PMSMs that reduces the torque and mean radial air-

gap force harmonics under MTPA conditions is proposed.

The method relies on solving a system of nonlinear equations

and uses experimentally-updated Fourier-decomposed LUT

models for the machine torque and air-gap force. The method

efficiency for PMSM NVH characteristics is validated using

a experimentally-updated structural model via the vibration-

synthesis. It shows results both in terms of torque ripple

reduction, which is the main contributor for the machine

structure-born noise, and air-born vibration reduction dur-

ing run-up operation. If the maximum current and voltage

limitation allows, the targeted harmonics in both the torque

and mean radial air-gap force can be completely reduced.

The consequence of force reduction on the machine vibration

characteristics at maximum torque across the whole speed

range is a decrease in vibration peaks on the main mechanical

orders of 0.72% for the 40th order and 1.29% for the 50th

order.

As a further investigation, the additional iron losses caused

by the harmonic currents should be investigated. Also, the

harmonic current injection will be implemented on the test-

bench where the practical implementation of harmonic con-

trol algorithm, model uncertainty and micro-controller com-

putational speed have to be taken into consideration.
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