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ABSTRACT Pneumonia is an acute respiratory infection that has led to significant deaths of people 

worldwide. This lung disease is more common in people older than 65 and children under five years old. 

Although the treatment of pneumonia can be challenging, it can be prevented by early diagnosis using 

Computer-Aided Diagnosis (CAD) systems. Chest X-Rays (CXRs) are currently the primary imaging tool 

for detection of pneumonia, which are widely used by radiologists. While the standard approach of detecting 

pneumonia is based on clinicians’ decisions, various Deep Learning (DL) methods have been developed for 

detection of pneumonia considering CAD system. In this regard, a novel hybrid Convolutional Neural 

Network (CNN) model is proposed using three classification approaches. In the first classification approach, 

Fully-Connected (FC) layers are utilized for the classification of CXR images. This model is trained for 

several epochs and the weights that result in the highest classification accuracy are saved. In the second 

classification approach, the trained optimized weights are utilized to extract the most representative CXR 

image features and Machine Learning (ML) classifiers are employed to classify the images. In the third 

classification approach, an ensemble of the proposed classifiers is created to classify CXR images.  The 

results suggest that the proposed ensemble classifier using Support Vector Machine (SVM) with Radial Basis 

Function (RBF) and Logistic Regression (LR) classifiers has the best performance with 98.55% accuracy. 

Ultimately, this model is deployed to create a web-based CAD system to assist radiologists in pneumonia 

detection with a significant accuracy.  

INDEX TERMS Pneumonia, Chest X-Ray; Deep Learning; Convolutional Neural Network; Visual 

Geometry Group; Machine Learning

I. INTRODUCTION 

Pneumonia is a lung disease that is caused by acute 

respiratory infection. Pneumonia causes reduced oxygen 

intake and painful breathing [1]. Although pneumonia can 

affect people at any age, it is more common in people older 

than 65 and children under five years old [2]. According to 

World Health Organization (WHO), pneumonia is 

responsible for 14% of all deaths in children under five years 

old, causing 740,180 deaths in 2019 [1]. Pneumonia is also 

estimated to kill about 11 million children by 2030 [3]. 

Further statistics indicate that almost one million 

pneumonia-infected people older than 65 are hospitalized in 

the United States every year [4]. This disease can affect 

people everywhere globally, but it is most common in South 

Asia and Sub-Saharan Africa [1]. According to WHO, 

exposure to air pollution has led to 45% and 28% of all 

pneumonia deaths in adults and children, respectively [5]. 

Moreover, bacteria, viruses, and fungi are the three most 

common causes of pneumonia [1]. As a noteworthy example, 

the widespread Coronavirus Disease known as COVID-19 or 

SARS-CoV-2 is regarded as a common cause of viral 

pneumonia [6]. There are some variables to differentiate 

viral and bacterial pneumonia, including but not limited to 

age, history of disease, and response to antibiotic treatments. 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3182498

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

mailto:abtin.ijadi-maghsoodi@auckland.ac.nz


 

VOLUME XX, 2017 9 

Viral pneumonia often occurs in children under five years 

old and has a slow onset; while bacterial pneumonia is more 

common in adults and has a faster onset [7]. Although the 

treatment of pneumonia can be challenging, it can be 

prevented with modest treatments and cured with low-cost, 

low-tech medication and care [1]. Therefore, there is an 

urgent need to develop diagnostic tools in order to reduce 

pneumonia-related mortality, particularly in children and old 

people.  

Some popular tools to evaluate the presence of pneumonia 

in a person are Chest X-Ray (CXR), Computed Tomography 

(CT) of the lungs, ultrasound of the chest, Magnetic 

Resonance Imaging (MRI) of the chest, and needle biopsy of 

the lung [8]. Medical X-rays are electromagnetic radiations 

that have higher energy than visible light and can penetrate 

through most objects. Compared to CT images, X-rays are 

less expensive, take less time to obtain, and cause lower 

radiation exposure [9]. Furthermore, in comparison to MRI, 

X-rays are much less expensive, more available and quickly 

accessed by radiologists [10]. Currently, CXRs are 

considered the best standard tool for detecting pneumonia, 

which can distinguish pneumonia from other lung infections 

and diseases [11]. The use of Machine Learning (ML) and 

Deep Learning (DL) is growing significantly. ML and DL 

methods have shown outstanding performance in healthcare, 

especially medical image analysis [12]. ML- and DL-based 

methods can be used to create Computer-Aided Diagnosis 

(CAD) systems to assist physicians and radiologists in 

medical decision-making [13]. It has been shown that CAD 

systems can perform on a par with or better than radiologists 

in terms of sensitivity and specificity [14]. Additionally, 

CAD-assisted radiologists have indicated a higher 

classification accuracy, compared to unassisted radiologists 

in interpretation of CXR images [15]. Radiologists identify 

the image parameters to make a clinical decision, while ML- 

and DL-based CAD systems can also assess the importance 

of the image parameters to provide a clinical decision. 

Moreover, radiologists rely on their prior definition of 

discriminative features to classify the images, while CAD 

systems perform feature discrimination without any prior 

definition by experts and radiologists. In some cases, a 

disease may share common features with other diseases, 

making the process of diagnosis challenging to radiologists. 

CAD systems can solve this issue by identifying the features 

of disease in an efficient way [16]. It is also notable that CAD 

systems can be much faster than an experienced radiologist 

in analyzing medical images [14].  

In the past recent years, Convolutional Neural Networks 

(CNNs) have shown a great potential in image classification 

and segmentation and are widely utilized for creating DL-

based CAD systems. While some studies have analyzed the 

binary classification of normal and pneumonia images, other 

research studies have also studied the multi-class 

classification of normal images and different types of 

pneumonia, including viral and bacterial pneumonia 

infections. Fernandes et al. [17] proposed a Bayesian CNN-

based method, based on Visual Geometry Group 16 

(VGG16) to detect pneumonia. Dey et al. [18] used a 

customized VGG19 architecture and five classifiers, 

including linear Support Vector Machine (SVM), SVM-

Radial Basis Function (RBF), K-Nearest Neighbors (KNN), 

Random Forest (RF), and Decision Tree (DT) to detect 

pneumonia. Rajaraman et al. [19] proposed a novel method 

for locating the Region of Interest (ROI), using customized 

models of VGG16, sequential CNN, Residual CNN, and 

Inception CNN for detection of pneumonia. Jain et al. [20] 

used six models, including two custom-designed models, 

VGG16, VGG19, ResNet50, and InceptionV3 to detect 

pneumonia cases. There have also been other research 

studies that have proposed custom-designed CNNs for 

detection of pneumonia [21-23]. Kermany et al. [24] 

proposed an Artificial Intelligence (AI) system based on a 

transfer learning framework for detecting pneumonia cases. 

Rahman et al. [25] used four CNN models, including 

AlexNet, ResNet, DenseNet, and SqueezeNet with transfer 

learning for pneumonia detection. Zhang et al. [26] proposed 

a straightforward VGG16-based model architecture with 

fewer layers for pneumonia detection.  

Although various studies have analyzed CNN frameworks 

for pneumonia detection, to the best of authors’ knowledge, 

not a single study has considered using a hybrid VGG-based 

CNN model for detection of pneumonia. As hybrid methods 

can better handle incomplete data [27] and improve the 

model’s computation, robustness, functionality, and 

accuracy [28], using a hybrid CNN model for detection of 

pneumonia is of a significant importance. Moreover, none of 

the previous studies have implemented a CAD system for a 

reliable and accurate detection of pneumonia. In order to 

address these research gaps, the current study has proposed 

a hybrid CNN model, combining two popular CNN models. 

For this purpose, the features obtained using VGG16 and 

VGG19 networks are concatenated to create a new hybrid 

VGG-based CNN model. Deep feature concatenation is an 

effective way of improving classification process in CNN 

models and provides multiscale information of input images 

[29, 30]. To classify CXR images, three approaches are 

utilized. In the first approach, we have designed the proposed 

hybrid CNN model with Fully Connected (FC) layers and 

trained the hybrid model for a defined number of epochs and 

updated the weights of the model using backpropagation 

process and saved the best-performing weights. In the second 

approach, we have loaded and utilized the saved optimized 

weights to extract CXR image features and trained five ML 

classifiers for classifying CXR images. To the best of 

authors’ knowledge, none of the previous studies has 

deployed such weight utilizing approach for classifying the 

images. In the third approach, the trained classifiers obtained 

in the first and second classification approaches are 

employed to create an ensemble classifier, which takes the 

class probabilities attained by those classifiers and assigns a 
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weight to each of them in such a way that the highest 

classification accuracy is produced. Ultimately, in this study, 

a CAD system based on the most accurate trained model is 

designed to detect pneumonia cases.  

The remainder of this research study is structured as 

follows: Section II presents a brief overview of the 

fundamentals of the research methodology including CNN, 

ML models and the proposed hybrid CNN model. Results 

and findings of computations and calculations using the 

proposed hybrid CNN model are presented in section III. 

Finally, the concluding clarifications and guidelines for 

future research are presented in Section IV. 
 
II. METHODS AND MATERIALS FUNDAMENTALS 

A. CONVOLUTIOANL NEURAL NETWORK (CNN) 

Neural networks (NNs) are a type of non-linear statistical 

data modeling tool based on densely connected nodes that 

can simulate complicated input-output interactions [31]. 

Feed-forward NNs (FNNs) are a type of NNs in which the 

decision flow is unidirectional, flowing from the input to the 

output in loop-free consecutive layers [32]. Accordingly, 

CNNs are considered as a type of FNNs [33]. CNNs are one 

of the most used DL methods that have demonstrated 

excellent results on the ImageNet Large Scale Visual 

Recognition Competition 2012 (ILSVRC2012). The 

application area of CNNs is significant e.g., classification, 

segmentation, and Natural Language Processing (NLP) [34]. 

CNNs have widely been utilized in medical imaging, 

showing promising results on medical image classification 

and segmentation [35, 36]. The architectures of CNNs are 

based on various building blocks, including convolution 

layers, pooling layers, and Fully-Connected (FC) layers. The 

role of convolution layers is feature extraction and usually 

consist of a mixture of linear and nonlinear operations, i.e., 

convolution operations and activation functions. The 

parameters of convolution layers are kernels and the 

hyperparameters of convolution layers which includes kernel 

size, number of kernels, stride, padding, and activation 

function. The formula of convolution operations is presented 

in (1) [37].  

𝑂𝑝,𝑞,𝑟
𝑙 = 𝑓(𝑊𝑟

𝑙𝐼𝑝,𝑞
𝑙−1 + 𝑏𝑟

𝑙 ) (1) 

where 𝑂𝑝,𝑞,𝑟
𝑙  represents the output feature map of location (p, 

q) for rth kernel in layer l, 𝑊𝑟
𝑙 is the values of weight vector 

of rth kernel in layer l, 𝐼𝑝,𝑞
𝑙−1 denotes the input vector of 

location (p, q) in layer l-1, and 𝑏𝑟
𝑙  is representative of bias for 

rth kernel in layer l. Moreover, 𝑓(•) is the activation function 

[37]. Pooling layers perform down-sampling operation and 

reduce dimensionality of feature maps. While pooling layers 

do not include any parameters, they consist of some 

hyperparameters, including stride, padding, and filter size. 

Max pooling and global average pooling are two popular 

types of pooling layers. In Max pooling, patches are 

extracted from the feature maps and the maximum value in 

each patch is selected as the output. In global average 

pooling, a feature map is converted into a 1 × 1 array by 

calculating the average of all elements in the feature map 

[34]. The output dimension after conducting a 

convolution/pooling operation in a CNN is calculated using 

(2) [38].  

𝑜 = ⌊
𝑛−𝑓+2𝑝

𝑠
⌋ + 1 (2) 

where n denotes the input dimension, f is the kernel/filter 

size, p indicates the padding size, and s is representative of 

stride size.  

The feature maps of the final convolution or pooling layers 

are flattened and passed to a number of one-dimensional 

(1D) vectors, called FC layers or dense layers. The final FC 

layer has a number of nodes, equal to the number of classes 

in a specific classification task. The parameters of FC 

parameters are weights and the hyperparameters of FC layers 

include the number of weights and activation function. 

Rectified Linear Unit (ReLU) is the most used activation 

function for FC layers, which is presented in (3) [34]. 

𝑓(𝑥) = 𝑚𝑎𝑥(𝑥, 0) (3) 

It should be noted that the activation function of the last 

FC layer is typically sigmoid for binary classification and 

SoftMax for multi-class classification [34]. The node values 

in the last FC layer in a CNN can be calculated using (4), and 

the sigmoid activation function for a binary classification 

problem is demonstrated in (5) [39]. 

𝑧 = 𝑤𝑇ℎ + 𝑏 (4) 

𝑃(𝑦 = 1|𝑥) =
1

1+𝑒𝑥𝑝(−𝑧)
 (5) 

where h denotes the internal calculations of layers in NN, b 

indicates the bias, and w is representative of weights for 

calculating the value of an output node. In addition, y and x 

represent the output class and input vector, respectively. The 

SoftMax activation function for a multi-class classification 

problem is presented in (6) [39]. 

𝑃(𝑦|𝑥) =
𝑒𝑥𝑝(𝑓𝑦)

∑ 𝑒𝑥𝑝(𝑓𝑐)𝐶
𝑐=1

 (6) 

where y denotes the class in a multi-class classification 

problem and x represents the input vector. Moreover, fc 

shows the cth element of the vector of class scores in the last 

FC layer. In SoftMax activation function, the class k with the 

biggest P value is selected as the output class [34]. Figure 1 

illustrates a comprehensive graphical overview of a CNN 

architecture for feature extraction and classification 

purposes. In the training process of a CNN, the weights of 

convolution layers and FC layers are updated using 

backpropagation algorithm. The loss function and Gradient 
Descent (GD) are the two fundamental components of 

backpropagation, where the loss function is minimized using 

GD. The Cross-Entropy (CE) loss function is one of the most 

used loss functions in CNNs. Accordingly, the CE loss
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FIGURE 1. An overview of a CNN architecture. 

 

function for a binary classification problem with sigmoid 

activation function can be computed as demonstrated in (7) 

[39]. 

𝐿 =
1

𝑁
∑ − [𝑦𝑖 𝑙𝑜𝑔 (

1

1+𝑒𝑥𝑝(−𝑧)
) + (1 − 𝑦𝑖) 𝑙𝑜𝑔 (

𝑒𝑥𝑝(−𝑧)

1+𝑒𝑥𝑝(−𝑧)
)]𝑁

𝑖=1  (7) 

where z is calculated according to (4). For a multi-class 

classification problem with SoftMax activation function, the 

CE loss function can be formulated as (8) [39]. 

𝐿 =
1

𝑁
∑ − 𝑙𝑜𝑔 (

𝑒𝑥𝑝(𝑓𝑦𝑖
)

∑ 𝑒𝑥𝑝(𝑓𝑐)𝐶
𝑐=1

)𝑁
𝑖=1                                          (8) 

where N is the number of training points, yi denotes the class 

of ith input image, and fc shows the cth element of the vector 

of class scores in the last FC layer [39]. It is notable that 

SoftMax can also be deployed as an activation function for a 

binary classification problem. 

Gradient Descent (GD) is a way of minimizing an 

objective function 𝐽(𝜃) which is parametrized by 𝜃. GD has 

three variants, including batch GD, Stochastic GD (SGD), 

and mini-batch GD. In batch GD, each parameter is updated 

for all the training samples in the dataset using (9). In 

contrast to batch GD, SGD conducts parameter update for 

each training sample in the dataset. In mini-batch GD, 

parameter update is performed for a mini-batch of n samples 

in the dataset. The formulas of SGD and mini-batch GD are 

presented in (10) and (11), respectively. In these equations, 

𝜃 denotes the learnable parameter, 𝐽(𝜃) represents the 

objective function that has to be minimized, 𝜂 is the learning  

rate, and 𝛻𝜃𝐽(𝜃) shows the gradient of the objective function 

with respect to parameters 𝜃 [40].  

𝜃 ≔ 𝜃 − 𝜂. 𝛻𝜃𝐽(𝜃) (9) 

𝜃 ≔ 𝜃 − 𝜂. 𝛻𝜃𝐽(𝜃; 𝑥(𝑖); 𝑦(𝑖))                                           (10) 

 

 

𝜃 ≔ 𝜃 − 𝜂. 𝛻𝜃𝐽(𝜃; 𝑥(𝑖:𝑖+𝑛); 𝑦(𝑖:𝑖+𝑛))                                (11) 

SGD conducts frequent, high-variance updates, causing 

the objective function to fluctuate significantly. The 

variability of SGD allows it to reach new and possibly better 

local minima. It is also notable that mini-batch GD is most 

often called as SGD [40]. There are also other optimizers for 

updating the parameters of NNs or CNNs, such as adaptive 

optimizers, but it has been shown that SGD usually 

outperforms adaptive optimizers in terms of generalization 

on the test set [41]. 

 

1) VISUAL GEOMETRY GROUP (VGG) 
ARCHITECTURES 

Visual Geometry Group (VGG) is a classical CNN 

architecture that uses 3 × 3 convolution kernels to extract 

features. VGG16 and VGG19 are two types of VGG 

architectures that include 13 and 16 convolution layers, 

respectively. There are also five 2 × 2 pooling layers and 

three FC layers in both VGG16 and VGG19 architectures. 

Therefore, there are a total 16 and 19 layers in VGG16 and 

VGG19 networks without considering pooling layers, 

respectively. These layers are arranged in five blocks, each 

of which start from a convolution layer to a max pooling 

layer. The first two FC layers of these two networks contain 

4096 nodes and the last one consists of 1000 nodes, which 

represents the number of classes in the ILSVRC2014. The 

last FC layer of these two networks can be changed 

according to the number of available classes in a specific 

classification problem. The last layers of feature extraction 

in VGG16 and VGG19 networks are the 13th and 16th 

convolution layers, respectively.  These two networks extract 

the features with a dimension of 7 × 7 × 512, where the first 

two numbers (7) represent the width and height, respectively, 

and the third number (512) denotes the depth of the output 

feature map. The input image size for these networks is also 
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224 × 224 pixels [42]. Figures 2 and 3 portray the 

architectures of VGG16 and VGG19 networks, respectively.  

 

 

FIGURE 2. The architecture of VGG16 network. 

 

 

FIGURE 3. The architecture of VGG19 network. 

 

2) TRANSFER LEARNING 

In transfer learning, a network that has been trained for one 

task is used as the starting point for solving another problem. 

Accordingly, rather than going through the lengthy process 

of training a network with randomly initialized weights, pre-

trained networks are utilized as the starting point for some 

specific classification tasks in transfer learning. The core 

premise of the transfer learning is that the filters generated 

by convolution layers of CNNs can be helpful for a wide 

range of image identification tasks, not only the ones for 

which they were initially trained [43]. ImageNet [44] is a 

database of more than 14 million images from 21841 

categories that has been used to train different CNN 

architectures. As an example, there are pre-trained VGG16 

and VGG19 architectures that have been trained on the 

ImageNet which can be used in different classification tasks. 

A graphical representation of transfer learning has been 

conceptualized in Figure 4.  

 

 

FIGURE 4. The idea of transfer learning. 

 

Pan and Yang [45] proposed a transfer learning framework 

based on domain, task, and marginal probability. D is a 

domain consisting of feature space 𝜒 and a marginal 

probability P(X), where X denotes a dataset of n 

samples(𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} ∈ 𝜒). A domain D can be 

defined as (12), where 𝜒 denotes the space of all vectors and 

X indicates a learning example with n samples. For a given 

domain, a task T is defined as (13).   

𝐷 = {𝜒, 𝑃(𝑋)}                                                                  (12) 

𝑇 = {𝛾, 𝑃(𝑌|𝑋)} = {𝛾, 𝜙}, 𝑌 = {𝑦1, … , 𝑦𝑛}, 𝑦𝑖 ∈ 𝛾         (13) 

where 𝛾 shows the label space and 𝜙 is representative of a 

predictive function that has been trained using feature 

vector/label pairs (𝑥i, 𝑦i), where 𝑥𝑖 ∈ 𝜒 and 𝑦𝑖 ∈ 𝛾. It should 

be noted that 𝜙(𝑥𝑖) = 𝑦𝑖, where 𝜙 makes label predictions 

for each feature vector. The purpose of transfer learning is to 

improve the learning of a predictive function 𝜙𝑇  for a given 

target domain DT and learning task TT, using a source domain 

DS and learning task TS, where 𝐷𝑆 ≠ 𝐷𝑇 and 𝑇𝑆 ≠ 𝑇𝑇 . 

 

3) OVERFITTING IN COLVOLUTIONAL NEURAL 
NETWORKS 

Overfitting refers to a state that there is a large gap between 

the training loss and test loss. In overfitting, the network 

learns feature maps that perform well on the training set, 

while perform poorly on the test set. Therefore, a much 

higher test loss will lead to training loss in the presence of 

overfitting during the training process [46]. Although 

overfitting is not completely avoidable, there are some ways 

to solve this problem in CNNs. Dropout regularization, early 

stopping, and image augmentation are three common ways 

that are used to tackle this problem during training the 

networks. Early stopping is a regularization strategy that 

terminates training, when updates of the weights do not 

provide further improvements on the test set. In this regard, 

throughout the training, the current best weights are saved 

and when updates of the weights no longer generate an 

improvement after a certain number of iterations, training 

process will be stopped and the previous best values will be 

used [47]. Dropout regularization was introduced in 2014. It 

refers to removing a unit from the network, together with all 

of its incoming and outgoing connections. In the most basic 

case, each unit is kept with a fixed probability p. The p value 

is usually set at 0.5, which has shown to be optimal for a wide 

range of networks [48]. Image augmentation is also another 

technique to prevent overfitting by increasing the number of 

images in the training set using some operations, including 

but not limited to shearing, zooming, rotation, and flipping 

[49].  

B. MACHINE LEARNING (ML) CLASSIFIERS 

1) K-NEAREST NEIGHBORS (KNN) 

K-Nearest Neighbors (KNN) is an ML classification 

algorithm that performs the classification task by calculating 

the distance between a given sample and all the training data. 

Accordingly, the given sample is assigned with a label based 

on the majority voting on the labels of the K selected nearest 

neighbors. Considering a training set D and a test object 𝑧 =
(𝑥′ , 𝑦′) with 𝑥′ as the data point and 𝑦′ as its associated class, 

KNN algorithm measures the distance between z and all the 

points (𝑥, 𝑦) ∈ 𝐷, where x is the data belonging to the 

training set and y denotes its corresponding class. After 

obtaining the K nearest neighbors list Dz, the test object is 
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assigned with the majority class of its nearest neighbors 

according to (14) [50]. 

𝑦 ′ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑣

∑ 𝐼(𝑣 = 𝑦𝑖)(𝑥,𝑦)∈𝐷𝑧
                                   (14) 

where v denotes a class, yi indicates the class of ith nearest 

neighbor, and 𝐼(•) represents an indicator function that is 

equal to 1, when its expression is true and otherwise, it is 0.  

Setting an optimal K has a significant impact on the quality 

of results. For example, a very small K value makes the result 

sensitive to noise points and if it is too large, the list of 

nearest neighbors contains many data points from other 

classes. The distance measurement is another critical issue in 

developing a KNN algorithm. Euclidean distance is one of 

the distance measurement functions for constructing a KNN 

classifier [50]. The Euclidean distance function is 

demonstrated in (15) [51]. m = (m1, m2, …, mp) and n = (n1, 

n2, …, np) represent two data points with p features. 

𝑑(𝑚, 𝑛) = √(𝑚1 − 𝑛1)2 + ⋯ + (𝑚𝑝 − 𝑛𝑝)
2
                 (15) 

 

2) LOGISTIC REGRESSION (LR) 

Logistic Regression (LR) is an ML classification algorithm 

that predicts a binary output variable based on some 

explanatory variables. LR can also be generalized to multi-

class classification tasks. The binary LR algorithm is 

presented in (16) [52], where P is the probability of the 

output variable/class 1, given an input vector 𝑥 =
(𝑥1, 𝑥2, … , 𝑥𝑛)with n features. 

𝑃(𝑌 = 1|𝑋 = 𝑥) =
1

1+𝑒−(𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑛𝑥𝑛) =
1

1+𝑒−(𝛽0+∑ 𝛽𝑖𝑥𝑖))
                                                                  (16) 

 

3) NAÏVE BAYES (NB) 

Naïve Bayes (NB) is an ML classification algorithm that uses 

feature vectors and class prior probabilities to predict the 

output class as presented in (17) [53]. 

𝑃(𝐶 = 𝑖|𝑋 = 𝑥) =
𝑃(𝑋 = 𝑥|𝐶 = 𝑖)∗𝑃(𝐶=𝑖)

𝑃(𝑋=𝑥)
                      (17) 

where C is representative of the output class and 𝑥 =
(𝑥1, 𝑥2, … , 𝑥𝑛), which denotes the set of all features taken 

form a domain 𝛺 = 𝐷1 ∗ … ∗ 𝐷𝑛. To simply the calculation 

of 𝑃(𝑋 = 𝑥|𝐶 = 𝑖) in NB classifier, the features are assumed 

to be independent in the dataset and hence, the probability is 

calculated as demonstrated in (18) [53]. 

𝑃(𝑋 = 𝑥|𝐶 = 𝑖) = ∏ 𝑃(𝑥𝑗|𝐶 = 𝑖)𝑛
𝑗=1                              (18) 

The class with the greatest probability is selected as the 

predicted class of an input vector in NB algorithm. The term 

𝑃(𝑋 = 𝑥) is identical for each class in NB classifier. 

Therefore, it can be ignored and the final classification 

formula is presented as (19) [53]. 

𝐶∗(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑖

𝑃(𝑋 = 𝑥|𝐶 = 𝑖) × 𝑃(𝐶 = 𝑖)              (19) 

Gaussian NB is a type of NB algorithm that works based 

on the assumption that the features of the dataset follow a 

Gaussian distribution. The probability density function of a 

conditional Gaussian distribution is presented as (20) [54], 

where 𝜇𝑦 and 𝜎𝑦
2 are estimated by calculating the maximum 

likelihood. 

𝑃(𝑥𝑖|𝑦) =
1

√2𝜋𝜎𝑦
2

𝑒𝑥𝑝 (−
(𝑥𝑖−𝜇𝑦)

2

2𝜎𝑦
2 )                                  (20) 

 

4) RANDOM FOREST (RF) 

Random Forest (RF) is an ensemble learning-based ML 

algorithm that creates an ensemble of Decision Trees (DTs) 

[55] with nodes and leaves through which a prediction is 

performed, given an input variable. In DT, each node 

contains a question about a single feature of an input item 

that is connected to a child node by a path, which represents 

an answer to the top/parent node. An item is classified 

throughout the path from the topmost node to a node without 

children, which is called a leaf. Each leaf represents the 

output class in DT. To construct a DT, an impurity measure 

called Gini index is utilized as demonstrated in (21) [56]. 

𝐼 = 1 − ∑ 𝑝𝑖
2𝑚

𝑖=1                                                                (21) 

where pi (i = 1, 2, …, m) is the fraction of the set of items 

related to an answer that belong to class i. To construct a DT, 

a question is selected that minimizes the weighted average 

impurity of the child nodes, associated with a parent node. In 

this regard, the possible k answers of a question that divide 

the set E into k subsets are considered to calculate the 

weighted average impurity, which is calculated as presented 

in (22) [56]. 

𝑊𝐼 = ∑ (
|𝐸𝑗|

|𝐸|
)𝑘

𝑗=1 𝐼(𝐸𝑗)                                                    (22) 

where Ej denotes the subset j of E. Moreover, |𝐸| and |𝐸𝑗| 

represent the size of E and Ej, respectively. In RF, each DT 

is established using a subset of the training data with a 

random number of selected features. Each DT predicts the 

class of an input as a base classifier and the output class is 

selected based on the majority voting of the predictions 

performed by DTs [55]. 

 

5) SUPPORT VECTOR MACHINE (SVM) 

Support Vector Machine (SVM) is a classification algorithm 

that conducts classification by constructing a hyperplane that 

maximizes the margin between the classes. To train an SVM, 

a set of samples is required, where each sample is 

represented as a pair (xi, yi). xi is representative of an input 

vector and yi denotes its corresponding class label. 

Considering a training set 𝑆 = [(𝑥1, 𝑦1), … , (𝑥𝑙 , 𝑦𝑙)], where 
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𝑥𝑖 ∈ ℝ𝑑 and 𝑦𝑖 ∈ [+1, −1]. The separating hyperplanes for 

the two classes are calculated according to (23) [57]. 

𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 , ∀𝑖 = 1, … , 𝑙                               (23) 

where 𝜉𝑖 are non-negative stack variables for data points that 

not completely satisfy the constraints. Using Lagrange dual, 

the final SVM optimization problem is presented as (24) to 

(26) [57]. 

𝑚𝑎𝑥
𝛼𝑖

−
1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 , 𝑥𝑗)𝑙

𝑖,𝑗=1 + ∑ 𝛼𝑖
𝑙
𝑖=1                    (24) 

∑ 𝛼𝑖𝑦𝑖
𝑙
𝑖=1 = 0                                                                   (25) 

0 ≤ 𝛼𝑖 ≤ 𝐶, ∀𝑖 = 1, … , 𝑙                                                  (26) 

where 𝐾(𝑥𝑖 , 𝑥𝑗) denotes the kernel function, 𝛼𝑖 represents 

the Lagrange multipliers, and 𝐶 ≤ ∞ is a penalty parameter. 

It is also notable that 𝛼𝑖 ≠ 0 only for support vectors xi. For 

a linearly separable case, a linear kernel is utilized as 

presented in (27) [57].  

𝐿𝑖𝑛𝑒𝑎𝑟: 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗                                                (27) 

The optimal weight vector and Kuhn-Tucker condition are 

presented in (28) and (29), respectively [57]. 

𝑤∗ = ∑ 𝛼𝑖
∗𝑦𝑖𝑥𝑖

𝑙
𝑖=1                                                             (28) 

𝛼𝑖
∗[𝑦𝑖(𝑤∗𝑇

𝑥𝑖 + 𝑏∗) − 1 + 𝜉𝑖] = 0                                   (29) 

The optimal hyperplane in SVM is calculated as 

demonstrated in (30) [57]. 

𝑓(𝑥) = ∑ 𝛼𝑖
∗𝑦𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏∗𝑙

𝑖=1                                        (30) 

Finally, the decision function is defined as (31) [57]. 

𝐶(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑖
∗𝑦𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏∗𝑙

𝑖=1 )                           (31) 

Polynomial and RBF kernels are two of the most used 

kernel functions for non-linearly separable classes in SVM. 

The formulas of these two kernel functions are demonstrated 

in (32) and (33) [57], where r and 𝛾 represent the 

hyperparameters of polynomial and RBF kernels, 

respectively.  

𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙: 𝐾(𝑥𝑖 , 𝑥𝑗) = (𝑥𝑖
𝑇𝑥𝑗 + 1)

𝑟
, 𝑟 ∈ ℤ+              (32) 

𝛼𝑖
∗[𝑦𝑖(𝑤∗𝑇

𝑥𝑖 + 𝑏∗) − 1 + 𝜉𝑖] = 0                                   (33) 

 

III. PROPOSED METHODOLOGY  

The current research study proposed a new hybrid CNN 

model, using VGG16 and VGG19 networks as feature 

extractors to classify CXR images. In this hybrid CNN 

model, first, the features of CXR images are extracted using 

VGG16 and VGG19 networks. Then, the extracted features 

are concatenated and utilized to classify CXR images. In this 

regard, three classification approaches are employed. In the 

first classification approach, the proposed hybrid CNN 

model is utilized with FC layers and SoftMax activation 

function for the last FC layer to perform the classification. In 

the second classification approach, the concatenated features 

are deployed as the input of different ML classifiers. In the 

third classification approach, the classifiers obtained in the 

first and second approaches are assigned a weight and the 

probabilities are summed to calculate a new probability 

vector to classify CXR images accordingly. In this study, 

both VGG16 and VGG19 networks accept the same input 

images with a dimension of 224 × 224 pixels in parallel and 

combine the features of CXR images. Both VGG16 and 

VGG19 networks extract the features with a dimension of 

7 × 7 × 512 in their last layer of feature extraction, where 

the first two numbers (7) represent the width and height of 

the output feature map, respectively, and the third number 

(512) indicates the depth of the output feature map. The 

extracted features of VGG16 and VGG19 networks are 

concatenated and hence, an output with a dimension of 

7 × 7 × 1024  is achieved. These concatenated features are 

flattened to form a 1D vector, consisting of 50176 nodes.  

To utilize FC layers in the proposed hybrid CNN model, 

the flattened features are connected to an FC layer containing 

4096 nodes. This FC layer is connected to another FC layer 

with 4096 nodes and finally, the network is connected to two 

nodes, representing the normal and pneumonia classes. To 

get the most significant CXR image features, first, the image 

augmentation techniques are performed on the training set 

and the proposed hybrid CNN model with FC layers is 

trained for several epochs using SGD optimizer and the best 

weights that provide the highest test accuracy for 

classification of CXR images are saved. Conclusively, these 

weights can be deployed to get the most representative 

features of a new input image and predict its class with a 

significant accuracy. The architecture of the proposed hybrid 

model with FC layers and SoftMax activation function is 

depicted in Figure 5. The details of the proposed hybrid CNN 

model with FC layers, including the output shapes of the 

feature maps after each convolution/pooling layer, the 

number of parameters in each layer, and the total number of 

parameters are also presented in Table 1.  

To employ ML classifiers in the proposed hybrid CNN 

model, first, the features of CXR images in the original 

training set are extracted using VGG16 and VGG19 

networks, based on the saved optimized weights of the 

trained hybrid CNN model with FC layers. As these weights 

extract the most representative CXR image features, this 

weight utilization is conducted to construct robust ML 

classifiers with a significant classification performance.  

Then, these extracted features are concatenated and flattened 

to be used as the input of different ML classifiers, including 

KNN, LR, NB, RF, and SVM. The architecture of the 

proposed hybrid CNN model with ML classifiers is 

illustrated in Figure 6, where the three FC layers in the first 

classification approach have been replaced with ML 

classifiers. A pseudo-code of the proposed method is 

presented in Algorithm 1. According to Algorithm 1, the
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FIGURE 5. The architecture of the proposed hybrid CNN model with FC layers. 

 

 

FIGURE 6. The architecture of the proposed hybrid CNN model with ML classifiers. 

 

inputs are the training and test sets. Then, the hybrid CNN 

model with FC layers is trained using the training set and the 

performance is evaluated using the test set Accordingly, ML 

classifiers in the hybrid CNN model with ML classifiers are 

trained using the features extracted by the saved optimized 

weights and finally, the best-performing model is selected 

for making predictions.  

A. DATA PRE-PROCESSING 

The dataset used in this study was a public CXR dataset 

provided by Kermany et al. [58] which includes 5856 CXR 

images. These images include either normal or pneumonia 

classes. There are 1583 images fit in normal class and 4273 

images fit to pneumonia class in this dataset. The pneumonia 

class involves images of viral and bacterial pneumonia, 

which are all categorized as pneumonia class. To use this 

dataset for training the hybrid CNN model with FC 

layers/ML classifiers, 80% of the data was used for training, 

and the rest of 20% was utilized as the test data. Due to an 

unbalanced data, same proportion of images from each class 

was selected. In this regard, 80% of all images in each of 

normal and pneumonia classes were selected to create the 

training set. Similarly, 20% of images in each of normal and 

pneumonia classes were selected to create the test set. In 

total, the training set included 1267 images fit to normal class 

and 3419 images to pneumonia class. The test set consisted 

of 316 images fit to normal class and 854 images to 

pneumonia class. Examples of images fitting to normal and 

pneumonia images are shown in Figure 7. Furthermore, the 

statistics regarding the analyzed dataset are provided in
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TABLE 1. The details of the proposed hybrid CNN model with FC layers. 

Layer Type* Shape of the Feature Map 

(Width, Height, Depth) 
Parameters 

Input (Parallel for both VGG16 and VGG19 networks) (224, 224, 3) 0 

VGG16: Block 1-Convolution 1 (224, 224, 64) 1792 

VGG16: Block 1-Convolution 2 (224, 224, 64) 36928 

VGG16: Block 1-Max Pooling (112, 112, 64) 0 

VGG16: Block 2-Convolution 1 (112, 112, 128) 73856 

VGG16: Block 2-Convolution 2 (112, 112, 128) 147584 

VGG16: Block 2-Max Pooling (56, 56, 128) 0 

VGG16: Block 3-Convolution 1 (56, 56, 256) 295168 

VGG16: Block 3-Convolution 2 (56, 56, 256) 590080 

VGG16: Block 3-Convolution 3 (56, 56, 256) 590080 

VGG16: Block 3-Max Pooling (28, 28, 256) 0 

VGG16: Block 4-Convolution 1 (28, 28, 512) 1180160 

VGG16: Block 4-Convolution 2 (28, 28, 512) 2359808 

VGG16: Block 4-Convolution 3 (28, 28, 512) 2359808 

VGG16: Block 4-Max Pooling (14, 14, 512) 0 

VGG16: Block 5-Convolution 1 (14, 14, 512) 2359808 

VGG16: Block 5-Convolution 2 (14, 14, 512) 2359808 

VGG16: Block 5-Convolution 3 (14, 14, 512) 2359808 

VGG16: Block 5-Max Pooling (7, 7, 512) 0 

VGG19: Block 1-Convolution 1 (224, 224, 64) 1792 

VGG19: Block 1-Convolution 2 (224, 224, 64) 36928 

VGG19: Block 1-Max Pooling (112, 112, 64) 0 

VGG19: Block 2-Convolution 1 (112, 112, 128) 73856 

VGG19: Block 2-Convolution 2 (112, 112, 128) 147584 

VGG19: Block 2-Max Pooling (56, 56, 128) 0 

VGG19: Block 3-Convolution 1 (56, 56, 256) 295168 

VGG19: Block 3-Convolution 2 (56, 56, 256) 590080 

VGG19: Block 3-Convolution 3 (56, 56, 256) 590080 

VGG19: Block 3-Convolution 4 (56, 56, 256) 590080 

VGG19: Block 3-Max Pooling (28, 28, 256) 0 

VGG19: Block 4-Convolution 1 (28, 28, 512) 1180160 

VGG19: Block 4-Convolution 2 (28, 28, 512) 2359808 

VGG19: Block 4-Convolution 3 (28, 28, 512) 2359808 

VGG19: Block 4-Convolution 4 (28, 28, 512) 2359808 

VGG19: Block 4-Max Pooling (14, 14, 512) 0 

VGG19: Block 5-Convolution 1 (14, 14, 512) 2359808 

VGG19: Block 5-Convolution 2 (14, 14, 512) 2359808 

VGG19: Block 5-Convolution 3 (14, 14, 512) 2359808 

VGG19: Block 5-Convolution 4 (14, 14, 512) 2359808 

VGG19: Block 5-Max Pooling (7, 7, 512) 0 

Concatenation (7, 7, 1024) 0 

Flattening 50176 (1D Vector) 0 

FC Layer 1 4096 (1D Vector) 205524992 

FC Layer 2 4096 (1D Vector) 16781312 

FC Layer 3 

Total Parameters: 257,053,570 

2 (1D Vector) 8194 

*The activation function of the convolution layers and the first two FC layers is ReLU. The activation function of FC layer 3 is SoftMax, which performs 

the predictions. 
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Table 2.  
 

ALGORITHM I 

A PSEUDO-CODE OF THE PROPOSED METHOD 

Input: Training and test sets. 

Output: A model for detection of pneumonia cases. 

 

(1) Train the hybrid CNN model with FC layers for several epochs 

using the training set. 

(2) Save the weights that yield the highest test accuracy resulted in a 

specific epoch. 

(3) Employ the saved optimized weights to extract the features of CXR 

images in the training set. 

(4) Train ML classifiers, including KNN, LR, NB, RF, and SVM in the 

hybrid CNN model with ML classifiers. 

(5) Use the hybrid CNN model with FC layers and LR, NB, and SVM 

classifiers to create an ensemble classifier and find the optimal weights. 

(6) Calculate the test accuracy for each ML classifier and the ensemble 

classifier.   

(7) Select the model with the highest test accuracy.    

(8) Use the final best-performing model for making predictions. 

 

 

 
(a) Normal images 

 
(b) Pneumonia images  

FIGURE 7. Examples of images in the used dataset.  

TABLE 2. Description of the dataset 

Category Training Set   Test Set 

Normal 1267   316 

Pneumonia 3419   854 

Total 4686   1170 

Percentage 80.02%   19.98% 

 

To train the hybrid CNN model with FC layers/ML 

classifiers, some pre-processing operations were performed. 

VGG networks require input images of 224 × 224 pixels 

and hence, all the images in the training and test sets were 

resized to 224 × 224 pixels. All the images in the dataset 

contained pixel values in the range [0, 255] and hence, a 

1./255 rescaling was employed to convert all the pixel values 

of CXR images to the range [0, 1]. These two pre-processing 

operations were the same for both classification approaches. 

1) THE PROPOSED HYBRID CNN MODEL WITH FC 
LAYERS 

To train the hybrid CNN model with FC layers, some 

additional preprocessing operations were conducted. 

Training a CNN requires a large dataset; otherwise, some 

parameters may not be appropriately estimated and 

accordingly, the CNN generalization will be poor. To tackle 

this problem, some image augmentation techniques were 
employed. The number of available images in the training 

set would increase by performing these image augmentation 

techniques on random samples of images. The used image 

augmentation techniques included flipping, zooming, and 

shearing. Examples of these augmentation techniques 

performed on an image in the dataset are portrayed in 

Figure 8.    
                        (a) Original image          (b) Horizontal flipping        

   
                             (c) Shearing                      (d) Zooming        

FIGURE 8. The results of deploying various augmentation techniques 
on an image.  

 

To prevent overfitting in training the proposed hybrid 

CNN model with FC layers, a dropout ratio of 0.5 was 

deployed after each FC layer during the training process. 

This means that 50% of the nodes are randomly 

dropped/deactivated at each update of the training phase in 

the network. These dropout layers are not available in the 

original VGG16 and VGG19 architectures, which can cause 

overfitting in some application cases and hence, the model 

performance and generalization would be degraded. To train 

the hybrid CNN model with FC layers, batches of 32 images 

were created and mini-batch GD optimizer with learning rate 

0.01 was utilized to update the weights. The initial weights 

of the hybrid CNN model were set to ImageNet pre-trained 

weights, which were all updated during the training process. 

The loss function was set to binary CE and SoftMax 

activation function was deployed for the last FC layer to 

perform the classification. The hybrid CNN model was 

trained for 20 epochs, using the Keras library of Python on a 

Tesla K80 GPU with 12 GB RAM provided by Google 

Collaboratory Notebooks [59]. During the training process, 

the model checkpoint of the Keras library was utilized to 

save the weights of the best-performing model until a 

specific epoch based on the test accuracy. Therefore, the 

weights of the best-performing model were gained at the end 

of the training process. The hyperparameters, functions, and 
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operations selected for training the hybrid CNN model with 

FC layers are presented in Table 3. In addition, the overall 

training process of the hybrid CNN model with FC layers is 

shown in Figure 9. 

TABLE 3. The hyperparameters, functions, and operations selected for 
training the hybrid CNN model with FC layers.  

Hyperparameters/Functions/Operations Status 

Learning Rate 0.01 

Batch Size 32 

Optimizer SGD* 

Loss Function Binary CE 

Epochs 20 

Horizontal Flipping Yes 

Zoom Range 0.2 

Shear Range 0.2 

Rescaling 1./255 

*To define mini-batch GD optimizer in the Keras library, the SGD 

optimizer is selected with a batch size bigger than 1 (32 in this paper). 

 

2) THE PROPOSED HYBRID CNN MODEL WITH ML 
CLASSIFIERS 

To train the proposed hybrid CNN model with ML 

classifiers, CXR image features have to be extracted in the 

first step. In this regard, the saved optimized weights of the 

trained hybrid CNN model with FC layers were loaded and 

utilized to train ML classifiers. This weight utilization was 

performed to extract the CXR image features that best 

represent the characteristics of the input CXR images to 

create robust ML classifiers. These features were flattened to 

be as the input of five ML classifiers, including KNN, LR, 

NB, RF, and SVM to classify CXR images. The overall 

training process of the hybrid CNN model with ML 

classifiers is portrayed in Figure 10.  

To train the hybrid CNN model with KNN classifier, first, 

the hyperparameter K has to be defined. In this regard, 

different odd values for K in the range [3, 50] were 

considered and the KNN classifier was experimented using 

these K values to select the one that produces the highest test 

accuracy. Moreover, the distance measure was set to 

Euclidean distance. To classify a new input image, the KNN 

classifier uses an array of size 4686*50176, where 4686 

stands for the number of extracted features of the images 

belonging to the training set and the KNN classifier 

calculates the distance of the extracted features of that input 

image from those 4686 instances to select the K nearest ones.     

To train the hybrid CNN model with RF classifier, an 

ensemble of 100 decision trees was employed, using Gini 

index as the impurity measure. To train the hybrid CNN 

model with SVM classifier, linear SVM, SVM with 

polynomial kernel, and SVM with RBF kernel (SVM-RBF) 

were utilized. For all these three SVM classifiers, a penalty 

parameter C = 1 was used. Moreover, the polynomial kernel 

was utilized with degree 3 (r = 3) to construct the SVM 

classifier with polynomial kernel. To construct the SVM-

RBF classifier, the default value of the Keras library for 𝛾 

was utilized, which is presented in (34).  

𝛾 =
1

𝑁×𝑉𝑎𝑟(𝑋)
                                    (34) 

where N is the number of training samples and Var(X) 

denotes the variance of all the training data points. For 

training the hybrid CNN model with NB classifier, Gaussian 

NB was used with 0.5 as the prior probability for both normal 

and pneumonia classes. Furthermore, a binary LR classifier 

with intercept was deployed to train the hybrid CNN model 

with LR classifier.  

 

3) THE PROPOSED ENSMELBE CLASSIFIER 

To train the proposed ensemble classifier, first, the trained 

hybrid CNN model with FC layers and ML classifiers has to 

be utilized to extract the features of CXR images in the test 

set. Then, a weight Wk is assigned to the probabilities 

obtained using the FC layers and ML classifiers. 

Accordingly, a weighted sum of class probabilities is 

calculated as presented in (35).  

𝑃1𝑊1 + 𝑃2𝑊2 + ⋯ + 𝑃𝑘𝑊𝑘 = 𝑃𝑡                                     (35) 

where Pk is a probability vector obtained by classifier k and 

Wk denotes its corresponding weight, which is in the range 

[0, 1]. Moreover, Pt represents the calculated probability 

vector. To create the proposed ensemble classifier, different 

values of Wk were tested to get the setting with the highest 

test accuracy. In total, there were six probability-based 

classifiers in this paper, including FC layers, linear SVM, 

SVM-RBF, polynomial SVM, LR, and NB, which were used 

to establish the proposed ensemble classifier. In this process, 

an array of size 1170*2 was obtained for each classifier, 

where 1170 indicates the number of images in the test set and 

2 denotes the class probabilities for the normal and 
pneumonia classes. Accordingly, different set of weights 

were experimented for these six classifiers to obtain the best-

performing ones in terms of the test accuracy. 

B. FINDINGS AND RESULTS 

In the current study, five performance metrics including 

accuracy, precision, recall, specificity, and F1-score have 

been reported to evaluate the performance of the models 

using the test set. The accuracy of a model demonstrates its 

overall effectiveness in identifying the actual positive and 

negative classes and precision indicates the effectiveness of 

the model in terms of predicting as belonging to positive 

class. Moreover, recall and specificity indicate the 

effectiveness of a model in identifying the actual positive and 

negative classes. In addition, F1-score provides an 

appropriate blend of precision and recall for evaluating the 

performance of a model. The values of these performance 

metrics were obtained using confusion matrices. The general
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FIGURE 9. The training process of the proposed hybrid CNN model with FC layers. 

 

 

FIGURE 10. The training process of the proposed hybrid CNN model with FC layers. 

 

form of the used confusion matrices in this study is presented  

in Figure 11. The formulas of the performance metrics are 

presented in (36) to (40). 

 

FIGURE 11. A general confusion matrix for evaluating the performance 
of the models.  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                              (36) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                          (37) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                               (38) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                       (39) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                  (40) 

 

where TP, FP, TN, and FN are true positive, false positive, 

true negative, and false negative, respectively. TP shows the 

number of correctly classified images of pneumonia class, 

TN denotes the number of correctly classified images of 

normal class, FP stands for the number of wrongly classified 

images of normal class, and FN represents the number of 

images in pneumonia class, detected as belonging to normal 

class. The test loss was also used as another performance 

metric to assess the performance of the proposed hybrid 

CNN model with FC layers. Training accuracy and training 

loss were utilized to assess the performance of the model 

during the training process. As mentioned earlier, the 

selected loss function was binary CE.  

The highest training accuracy in the proposed hybrid CNN 

model with FC layers is 97.78%, which was brought about 

in epoch 20. The trend of training accuracy with respect to 

epoch number is shown in Figure 12.  

The highest test accuracy in the proposed hybrid CNN 

model with FC layers is 97.95%, which was appeared in 

epoch 16. The trend of test accuracy with respect to epoch 

number is plotted in Figure 13. 

The trend of training loss with respect to epoch number for 

the binary classification of normal and pneumonia cases for 

the proposed hybrid CNN model with FC layers is shown in 

Figure 14. The minimum training loss is 0.0647, which was 

achieved in epochs 18 and 20.  

The trend of test loss with respect to epoch number for the 

proposed hybrid CNN model with FC layers is shown in 

Figure 15. The minimum test loss is 0.0579, resulted in 

epoch 16, where the model achieved the highest test 

accuracy.  

The training loss and test loss curves with respect to epoch 
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number are illustrated in Figure 16. These curves indicate 

that the training loss and test loss values have been close to 

each other and there is not a huge gap between the training 

and test losses (0.0772 vs. 0.0579) in epoch 16 and in the 

overall training process of the model and hence, the model 

has not overfitted the training set during the training process.   

The confusion matrix of the hybrid CNN model with FC 

layers is presented in Figure 17. The performance metrics 

values of the proposed hybrid CNN model with FC layers are 

also summarized in Table 4. This confusion matrix and the 

performance metrics values are based on epoch 16, where the 

model achieved the highest test accuracy. According to 

Table 4, the proposed hybrid CNN model with FC layers has 

a precision of 98.37%, a recall of 98.83%, a specificity of 

95.57%, an F1-score of 98.60%, and an accuracy of 97.95%. 

Moreover, the test loss is equal to 0.0579. This test loss is the 

minimum test loss during the training process, which 

provided the highest test accuracy. To analyze the superiority 

of the proposed hybrid model with FC layers compared to 

individual VGG architectures, VGG16 and VGG19 

architectures were trained separately. The confusion 

matrices of these two networks are presented in Figure 18 

and Figure 19, respectively. Moreover, the performance 

metrics are provided in Table 5 and Table 6.  The VGG16 

and VGG19 have an accuracy of 97.78% and 97.69% 

respectively, which are both lower than that of the proposed 

hybrid CNN model with FC layers. The proposed model has 

also a better performance compared to both VGG16 and 

VGG19 networks in terms of precision, recall, specificity, 

F1-score, and test loss, which demonstrates the superiority 

of the proposed hybrid CNN model.  

Furthermore, the confusion matrices of the proposed 

hybrid CNN model with ML classifiers are shown in Figure 

20. The performance metrics of the hybrid CNN model with 

ML classifiers are also summarized in Table 7. According to 

the results provided in Table 7, the hybrid CNN model with 

KNN classifier has the highest precision, recall, specificity, 

F1-score, and accuracy compared to other models. These 

performance metrics values were achieved by a K value of 

13. The hybrid CNN model with KNN classifier has a 

precision of 98.83%, a recall of 99.18%, a specificity of 

96.84%, an F1-score of 99.00%, and an accuracy of 98.55%, 

which is superior to the results of other ML classifiers. It is 

notable the proposed hybrid CNN model with SVM-RBF 

classifier has also a recall of 99.18%, which is equal to that 

of the proposed hybrid CNN model with KNN classifier; but 

in terms of other performance metrics, the KNN classifier 

has superior performance. Subsequently, the hybrid CNN 

model with SVM classifiers has an accuracy of 98.12%, 

98.29%, and 98.29% for linear SVM, polynomial SVM, and 

SVM-RBF classifiers, respectively. The linear   SVM and 

polynomial SVM classifiers have an equal precision of 

98.60%; while it is 98.49% for SVM-RBF classifier. 

Similarly, the specificity for both linear SVM and 

polynomial SVM classifiers is equal to 96.20%, while it is 

95.89% for SVM-RBF classifier. Moreover, the F1-score is 

equal to 98.71%, 98.83% and 98.83% for linear SVM, 

polynomial SVM, and SVM-RBF classifiers, respectively. 

 The hybrid CNN model with LR and RF classifiers has an 

accuracy of 98.03% and 97.69%, and precision of 98.48% 

and 97.80%, respectively. In terms of specificity, the RF 

classifier has a specificity of 93.99%, which is 1.9% lower 

than the specificity of LR classifier.  Furthermore, the F1-

scores are comparable for these two classifiers being equal 

to 98.65% and 98.43% for LR and RF, respectively. 

Although the precision, specificity, F1-score, and accuracy 

of LR and RF classifiers are lower that these performance 

metrics values for SVM classifiers, but in terms of recall, 

these two classifiers performed on a par with SVM 

classifiers. The LR classifier has a recall of 98.83%, which 

is equal to the recall of linear SVM classifier. In addition, the 

RF classifier has a recall of 99.06%, which is equal to that of 

polynomial SVM classifier. The proposed hybrid CNN   

model with Gaussian NB classifier has a precision, recall, 

F1-score, and accuracy of more than 92%; but these 

performance metrics values are lower than those for other 

ML classifiers. Moreover, the Gaussian NB classifier has a 

specificity of 77.85%, which means that a high number of 

normal images are misclassified and detected as belonging 

to pneumonia class by this classifier.  

The proposed ensemble classifier demonstrated the best 

results with a weight of 0.4 for SVM-RBF classifier and 0.1 

for LR classifiers. Moreover, the weights of other classifiers, 

including FC layers, linear SVM, polynomial SVM, and NB 

classifiers were set to 0. The confusion matrix of the 

proposed ensemble classifier has been presented in Figure 

21. Moreover, the performance metrics have been analyzed 

in Table 8. According to Table 8, the proposed ensemble 

classifier has an accuracy of 98.55%, a precision of 98.72%, 

a recall of 99.30%, a specificity of 96.52%, and an F1-score 

of 99.01%. According to these results, the proposed 

ensemble classifier indicates a higher recall compared to the 

proposed hybrid CNN model with FC layers and all the ML 

classifiers. This ensemble classifier has also an accuracy 

equal to that of KNN classifier. Although the precision and 

specificity of the proposed hybrid CNN model with KKN 

classifier are higher than those of the ensemble classifier, 

however, the recall of the ensemble classifier is higher than 

that of KKN classifier. Moreover, the F1-score of the 

ensemble classifier, which combines the precision and recall 

is slightly higher than the KNN classifier.  

All the codes and calculations regarding the hybrid CNN 

model are provided in a public GitHub repository [60]. 

According to the final results, the proposed ensemble 

classifier outperforms the hybrid CNN model with FC layers 

and ML classifiers in terms of accuracy, recall, and F1-score. 

Although the hybrid CNN model with KNN classifier 

indicated an accuracy equal to that of the proposed ensemble 

classifier and has a higher precision and specificity, 

however, the ensemble classifier has a higher recall, which
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FIGURE 12. Training accuracy with respect to epoch number. 
 

FIGURE 13. Test accuracy with respect to epoch number. 
 

FIGURE 14. Training loss with respect to epoch number. 
 

 

FIGURE 15. Test loss with respect to epoch number.
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FIGURE 16. Training and test loss curves for the hybrid CNN model with 

FC layers. 

 

FIGURE 17. The confusion matrix of the hybrid CNN model with FC 
layers. 

TABLE 4. The performance metrics of the hybrid CNN model with FC 
layers.  

Performance Metric Result (Value) 

Precision 98.37% 

Recall 98.83% 

Specificity 95.57% 

F1-score 98.60% 

Accuracy 97.95% 

Test Loss (Binary CE) 0.0579 

 

 

FIGURE 18. The confusion matrix of the VGG16 network. 

 

 

FIGURE 19. The confusion matrix of the VGG19 network. 

TABLE 5. The performance metrics of the VGG16 network. 

Performance Metric Result (Value) 

Precision 98.36% 

Recall 98.59% 

Specificity 95.57% 

F1-score 98.47% 

Accuracy 97.78% 

Test Loss (Binary CE) 0.0599 

 

TABLE 6. The performance metrics of the VGG19 network. 

Performance Metric Result (Value) 

Precision 98.14% 

Recall 98.71% 

Specificity 94.94% 

F1-score 98.42% 

Accuracy 97.69% 

Test Loss (Binary CE) 0.0589 

 

 
              (a) KNN classifier                                (b) LR classifier 

 

 
            (c) Gaussian NB classifier                   (d) RF classifier  

 
           (e) Linear SVM classifier                    (f) Polynomial SVM classifier 

                    
        (g) SVM-RBF classifier 

FIGURE 20. The confusion matrices of the hybrid CNN model with ML 
classifiers. 

  

means that a greater number of pneumonia cases are detected 

by this model. Moreover, the F1-score of the ensemble 

classifier is slightly better than that of KNN classifier. 

Furthermore, the ensemble classifiers provide better 

generalization on the test set and reduce the classification 

bias and/or variance [61]. Therefore, the proposed ensemble 

classifier was selected as the final best model. The proposed 

ensemble classifier has been compared with existing studies 

in the literature regarding the detection of pneumonia in 

CXR images in Table 9. In these studies, a binary
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 TABLE 7. The results of the hybrid CNN model with ML classifiers.  

CNN Models with ML classifiers Precision (%) Recall (%) Specificity (%) F1-Score (%) 
Accuracy 

(%) 

CNN model with KNN classifier 98.83* 99.18 96.84 99.00 98.55 

CNN model with LR classifier 98.48 98.83 95.89 98.65 98.03 

CNN model with Gaussian NB classifier 92.27 97.89 77.85 95.00 92.48 

CNN model with RF classifier 97.80 99.06 93.99 98.43 97.69 

CNN model with linear SVM Classifier 

CNN model with polynomial SVM classifier 

98.60 

98.60 

98.83 

99.06 

96.20 

96.20 

98.71 

98.83 

98.12 

98.29 

CNN model with SVM-RBF classifier 98.49 99.18 95.89 98.83 98.29 

∗ Bold numbers indicate superior performance

 

 

FIGURE 21. The confusion matrix of the proposed ensemble classifier.  

TABLE 8. The performance metrics of the proposed ensemble classifier. 

Performance Metric Result (Value) 

Precision 98.72% 

Recall 99.30% 

Specificity 96.52% 

F1-score 99.01% 

Accuracy 98.55% 

 

classification of normal and pneumonia images has been 

performed. According to Table 9, the proposed ensemble 

classifier in this study has a very high recall, compared to 

most of the recent studies. The accuracy, precision, and F1-

score of the proposed ensemble classifier are higher than 

those of all the mentioned studies. It is also noteworthy that 

the test set used in this study was bigger than the test sets 

used in the compared studies, except in [18], and if more 

images for each class were used in the training process, these 

statistical measurements, as well as the generalization of the 

model would improve.  

Consequently, the results of the study suggest that the 

proposed ensemble classifier can be utilized to aid 

radiologists in a time-efficient medical decision-making for 

pneumonia detection in CXR images with an accuracy of 

98.55% and a recall of 99.30%. In this regard, this model was 

deployed to implement a mobile phone web-delivered 

application of pneumonia detection. In order to implement 

this application, the saved optimized weights of the trained 

hybrid CNN model with FC layers (the first classification 

approach) were utilized to extract the features of an input 

CXR image and then the saved SVM-RBF and LR classifiers 

to create the proposed ensemble classifier and classify the 

input CXR image. The instructions regarding the  

 

implementation of this application are provided on a public 

Google collab repository [62]. The environment of the 

implemented application is demonstrated in Figure 22. This 

web application takes the input CXR image from the user. At 

that point, the features of CXR images are extracted using 

the saved optimized weights of the hybrid CNN model, 

which were gained in the first classification approach. 

Therefore, the most representative CXR image features are 

gained for the classification phase. Consequently, this web 

application employs the saved SVM-RBF and LR classifiers 

to create the proposed ensemble classifier and classify the 

input CXR image with an accuracy of 98.55%. 

C. DISCUSSIONS, IMPLICATIONS, AND LIMITATIONS 

Machine Learning (ML) and Deep Learning (DL) methods 

are one of the most effective tools that can assist physicians, 

clinicians, and radiologists in various medical applications 

and tasks. These methods can be utilized to establish CAD 

systems to detect diseases at an early stage in order to 

provide early treatments and reduce mortality rate in 

patients. Due to the rapid expansion of lung diseases in 

patients, there is an urgent need for early detection of lung 

diseases. As a noteworthy example, the delayed detection of 

widespread COVID-19 pneumonia can lead to a higher death 

probability and need for a highly-intensive care in patients, 

which can be prevented by early diagnosis [63]. In this 

regard, CAD systems can be effective for early detection of 

lung diseases. These systems can be much faster than an 

experienced radiologist in CXR image analysis. When there 

is a similarity between the features of diseases, CAD systems 

can effectively distinguish those features which can be a 

challenging task to radiologists. Therefore, CAD systems 

based on ML- and DL-based methods, and especially state-

of-the-art CNN models can provide a more-informed and 

reliable framework for real-world medical decision-making 

by clinicians, radiologists, and healthcare experts.  

There were some limitations in the current study. The first 

limitation of this study was the number of images available 

in the dataset. CNN models require large datasets with 

thousands of images to increase the generalization of the 

model. The generalization of the proposed hybrid CNN 

model with FC layers/ML classifiers in this study would 

improve by using a larger dataset with more images for both 

the normal class and pneumonia class in the training process. 

Moreover, the performance of the proposed hybrid CNN 
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TABLE 9. Comparison of the proposed model with existing studies. 

Model Total number of images Precision (%) Recall (%) F1-score (%) Accuracy (%) 

Jain et al. [20] 5840 - 98 94 92.31 

Stephen et al. [22] 5856 - - - 93.73 

Kermany et al. [24] 5856 - 93.2 - 92.8 

Moujahid et al. [64] 5856 91 97 94 96.81 

Shah et al. [65] 5856 97.2 98.1 97.6 96.6 

Manickam et al. [66] 5229 88.97 96.78 92.71 93.06 

Fernandes et al. [17] 5232 96.4 97.9 97.2 96.4 

Dey et al. [18] 7150 95.02 - 96.27 97.94 

Rajaraman et al. [19] 5856 97.7 96.2 97.0 96.2 

Sousa et al. [23] 5232 - 99.7* - 95.3 

Liang and Zheng [21] 5856 89.1 96.7 92.7 90.5 

Saraiva et al. [67] 5863 - - - 94.4 

Chouhan et al. [68] 5232 93.28 99.62 - 96.39 

Rahman et al. [25] 5247 97 99 98.1 98 

Zhang et al. [26] 5786 94.41 90.82 92.58 96.07 

Hashmi et al. [69] 5856 98.26 99.00 - 98.43 

Mamalakis et al. [70] 5233 98.31 98.12 98.21 - 

The proposed ensemble classifier 5856 98.72 99.30 99.01 98.55 

∗ Bold numbers indicate superior performance. 

 

   

FIGURE 22. The environment of the implemented mobile phone web 
application for pneumonia detection.  

 

model with FC layers/ML classifiers would also improve by 

deploying larger datasets. The second limitation is that there 

is a need for developing techniques for specifying the regions 

of infection in CXR images, combined with the proposed 

models to assist radiologists for a more informed medical 

decision-making.  

 

 

 

 
IV. CONVLUSION 

Pneumonia is a significant cause of death in children and 

adults in the world. Pneumonia can be prevented with modest  

 

treatments and cured with low-cost, low-tech medication and 

care. In this study, a new hybrid VGG-based CNN model 

was proposed to detect pneumonia in CXR images. In this 

regard, three classification approaches were utilized. In the 

first classification approach, the hybrid CNN model was 

deployed with FC layers and was trained to gain the weights 

that produce the highest classification accuracy. In the 

second classification approach, the saved optimized weights 

were employed to extract the most representative CXR 

image features and five ML classifiers, including KNN, LR, 

NB, RF, and SVM were utilized to classify CXR images. In 

the third classification approach, an ensemble classifier 

using the trained classifiers in the first and second 

classification approaches was created. The best-performing 

model was the proposed ensemble classifier using a weight 

of 0.4 for SVM-RBF classifier and a weight of 0.1 for LR 

classifier, which achieved an accuracy of 98.55%, a 

precision of 98.72%, a recall of 99.30%, and an F1-score of 

99.01%. This model had the best performance in terms of all 

performance metrics, compared to the hybrid model with FC 

layers and all the ML classifiers. Moreover, this model had a 

superior performance, compared to existing algorithm within 

the literature regarding the detection of pneumonia in CXR 

images. Ultimately, a mobile phone web-delivered 

application of pneumonia detection was designed using the 

proposed ensemble classifier, which can assist radiologists 

in pneumonia detection with a significant accuracy.  

Even though this research study has accomplished the 

research intentions, some limitations still exist. Hence, 
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recommendations for future directions, developments, and 

applications of the current study can be summarized and 

demonstrated as follows. First, the performance of the 

proposed hybrid CNN model can be further improved by 

developing new robust classifiers for the classification 

infection areas in CXR images using the radiologists’ 

knowledge and DL-based methods, along with the proposed 

hybrid CNN model, a new framework can be established to 

assist radiologists for a more informed and reliable medical 

decision-making. Third, the performance of the hybrid CNN 

model with FC layers can be improved by fine-tuning the 

hyperparameters of the model, including the learning rate 

and optimizer. Fourth, the hybrid CNN model with FC layers 

can be utilized to create a weighted ensemble CNN model 

using the pre-trained CNN models to increase the 

classification accuracy. Fifth, the hybrid CNN model can be 

deployed for classification of COVID-19 pneumonia and 

other viral pneumonia types. Sixth, the hybrid CNN model 

can be applied to other medical decision-making problems, 

such as classification of other lung diseases and infections.  

CONFLICT OF INTERESTS 

The authors declare that they have no known competing 

financial interests or personal relationships that could have 

appeared to influence the work reported in this article. 

REFERENCES 
[1]  World Health Organization. "Pneumonia." https://www.who.int/news-

room/fact-sheets/detail/pneumonia (accessed February 20, 

2022). 

[2]  A. Torres et al., "Pneumonia," Nature Reviews Disease Primers, vol. 

7, no. 1, p. 25, 2021/04/08 2021, doi: 10.1038/s41572-021-

00259-0. 

[3]  Save the Children. "Pneumonia to Kill Nearly 11 Million Children by 

2030." https://www.savethechildren.org/us/about-us/media-

and-news/2018-press-releases/pneumonia-to-kill-nearly-11-

million-children-by-2030 (accessed February 20, 2022). 

[4]  F. W. Arnold et al., "Older Adults Hospitalized for Pneumonia in the 

United States: Incidence, Epidemiology, and Outcomes," (in 

eng), J Am Geriatr Soc, vol. 68, no. 5, pp. 1007-1014, May 

2020, doi: 10.1111/jgs.16327. 

[5]  World Health Organization. "Household air pollution and health." 

https://www.who.int/news-room/fact-sheets/detail/household-

air-pollution-and-health (accessed February 20, 2022). 

[6]  A. H. Attaway, R. G. Scheraga, A. Bhimraj, M. Biehl, and U. 

Hatipoğlu, "Severe covid-19 pneumonia: pathogenesis and 

clinical management," (in eng), Bmj, vol. 372, p. n436, Mar 10 

2021, doi: 10.1136/bmj.n436. 

[7]  O. Ruuskanen, E. Lahti, L. C. Jennings, and D. R. Murdoch, "Viral 

pneumonia," (in eng), Lancet, vol. 377, no. 9773, pp. 1264-75, 

Apr 9 2011, doi: 10.1016/s0140-6736(10)61459-6. 

[8]  RadiologyInfo.org. "Pneumonia " 

https://www.radiologyinfo.org/en/info/pneumonia (accessed 

February 20, 2022). 

[9]  W. H. Self, D. M. Courtney, C. D. McNaughton, R. G. Wunderink, 

and J. A. Kline, "High discordance of chest x-ray and computed 

tomography for detection of pulmonary opacities in ED 

patients: implications for diagnosing pneumonia," The 

American Journal of Emergency Medicine, vol. 31, no. 2, pp. 

401-405, 2013/02/01/ 2013, doi: 10.1016/j.ajem.2012.08.041. 

[10]  k. Cherney. "MRI vs. X-Ray: What You Need to Know." Healthline. 

https://www.healthline.com/health/mri-vs-xray (accessed 

February 20, 2022). 

[11]  T. P. Htun, Y. Sun, H. L. Chua, and J. Pang, "Clinical features for 

diagnosis of pneumonia among adults in primary care setting: 

A systematic and meta-review," Scientific Reports, vol. 9, no. 

1, p. 7600, 2019/05/20 2019, doi: 10.1038/s41598-019-44145-

y. 

[12]  R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, "Deep 

learning for healthcare: review, opportunities and challenges," 

Briefings in Bioinformatics, vol. 19, no. 6, pp. 1236-1246, 

2017, doi: 10.1093/bib/bbx044. 

[13]  H.-P. Chan, L. M. Hadjiiski, and R. K. Samala, "Computer-aided 

diagnosis in the era of deep learning," Medical Physics, vol. 47, 

no. 5, pp. e218-e227, 2020, doi: 10.1002/mp.13764. 

[14]  P. Rajpurkar et al., "Deep learning for chest radiograph diagnosis: A 

retrospective comparison of the CheXNeXt algorithm to 

practicing radiologists," (in eng), PLoS Med, vol. 15, no. 11, p. 

e1002686, Nov 2018, doi: 10.1371/journal.pmed.1002686. 

[15]  J. Seah et al., "Effect of a comprehensive deep-learning model on the 

accuracy of chest x-ray interpretation by radiologists: a 

retrospective, multireader multicase study," The Lancet Digital 

Health, vol. 3, 07/01 2021, doi: 10.1016/S2589-

7500(21)00106-0. 

[16]  A. Hosny, C. Parmar, J. Quackenbush, L. H. Schwartz, and H. J. W. 

L. Aerts, "Artificial intelligence in radiology," (in eng), Nat Rev 

Cancer, vol. 18, no. 8, pp. 500-510, 2018, doi: 10.1038/s41568-

018-0016-5. 

[17]  V. Fernandes, G. B. Junior, A. C. de Paiva, A. C. Silva, and M. 

Gattass, "Bayesian convolutional neural network estimation for 

pediatric pneumonia detection and diagnosis," Computer 

Methods and Programs in Biomedicine, vol. 208, p. 106259, 

2021/09/01/ 2021, doi: 10.1016/j.cmpb.2021.106259. 

[18]  N. Dey, Y.-D. Zhang, V. Rajinikanth, R. Pugalenthi, and N. S. M. 

Raja, "Customized VGG19 Architecture for Pneumonia 

Detection in Chest X-Rays," Pattern Recognition Letters, vol. 

143, pp. 67-74, 2021/03/01/ 2021, doi: 

10.1016/j.patrec.2020.12.010. 

[19]  S. Rajaraman, S. Candemir, I. Kim, G. Thoma, and S. Antani, 

"Visualization and Interpretation of Convolutional Neural 

Network Predictions in Detecting Pneumonia in Pediatric Chest 

Radiographs," Applied Sciences, vol. 8, no. 10, 2018, doi: 

10.3390/app8101715. 

[20]  R. Jain, P. Nagrath, G. Kataria, V. Sirish Kaushik, and D. Jude 

Hemanth, "Pneumonia detection in chest X-ray images using 

convolutional neural networks and transfer learning," (in en), 

Measurement, vol. 165, p. 108046, 2020/12// 2020, doi: 

10.1016/j.measurement.2020.108046. 

[21]  G. Liang and L. Zheng, "A transfer learning method with deep 

residual network for pediatric pneumonia diagnosis," Computer 

Methods and Programs in Biomedicine, vol. 187, p. 104964, 

2020/04/01/ 2020, doi: 10.1016/j.cmpb.2019.06.023. 

[22]  O. Stephen, M. Sain, U. J. Maduh, and D.-U. Jeong, "An Efficient 

Deep Learning Approach to Pneumonia Classification in 

Healthcare," Journal of Healthcare Engineering, vol. 2019, p. 

4180949, 2019/03/27 2019, doi: 10.1155/2019/4180949. 

[23]  G. G. B. Sousa, V. R. M. Fernandes, and A. C. de Paiva, "Optimized 

Deep Learning Architecture for the Diagnosis of Pneumonia 

Through Chest X-Rays," in Image Analysis and Recognition, 

vol. 11663, F. Karray, A. Campilho, and A. Yu Eds. Cham: 

Springer International Publishing, 2019, pp. 353-361. 

[24]  D. S. Kermany et al., "Identifying Medical Diagnoses and Treatable 

Diseases by Image-Based Deep Learning," Cell, vol. 172, no. 5, 

pp. 1122-1131.e9, 2018/02/22/ 2018, doi: 

10.1016/j.cell.2018.02.010. 

[25]  T. Rahman et al., "Transfer Learning with Deep Convolutional 

Neural Network (CNN) for Pneumonia Detection Using Chest 

X-ray," Applied Sciences, vol. 10, no. 9, 2020, doi: 

10.3390/app10093233. 

[26]  D. Zhang, F. Ren, Y. Li, L. Na, and Y. Ma, "Pneumonia Detection 

from Chest X-ray Images Based on Convolutional Neural 

Network," Electronics, vol. 10, no. 13, 2021, doi: 

10.3390/electronics10131512. 

[27]  V. Gavrishchaka, Z. Yang, R. Miao, and O. Senyukova, "Advantages 

of hybrid deep learning frameworks in applications with limited 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3182498

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.who.int/news-room/fact-sheets/detail/pneumonia
https://www.who.int/news-room/fact-sheets/detail/pneumonia
https://www.savethechildren.org/us/about-us/media-and-news/2018-press-releases/pneumonia-to-kill-nearly-11-million-children-by-2030
https://www.savethechildren.org/us/about-us/media-and-news/2018-press-releases/pneumonia-to-kill-nearly-11-million-children-by-2030
https://www.savethechildren.org/us/about-us/media-and-news/2018-press-releases/pneumonia-to-kill-nearly-11-million-children-by-2030
https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health
https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health
https://www.radiologyinfo.org/en/info/pneumonia
https://www.healthline.com/health/mri-vs-xray


 

VOLUME XX, 2017 9 

data," International Journal of Machine Learning and 

Computing, vol. 8, pp. 549-558, 12/01 2018, doi: 

10.18178/ijmlc.2018.8.6.744. 

[28]  S. Ardabili, A. Mosavi, and A. Varkonyi-Koczy, "Advances in 

Machine Learning Modeling Reviewing Hybrid and Ensemble 

Methods," in Engineering for Sustainable Future, 2020, pp. 

215-227. 

[29]  W. Saad, W. A. Shalaby, M. Shokair, F. A. El-Samie, M. Dessouky, 

and E. Abdellatef, "COVID-19 classification using deep feature 

concatenation technique," Journal of Ambient Intelligence and 

Humanized Computing, vol. 13, no. 4, pp. 2025-2043, 

2022/04/01 2022, doi: 10.1007/s12652-021-02967-7. 

[30]  N. Noreen, S. Palaniappan, A. Qayyum, I. Ahmad, M. Imran, and M. 

Shoaib, "A Deep Learning Model Based on Concatenation 

Approach for the Diagnosis of Brain Tumor," IEEE Access, 

vol. 8, pp. 55135-55144, 2020, doi: 

10.1109/ACCESS.2020.2978629. 

[31]  J. Penm, B. Chaar, R. Moles, and J. Penm, "37 - Predicting ASX 

Health Care Stock Index Movements After the Recent 

Financial Crisis Using Patterned Neural Networks," in 

Rethinking Valuation and Pricing Models, C. S. Wehn, C. 

Hoppe, and G. N. Gregoriou Eds.: Academic Press, 2013, pp. 

599-610. 

[32]  A. Urso, A. Fiannaca, M. La Rosa, V. Ravì, and R. Rizzo, "Data 

Mining: Classification and Prediction," in Encyclopedia of 

Bioinformatics and Computational Biology, S. Ranganathan, 

M. Gribskov, K. Nakai, and C. Schönbach Eds. Oxford: 

Academic Press, 2019, pp. 384-402. 

[33]  S. Nisha and N. Meeral, "Applications of deep learning in biomedical 

engineering," in Handbook of Deep Learning in Biomedical 

Engineering, 2020, pp. 245-270. 

[34]  R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, 

"Convolutional neural networks: an overview and application 

in radiology," (in eng), Insights Imaging, vol. 9, no. 4, pp. 611-

629, Aug 2018, doi: 10.1007/s13244-018-0639-9. 

[35]  J. Ker, L. Wang, J. Rao, and T. Lim, "Deep Learning Applications in 

Medical Image Analysis," IEEE Access, vol. 6, pp. 9375-9389, 

2018, doi: 10.1109/ACCESS.2017.2788044. 

[36]  C. Zhou, J. Song, S. Zhou, Z. Zhang, and J. Xing, "COVID-19 

Detection Based on Image Regrouping and Resnet-SVM Using 

Chest X-Ray Images," IEEE Access, vol. 9, pp. 81902-81912, 

2021, doi: 10.1109/ACCESS.2021.3086229. 

[37]  K. Balaji and K. Lavanya, "Chapter 5 - Medical Image Analysis With 

Deep Neural Networks," in Deep Learning and Parallel 

Computing Environment for Bioengineering Systems, A. K. 

Sangaiah Ed.: Academic Press, 2019, pp. 75-97. 

[38]  V. Dumoulin and F. Visin, "A guide to convolution arithmetic for 

deep learning," ArXiv, vol. abs/1603.07285, 2016. 

[39]  E. Fathi and B. Maleki Shoja, "Chapter 9 - Deep Neural Networks for 

Natural Language Processing," in Handbook of Statistics, vol. 

38, V. N. Gudivada and C. R. Rao Eds.: Elsevier, 2018, pp. 

229-316. 

[40]  S. Ruder, "An overview of gradient descent optimization algorithms," 

arXiv:1609.04747 [cs], 2017/06/15/ 2017. [Online]. Available: 

http://arxiv.org/abs/1609.04747. 

[41]  A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, "The 

Marginal Value of Adaptive Gradient Methods in Machine 

Learning," in NIPS, 2017.  

[42]  K. Simonyan and A. Zisserman, "Very Deep Convolutional 

Networks for Large-Scale Image Recognition," arXiv 

1409.1556, 09/04 2014. 

[43]  P. Mehta et al., "A high-bias, low-variance introduction to Machine 

Learning for physicists," Physics Reports, vol. 810, 03/23 2018, 

doi: 10.1016/j.physrep.2019.03.001. 

[44]  J. Deng, W. Dong, R. Socher, L. Li, L. Kai, and F.-F. Li, "ImageNet: 

A large-scale hierarchical image database," in 2009 IEEE 

Conference on Computer Vision and Pattern Recognition, 20-

25 June 2009 2009, pp. 248-255, doi: 

10.1109/CVPR.2009.5206848.  

[45]  S. J. Pan and Q. Yang, "A Survey on Transfer Learning," IEEE 

Transactions on Knowledge and Data Engineering, vol. 22, no. 

10, pp. 1345-1359, 2010, doi: 10.1109/TKDE.2009.191. 

[46]  H. Zhang, L. Zhang, and Y. Jiang, "Overfitting and Underfitting 

Analysis for Deep Learning Based End-to-end Communication 

Systems," in 2019 11th International Conference on Wireless 

Communications and Signal Processing (WCSP), 23-25 Oct. 

2019 2019, pp. 1-6, doi: 10.1109/WCSP.2019.8927876.  

[47]  C. M. Bishop, Pattern recognition and machine learning 

(Information science and statistics). New York: Springer, 2006, 

p. 738. 

[48]  N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. 

Salakhutdinov, "Dropout: a simple way to prevent neural 

networks from overfitting," J. Mach. Learn. Res., vol. 15, pp. 

1929-1958, 2014. 

[49]  C. Shorten and T. M. Khoshgoftaar, "A survey on Image Data 

Augmentation for Deep Learning," J Big Data, Article vol. 6, 

no. 1, 2019, Art no. 60, doi: 10.1186/s40537-019-0197-0. 

[50]  X. Wu et al., "Top 10 algorithms in data mining," Knowledge and 

Information Systems, vol. 14, no. 1, pp. 1-37, 2008/01/01 2008, 

doi: 10.1007/s10115-007-0114-2. 

[51]  J. Han, M. Kamber, and J. Pei, "2 - Getting to Know Your Data," in 

Data Mining (Third Edition), J. Han, M. Kamber, and J. Pei 

Eds. Boston: Morgan Kaufmann, 2012, pp. 39-82. 

[52]  J. I. E. Hoffman, "Chapter 33 - Logistic Regression," in Biostatistics 

for Medical and Biomedical Practitioners, J. I. E. Hoffman Ed.: 

Academic Press, 2015, pp. 601-611. 

[53]  I. Rish, "An Empirical Study of the Naïve Bayes Classifier," IJCAI 

2001 Work Empir Methods Artif Intell, vol. 3, 01/01 2001. 

[54]  W. Lou, X. Wang, F. Chen, Y. Chen, B. Jiang, and H. Zhang, 

"Sequence Based Prediction of DNA-Binding Proteins Based 

on Hybrid Feature Selection Using Random Forest and 

Gaussian Naïve Bayes," PLOS ONE, vol. 9, no. 1, p. e86703, 

2014, doi: 10.1371/journal.pone.0086703. 

[55]  K. Fawagreh, M. Gaber, and E. Elyan, "Random Forests: From Early 

Developments to Recent Advancements," Systems Science & 

Control Engineering, vol. 2, 09/30 2014, doi: 

10.1080/21642583.2014.956265. 

[56]  C. Kingsford and S. L. Salzberg, "What are decision trees?," (in eng), 

Nat Biotechnol, vol. 26, no. 9, pp. 1011-3, Sep 2008, doi: 

10.1038/nbt0908-1011. 

[57]  J. Cervantes, F. García-Lamont, L. Rodríguez, and A. Lopez-Chau, 

"A comprehensive survey on support vector machine 

classification: Applications, challenges and trends," 

Neurocomputing, vol. 408, 05/01 2020, doi: 

10.1016/j.neucom.2019.10.118. 

[58]  D. S. Kermany, K. Zhang, and M. Goldbaum. "Labeled Optical 

Coherence Tomography (OCT) and Chest X-Ray Images for 

Classification." https://data.mendeley.com/datasets/rscbjbr9sj/2 

(accessed February 20, 2022). 

[59]  "Google Collaboratory Notebooks." Google. 

https://colab.research.google.com/notebooks/ (accessed 

February 20, 2022). 

[60]  M. Yaseliani, A. Zeinal Hamadani, A. Ijadi Maghsoodi, and A. 

Mosavi. "Pneumonia Detection in Chest X-Ray Images Using a 

Hybrid Deep Convolutional Neural Network Based on Two 

Parallel Visual Geometry Group Architectures and Machine 

Learning Classifiers." 

https://github.com/mohammadyaseliani/Pneumonia-Paper 

(accessed February 20, 2022). 

[61]  M. Re and G. Valentini, "Ensemble methods: A review," 2012, pp. 

563-594. 

[62]  M. Yaseliani, A. Zeinal Hamadani, A. Ijadi Maghsoodi, and A. 

Mosavi. "A Web Application for Pneumonia Detection in Chest 

X-Ray Images Using a Hybrid Deep Convolutional Neural 

Network Based on Two Parallel Visual Geometry Group 

Architectures and K-Nearest Neighbors Classifier." 

https://colab.research.google.com/github/mohammadyaseliani/

Pneumonia-Paper/blob/main/Web%20Application.ipynb 

(accessed February 20, 2022). 

[63]  D. Goyal et al., "Improving the early identification of COVID-19 

pneumonia: a narrative review," BMJ Open Respiratory 

Research, vol. 8, no. 1, p. e000911, 2021, doi: 

10.1136/bmjresp-2021-000911. 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3182498

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

http://arxiv.org/abs/1609.04747
https://data.mendeley.com/datasets/rscbjbr9sj/2
https://colab.research.google.com/notebooks/
https://github.com/mohammadyaseliani/Pneumonia-Paper
https://colab.research.google.com/github/mohammadyaseliani/Pneumonia-Paper/blob/main/Web%20Application.ipynb
https://colab.research.google.com/github/mohammadyaseliani/Pneumonia-Paper/blob/main/Web%20Application.ipynb


 

VOLUME XX, 2017 9 

[64]  H. Moujahid, B. Cherradi, O. el Gannour, L. Bahatti, O. Terrada, and 

S. Hamida, "Convolutional Neural Network Based 

Classification of Patients with Pneumonia using X-ray Lung 

Images," vol. 5, pp. 167-175, 09/17 2020, doi: 

10.25046/aj050522. 

[65]  U. Shah, A. Abd-Alrazeq, T. Alam, M. Househ, and Z. Shah, "An 

Efficient Method to Predict Pneumonia from Chest X-Rays 

Using Deep Learning Approach," (in eng), Stud Health Technol 

Inform, vol. 272, pp. 457-460, Jun 26 2020, doi: 

10.3233/shti200594. 

[66]  A. Manickam, J. Jiang, Y. Zhou, A. Sagar, R. Soundrapandiyan, and 

R. Dinesh Jackson Samuel, "Automated pneumonia detection 

on chest X-ray images: A deep learning approach with different 

optimizers and transfer learning architectures," Measurement, 

vol. 184, p. 109953, 2021/11/01/ 2021, doi: 

10.1016/j.measurement.2021.109953. 

[67]  A. A. Saraiva et al., "Models of Learning to Classify X-ray Images 

for the Detection of Pneumonia using Neural Networks," in 

BIOIMAGING, 2019, pp. 76-83, doi: 

10.5220/0007346600760083.  

[68]  V. Chouhan et al., "A Novel Transfer Learning Based Approach for 

Pneumonia Detection in Chest X-ray Images," Applied 

Sciences, vol. 10, no. 2, 2020, doi: 10.3390/app10020559. 

[69]  M. F. Hashmi, S. Katiyar, A. G. Keskar, N. D. Bokde, and Z. W. 

Geem, "Efficient Pneumonia Detection in Chest Xray Images 

Using Deep Transfer Learning," Diagnostics, vol. 10, no. 6, 

2020, doi: 10.3390/diagnostics10060417. 

[70]  M. Mamalakis et al., "DenResCov-19: A deep transfer learning 

network for robust automatic classification of COVID-19, 

pneumonia, and tuberculosis from X-rays," (in eng), Comput 

Med Imaging Graph, vol. 94, p. 102008, Dec 2021, doi: 

10.1016/j.compmedimag.2021.102008. 

 

MOHAMMAD YASELIANI received his B.Sc. degree in Industrial 

Engineering (IE) from Sharif University of Technology (SUT). He is 

currently studying M.Sc. in IE at Isfahan University of Technology (IUT). 

His research interests include Deep Learning (DL), Machine Learning 

(ML), and Medical Image Processing (MIP).  

 

 
ALI ZEINAL HAMADANI is currently working as a professor of 

department of Industrial Engineering, Isfahan University of Technology, 

Isfahan, Iran. He received his Ph.D. degree in Industrial Technology from 

University of Bradford, Bradford, England. He received his MSc. in Applied 

Statistics from University of Sussex, Brighton, England. He has authored 

many research papers published in highly ranked journals. 

 

ABTIN IJADI MAGHSOODI is a PhD candidate in Operations and Supply 

Chain Management at the Department of Information Systems and 

Operations Management (ISOM), University of Auckland. He received his 

M.Sc. degree in Industrial and Systems Engineering in 2018, and a B.Sc. 

degree in Industrial Engineering in 2015, both from Azad University, Iran. 

He has authored several research papers published in highly ranked journals, 

including Computers & Industrial Engineering, European Research on 

Management and Business Economics, Knowledge-based Systems, 

Archives of Civil and Mechanical Engineering, and Applied Soft 

Computing. 

. 

AMIR MOSAVI received the graduate degree from London Kingston 

University, U.K., and the Ph.D. degree in applied informatics. He was a 

Senior Research Fellow at Oxford Brookes University and the Queensland 

University of Technology. He is an Associate Professor of artificial 

intelligence and machine learning. He is a Data Scientist for climate change, 

sustainability, and hazard prediction. He was a recipient of the Alexander 

von Humboldt Award, the Green-Talent Award, the UNESCO Young 

Scientist Award, the Alain Bensoussan Fellowship, the GO STYRIA 

Award, the Estonian Dora Plus Grant, the Estophilus Scholarship, the Future 

Talent TU Darmstadt, the World Academy of Sciences UNESCO Award, 

the Marie Curie Award, the Endeavour-Australia Leadership Award, the 

Talented Young Scientist Award, the Slovak National Research Award, and 

the European Research Consortium for Informatics and Mathematics 

Fellowship. 

 

 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3182498

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


