
PocketFlow: An Automated Framework for

Compressing and Accelerating Deep Neural Networks

Jiaxiang Wu, Yao Zhang, Jinlong Hou, Wei Liu, Wenbing Huang
Tencent AI Lab

{jonathanwu, nandozhang, kinghou, topliu}�tenent.om, hwenbing�126.om

Haoli Bai
Chinese University of Hong Kong

hlbai�se.uhk.edu.hk

Huasong Zhong
Tsinghua University

zhonghs16�mails.tsinghua.edu.n

Junzhou Huang
University of Texas at Arlington

jzhuang�uta.edu

Abstract

Deep neural networks are widely used in various domains, but the prohibitive
computational complexity prevents their deployment on mobile devices. Numer-
ous model compression algorithms have been proposed, however, it is often dif-
ficult and time-consuming to choose proper hyper-parameters to obtain an effi-
cient compressed model. In this paper, we propose an automated framework
for model compression and acceleration, namely PocketFlow. This is an easy-to-
use toolkit that integrates a series of model compression algorithms and embeds
a hyper-parameter optimization module to automatically search for the optimal
combination of hyper-parameters. Furthermore, the compressed model can be
converted into the TensorFlow Lite format and easily deployed on mobile devices
to speed-up the inference. PocketFlow is now open-source and publicly available
at https://github.om/Tenent/PoketFlow.

1 Introduction

Deep learning has been widely used in various areas, such as computer vision, speech recognition,
and natural language translation. However, deep learning models are often computational expensive,
which limits further applications on mobile devices with limited computational resources.

To address this dilemma between accuracy and computational complexity, numerous algorithms
have been proposed to compress and accelerate deep networks with minimal performance degra-
dation. Commonly-used approaches include low-rank decomposition [16, 15], channel pruning
(a.k.a. structured pruning) [7, 18], weight sparsification (a.k.a. non-structured pruning) [17], and
weight quantization [2, 3]. However, these algorithms usually involve several hyper-parameters
that may have a large impact on the compressed model’s performance. It can be quite difficult to
efficiently choose proper hyper-parameter combinations for different models and learning tasks. Re-
cently, some researches adopted reinforcement learning methods to automatically determine hyper-
parameters for channel pruning [5] and weight sparsification [6] algorithms.

In this paper, we present an automated framework for compressing and accelerating deep neu-
ral networks, namely PocketFlow. We aim at providing an easy-to-use toolkit for developers to
improve the inference efficiency with little or no performance degradation. PocketFlow has inte-

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

https://github.com/Tencent/PocketFlow

grated a series of model compression algorithms, including structured/non-structured pruning and
uniform/non-uniform quantization. A hyper-parameter optimizer is incorporated to automatically
determine hyper-parameters for model compression components. After iteratively training candi-
date compressed models and adjusting hyper-parameters, a final compressed model is obtained to
maximally satisfy user’s requirements on compression and/or acceleration ratios. The resulting
model can be exported as a TensorFlow-Lite file for efficient deployment on mobile devices.

2 Framework Design

The proposed framework mainly consists of two categories of algorithm components, i.e. learners
and hyper-parameter optimizers, as depicted in Figure 1. Given an uncompressed original model,
the learner module generates a candidate compressed model using some randomly chosen hyper-
parameter combination. The candidate model’s accuracy and computation efficiency is then evalu-
ated and used by hyper-parameter optimizer module as the feedback signal to determine the next
hyper-parameter combination to be explored by the learner module. After a few iterations, the best
one of all the candidate models is output as the final compressed model.

Original

Model

Channel Pruning

Weight Sparsification

Weight Quantization

Fast Fine-tuning

Re-training with Full Data

Compression /

Acceleration Methods
Training Techniques

Candidate

Model

Hyper-parameter

Optimizers
Evaluate

Compressed

Model

Multi-GPU Training

Network Distillation

Learners

Train

Figure 1: The overall framework of PocketFlow.

2.1 Learners

A learner refers to some model compression algorithm augmented with several training techniques
as shown in Figure 1. Below is a list of model compression algorithms supported in PocketFlow:

Table 1: List of learners and corresponding model compression algorithms.
Name Description

ChannelPrunedLearner channel pruning with LASSO-based channel selection [7]
DisChnPrunedLearner discrimination-aware channel pruning [18]

WeightSparseLearner weight sparsification with dynamic pruning ratio schedule [17]
UniformQuantLearner weight quantization with uniform reconstruction levels [9]
NonUniformQuantLearner weight quantization with non-uniform reconstruction levels [3]

All the above model compression algorithms can trained with fast fine-tuning, which is to directly
derive a compressed model from the original one by applying either pruning masks or quantization
functions. The resulting model can be fine-tuned with a few iterations to recover the accuracy
to some extent. Alternatively, the compressed model can be re-trained with the full training data,
which leads to higher accuracy but usually takes longer to complete.

To further reduce the compressed model’s performance degradation, we adopt network distillation
to augment its training process with an extra loss term, using the original uncompressed model’s
outputs as soft labels. Additionally, multi-GPU distributed training is enabled for all learners to
speed-up the time-consuming training process.

2

2.2 Hyper-parameter Optimizers

For model compression algorithms, there are several hyper-parameters that may have a large impact
on the final compressed model’s performance. It can be quite difficult to manually determine proper
values for these hyper-parameters, especially for developers that are not very familiar with algorithm
details. Therefore, we introduce the hyper-parameter optimizer module to iteratively search for the
optimal hyper-parameter setting.

In PocketFlow, we provide several implementations of hyper-parameter optimizer, based on models
including Gaussian Processes (GP) [12], Tree-structured Parzen Estimator (TPE) [1], and Determin-
istic Deep Policy Gradients (DDPG) [11]. The hyper-parameter setting is optimized through an
iterative process. In each iteration, the hyper-parameter optimizer chooses a combination of hyper-
parameter values, and the learner generates a candidate model with fast fast-tuning. The candidate
model is evaluated to calculate the reward of the current hyper-parameter setting. After that, the
hyper-parameter optimizer updates its model to improve its estimation on the hyper-parameter space.
Finally, when the best candidate model (and corresponding hyper-parameter setting) is selected after
some iterations, this model can be re-trained with full data to further reduce the performance loss.

3 Experimental Results

For empirical evaluation, we adopt PocketFlow to compress and accelerate classification models on
the CIFAR-10 [10] and ILSVRC-12 [13] data sets. In Figure 2a, we use ChannelPrunedLearner to
speed-up ResNet-56 [4] to reduce its computational complexity. We observe that the accuracy loss
under 2.5× acceleration is 0.4% and under 3.3× acceleration is 0.7%, and compressed models are
more efficient and effective that the shallower ResNet-44 model. In Figure 2b, we use WeightSparse-
Learner to compress MobileNet [8] to reduce its model size. We discover that the compressed model
achieves similar classification accuracy with much smaller model size than MobileNet, Inception-v1
[14], and ResNet-18 models.

ResNet-44

97.70MFLOPs

92.76%
ResNet-56

126.01MFLOPs

93.23%

PocketFlow

37.80MFLOPs

92.50%

PocketFlow

50.40MFLOPs

92.80%

91.0%

91.5%

92.0%

92.5%

93.0%

93.5%

20 40 60 80 100 120 140

C
la

ss
if
ic

a
ti
o

n
 A

c
c
u
ra

c
y

Computational Complexity (MFLOPs)

(a) CIFAR-10

PocketFlow

1.85MB, 63.69%

PocketFlow

8.20MB, 70.05%

MobileNet

16.17MB, 70.82%

Inception-V1

25.35MB, 69.80%

ResNet-18

44.60MB, 70.28%

62%

64%

66%

68%

70%

72%

0 10 20 30 40 50

T
o

p
-
1
 C

la
ss

if
ic

a
ti
o

n
 A

c
c
u
ra

c
y

Model Size (MB)

(b) ILSVRC-12

Figure 2: Comparison on the computational complexity, model size, and classification accuracy of
various models on CIFAR-10 (left) and ILSVRC-12 (right) data sets.

The compressed models generated by PocketFlow can be exported as TensorFlow Lite models and
directly deployed on mobile devices using the mobile-optimized interpreter. In Table 2, we compare
the classification accuracy, model size, and inference latency1 of original and compressed models.
With ChannelPrunedLearner, the compressed model achieves 1.53× speed-up with 2.0% loss in
the top-5 classification accuracy. With UniformQuantLearner, we achieve 2.46× speed-up after
applying 8-bit quantization on the MobileNet model, while the top-5 accuracy loss is merely 0.6%.

4 Conclusion

In this paper, we present the PocketFlow framework to boost the deployment of deep learning mod-
els on mobile devices. Various model compression algorithms are integrated and hyper-parameter
optimizers are introduced into the training process to automatically generate highly-accurate com-
pressed models with minimal human effort.

1The inference latency is measured as the average elapsed time of 6 executions.

3

Table 2: Comparison on the classification accuracy, model size, and inference latency of compressed
ResNet-18 and MobileNet models.

Model Learner Top-1 Acc. Top-5 Acc. Size (MB) Latency (ms)

ResNet-18
- 70.3% 89.4% 44.63 334.83

ChannelPrunedLearner 67.1% 87.4% 25.68 219.83

MobileNet
- 70.9% 89.6% 16.13 157.67

UniformQuantLearner 70.0% 89.0% 4.08 64.17

References

[1] J. Bergstra, D. Yamins, and D. D. Cox. Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures. In International Conference
on Machine Learning (ICML), pages 115–123, Jun 2013.

[2] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Low precision arithmetic for
deep learning. CoRR, abs/1412.7024, 2014.

[3] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural
network with pruning, trained quantization and huffman coding. In International Conference
on Learning Representations (ICLR), 2016.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European Conference on Computer Vision (ECCV), pages 630–645, 2016.

[5] Yihui He and Song Han. ADC: Automated deep compression and acceleration with reinforce-
ment learning. CoRR, abs/1802.03494, 2018.

[6] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. AMC: Automl for model
compression and acceleration on mobile devices. In European Conference on Computer Vision
(ECCV), pages 784–800, Sept 2018.

[7] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural
networks. In IEEE International Conference on Computer Vision (ICCV), pages 1398–1406,
Oct 2017.

[8] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. MobileNets: efficient convolutional neural
networks for mobile vision applications. CoRR, abs/1704.04861, 2017.

[9] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for ef-
ficient integer-arithmetic-only inference. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2704–2713, June 2018.

[10] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
Department of Computer Science, University of Toronto, 2009.

[11] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
In International Conference on Learning Representations (ICLR), 2016.

[12] J Močkus. On bayesian methods for seeking the extremum. In Optimization Techniques IFIP
Technical Conference, pages 400–404, 1975.

[13] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-
Fei. ImageNet large scale visual recognition challenge. International Journal of Computer
Vision (IJCV), 115(3):211–252, 2015.

[14] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–9, June
2015.

4

[15] Cheng Tai, Tong Xiao, Xiaogang Wang, and Weinan E. Convolutional neural networks with
low-rank regularization. In International Conference on Learning Representations (ICLR),
2016.

[16] Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun. Accelerating very deep convolutional
networks for classification and detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 38(10):1943–1955, Oct 2016.

[17] Michael Zhu and Suyog Gupta. To prune, or not to prune: Exploring the efficacy of pruning
for model compression. CoRR, abs/1710.01878, 2017.

[18] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Jiezhang Cao, Qingyao Wu, Jun-
zhou Huang, and Jinhui Zhu. Discrimination-aware channel pruning for deep neural networks.
In Advances in Neural Information Processing Systems (NIPS). 2018.

5

	Introduction
	Framework Design
	Learners
	Hyper-parameter Optimizers

	Experimental Results
	Conclusion

