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POCUS: mining genomic sequence annotation to predict disease genesHere we present POCUS (prioritization of candidate genes using statistics), a novel computational approach to prioritize candidate disease genes that is based on over-representation of functional annotation between loci for the same disease. We show that POCUS can provide high (up to 81-fold) enrichment of real disease genes in the candidate-gene shortlists it produces compared with the original large sets of positional candidates. In contrast to existing methods, POCUS can also suggest counterintuitive candidates.

Abstract

Here we present POCUS (prioritization of candidate genes using statistics), a novel computational
approach to prioritize candidate disease genes that is based on over-representation of functional
annotation between loci for the same disease. We show that POCUS can provide high (up to 81-
fold) enrichment of real disease genes in the candidate-gene shortlists it produces compared with
the original large sets of positional candidates. In contrast to existing methods, POCUS can also
suggest counterintuitive candidates.

Background
Over the past two decades, linkage analysis and positional
cloning have been remarkably successful in the identification
of human genes responsible for mendelian diseases. Success
has been more modest for the more common, complex dis-
eases, because numerous genes with weaker genotype-pheno-
type correlations are involved [1]. Reports of linkage for one
complex disease to many different loci are common in the lit-
erature. Unfortunately, the loci implicated are often very
large, necessitating the laborious and expensive investigation
of hundreds of positional candidate genes. Furthermore, the
number of loci implicated per disease is expected to increase
as the emerging high-density single-nucleotide polymor-
phism (SNP) map of the human genome is exploited [2].

Some examples of oligogenic diseases are already docu-
mented, where alleles at more than one gene contribute to the
same disease, but the molecular basis of such phenomena is
often poorly understood, partly because of the lack of func-
tional data for many of the genes involved. It is generally
assumed that oligogenicity reflects disruptions in proteins

that participate in a common complex or pathway [3]. Where
this assumption is accurate, one might expect genes involved
in the same disease to share commonalities in their functional
annotation, relative to other genes in the genome. At present
many human genes lack detailed functional annotation and
so these commonalities may often be elusive. Nevertheless, in
the wake of the near-complete sequence of the human
genome, there is an opportunity to investigate disease suscep-
tibility loci on a large scale, in terms of the likely or known
functions of the annotated genes present within them. Three
computational methods have recently been developed to
exploit this opportunity.

Perez-Iratxeta et al. [4] developed a sophisticated treatment
of the biomedical literature that associates pathological con-
ditions with particular Gene Ontology (GO) terms, which
then allowed candidate disease genes to be ranked according
to the number of these terms they share. Freudenberg and
Propping [5] produced clusters of known disease genes based
on a measure of phenotypic similarity between diseases. Can-
didate genes were then scored according to the GO terms
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shared with known disease genes in the clusters. Van Driel et
al. [6] developed a web tool that integrates data from map-
ping, expression and phenotypic databases and allows genes
meeting user-defined criteria to be retrieved. All three meth-
ods aim to mimic the process that takes place when research-
ers prioritize positional candidate genes for further study, but
also to increase the speed, objectivity and consistency of this
process. Essentially, in all three methods, one extrapolates
from what is already known about a disease or the genes
underlying it to find other promising candidate disease genes.
All three methods also implicitly assume that the disease
genes we have yet to discover will be consistent with what is
already known about a disease and/or its genetic basis.
Unfortunately, the literature on genetic susceptibility to dis-
ease is rich in unexpected findings and it is not unusual for
novel disease genes to be counterintuitive, given the literature
on the disease in question.

Here we present POCUS (prioritization of candidate genes
using statistics), a novel approach to the computational pre-
diction of disease genes, and report results that have emerged
from its application to known disease loci. Our method
requires no prior knowledge of the disease under study other
than the location of two or more susceptibility loci. Similarly,
we make no assumptions about the protein functions, expres-
sion, or any other characteristics associated with individual
genes involved in the disease. We assume only that two or
more of those genes share some aspect of their expression
pattern or of the function of the encoded protein. Examina-
tion of known disease genes suggests that in most cases this
assumption is reasonable. In addition, the method provides
an assessment of when the analysis is likely to have failed or
been successful with a given set of loci. The basis of our
method is the identification of unexpected enrichment of any
annotated functional class of genes at a given set of suscepti-
bility loci relative to the genome at large.

Results
Genes underlying complex diseases tend to share 
functional annotation
A list of 29 Online Mendelian Inheritance in Man (OMIM)
diseases was compiled for which three or more contributing
genes were known (and were also present within Ensembl),
and the degree to which genes for the same disease shared
InterPro domain and GO identifiers (IDs) was assessed. Of
the 163 disease genes in the 29 sets, 131 (80%) shared an ID
with another gene for the same disease, and 102 (63%) share
two or more IDs with other genes for the same disease (Table
1). Across the diseases surveyed, 26 of 29 (90%) have contrib-
uting genes that share at least one ID. Thus there appears to
be a strong tendency for disease genes to share annotation
(but see Materials and methods for the potential bias in these
data). This extends previous work that showed a correlation
between gene functions and features (such as age of onset) of
the diseases they predispose to [7].

Prediction of disease genes by over-representation of 
shared identifiers
The disease genes for each of the 29 diseases were used to
produce artificial locus sets containing the disease genes and
many flanking genes, and each set was analyzed using POCUS
to find genes possessing IDs over-represented among two or
more loci. The three locus sizes tested were 100, 500 and
1,000 IDs, and these corresponded to 20, 94 and 187 genes
per locus on average, respectively. Assuming a rough average
gene density of one every 100 kilobases (kb) [8] the range of
physical locus sizes examined was therefore 2-19 megabases
(Mb), which is within the range for susceptibility regions
identified in positional cloning studies. Various threshold
scores were tested, but here we present data only for the most
successful (0.8) and a more liberal value (0.5) for compari-
son. The results refer to the positive control sets of disease
genes at the 0.8 threshold unless stated otherwise. POCUS
was found to perform differently on the locus sets for differ-
ent diseases. The method was successful (correctly identify-
ing two or more disease genes) for 65%, 19% and 15% of
positive control sets, respectively, at the three locus sizes.
Four diseases in particular (epidermolysis bullosa letalis,
inflammatory bowel disease, colorectal cancer and cardiomy-
opathy) were found to be particularly amenable to analysis
using POCUS, with many of their disease genes still correctly
identified at the largest locus size (Table 1).

For any given locus three outcomes were possible, POCUS
may have returned the disease gene (and often others) above
the threshold, it may have returned only non-disease genes
scoring above the threshold, or it may have returned no genes
above the threshold. Figure 1 depicts the rates of each possi-
ble outcome per locus. It shows that in 49-75% of loci
(depending on locus size), no genes scored above the thresh-
old of 0.8, that is, POCUS was unable to detect any candidates
but equally did not return any non-disease genes either. Cor-
respondingly, in 6-15% of loci, only non-disease genes
exceeded this threshold, and in the remainder of loci the dis-
ease gene was correctly identified (45%, 15% and 11% respec-
tively at the three locus sizes). As Figure 1 shows, compared
with 0.5, the more stringent threshold of 0.8, while resulting
in a small loss of true positives (correctly identified disease
genes), more efficiently reduced the number of false positives
(non-disease genes) returned as candidates by POCUS. At the
0.8 threshold, the relative enrichment for disease genes
within those genes above the threshold was 12-fold (95% con-
fidence intervals (CI): 9.74-15.83), 29-fold (95% CI: 18.79-
43.24) and 42-fold (95% CI: 25.36-69.45), respectively, at the
three locus sizes. This means, for example, that any gene from
a locus 1,000 IDs in size was 42 times more likely to be the
disease gene if it was picked from those genes above the
threshold than if it was chosen at random from the locus.

Only modest improvement in POCUS performance was
observed with the inclusion of UniGene expression data.
Although disease genes often shared the same expression ID
Genome Biology 2003, 4:R75
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Table 1

The full results of POCUS analysis for 29 OMIM diseases, over locus sizes of 100, 500 and 1,000 IDs at a threshold of 0.8

Disease (representative 
OMIM number)

Number 
of genes*

Genes 
sharing†

Correctly 
identified‡

Non-disease 
genes§

Total number of 
genes¶

Enrichment¥

100 500 1,000 100 500 1,000 100 500 1,000 100 500 1,000

Parkinson's disease 
(168600)

3 0 0 0 0 0 0 1 62 264 571 1 1 0

Lupus erythematosus, 
systematic (152700)

3 0 0 0 0 1 0 0 43 262 547 0 1 1

Glaucoma, primary 
open angle, juvenile-
onset (137750)

3 2 0 0 0 0 0 0 59 279 527 1 1 1

Bardet Biedl (209900) 4 0 0 0 0 3 0 0 75 390 776 0 1 1

Meningioma, familial 
(607174)

4 2 1 0 0 6 17 10 69 363 722 2.46 0 0

Acute myelogenous 
leukemia, familial 
(601626)

4 4 0 0 0 0 0 0 84 385 771 1 1 1

Basal cell carcinoma 
(605462)

4 3 2 0 0 0 0 0 83 418 810 20.8 1 1

Adrenoleukodystrophy, 
autosomal neonatal 
form (202370)

4 4 2 0 0 0 3 3 76 369 733 19 0 0

Epidermolysis bullosa 
letalis (226700)

4 4 3 2 2 2 1 4 73 380 728 11 63.3 60.67

Familial adenomatous 
polyposis (175100)

4 4 3 2 0 8 12 4 64 371 727 4.36 13.3 0

Ovarian carcinoma 
(167000)

4 4 0 0 0 0 0 0 70 360 733 1 1 1

Hypertension (145500) 5 2 0 0 0 3 0 0 95 472 920 0 1 1

Alzheimer's disease 
(104300)

5 4 3 0 0 0 0 0 135 460 875 27 1 1

Charcot-Marie-Tooth 
disease, types 1A-1F 
(118200)

5 4 3 0 0 0 0 0 98 449 937 19.6 1 1

Gastric cancer (137215) 5 4 0 0 0 0 0 0 87 483 932 1 1 1

Cystic fibrosis (219700) 5 5 1 0 0 2 0 0 99 458 900 6.6 1 1

Inflammatory bowel 
disease (266600)

5 5 2 0 2 3 0 3 99 506 1,013 7.92 1 81.04

Long-segment 
Hirschsprung disease 
(142623)

5 5 0 0 0 0 0 0 102 468 972 1 1 1

Leber congenital 
amaurosis (204000)

6 5 5 0 0 4 0 0 125 508 1,120 11.6 1 1

Maturity onset diabetes 
of the young (606391)

6 5 2 0 0 0 0 0 111 551 1,078 18.5 1 1

Prostate cancer 
(176807)

6 5 0 0 0 2 0 0 128 550 1,157 0 1 1

Colorectal cancer, 
hereditary nonpolyposis 
(114500)

6 6 5 6 6 4 14 17 115 560 1,095 10.6 28 47.61

Epiphyseal dysplasia, 
multiple types 1-5 
(132400)

7 6 6 3 0 4 0 0 135 596 1,232 11.6 85.1 1

Muscular dystrophy, 
limb-girdle, autosomal 
recessive (601173)

7 5 2 0 0 1 0 0 124 634 1,282 11.8 1 1
Genome Biology 2003, 4:R75
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(that is they were 'solely' or 'highly' expressed in the same EST
library according to UniGene), the identifiers were generally
too commonly shared in the genome at large to contribute sig-
nificantly to gene scores. More rigorous expression data may
significantly improve POCUS performance.

The diseases were grouped by number of disease genes to
investigate the effects of locus number. Enrichment levels
were calculated for two categories of disease gene sets, 3-5
loci and 6-11 loci, and enrichment was found to vary with the
number of loci. At each locus size the 6-11-loci category was
found to have higher levels of enrichment by a factor of 1.55-
3. As larger loci on average contain more genes, one might
expect more modest success at higher locus sizes and, indeed,
this effect was evident in a decreasing true-positive rate (Fig-
ure 1). However, it is also notable that at higher locus sizes the
enrichment factor increased over the three locus sizes (12-
fold, 29-fold and 42-fold respectively). Thus at larger locus
sizes POCUS was successful for fewer loci, but when success-
ful it yielded a list of candidate genes that was more highly
enriched. Of course, for any locus there were numerous non-
disease genes, whereas there was only one disease gene. This
was reflected by the ratios of disease genes to non-disease
genes above the threshold, which were 0.70, 2.00, and 3.36,
respectively. However, these estimates of false positives mask
the high specificity that POCUS often achieved in its ranking
of genes above the threshold, with 86-95% of correctly identi-
fied disease genes ranked first. Indeed, in 60%, 33%, and 12%
of the loci (at the three locus sizes) with genes above the
threshold, the disease gene was the only gene above the
threshold.

A total of 32 disease genes were found to share no IDs with the
other genes for the same disease, and were therefore undetec-
table using POCUS. The loci containing such undetectable

genes were included in further analyses, as they mimic the
inclusion of erroneously implicated loci - those that are later
found to be artifacts of the positional cloning process. The
protocol appears to be robust to the presence of such poten-
tially misleading loci, with enrichment dropping from 12-fold,
29-fold and 42-fold to 10-fold, 25-fold and 39-fold (at the
three locus sizes) when they are included in the sets analyzed
by POCUS (data not shown).

In common with any well studied set of genes, the disease
genes examined here were significantly better annotated rel-
ative to the average in the human genome. To be precise, our
positive control set of genes possesses 10.71 IDs per gene
(standard deviation (SD): 4.51) whereas the genome average
is 5.39 IDs per gene (SD: 4.51). As POCUS relies on over-rep-
resentation of IDs between loci, and as highly annotated
genes are more likely to contain a given ID than poorly anno-
tated genes, this could introduce bias into the protocol. In this
case we might expect the positive control genes scoring above
the threshold to be those with the highest number of IDs. In
fact, the mean numbers of IDs possessed by positive control
genes above the threshold are 11.25 (SD: 5.32), 12.55 (SD:
4.93), and 13 (SD: 4.44) at the three locus sizes, respectively.
None of these means is significantly different from that of the
positive control set in general (by two-tailed, unpaired t
tests). Other data suggest that, in general, POCUS identified
disease genes correctly because these genes have highly scor-
ing IDs rather than a large number of moderately scoring IDs.
This effect is visible in comparisons between the average
scores per ID for positive control disease gene sets versus
non-disease genes within the simulated loci. At the three
locus sizes examined (100, 500, and 1,000 IDs), these scores
are 0.0144 compared to 0.0014, 0.0043 compared to 0.0003,
and 0.0025 compared to 0.0002, respectively. In each case,
the positive control disease genes possess IDs that score

Diabetes mellitus, non-
insulin dependent 
(125853)

8 6 2 0 0 0 0 0 155 719 1,420 19.4 1 1

Breast cancer (114480) 9 7 3 0 0 2 0 0 170 819 1,592 11.3 1 1

Retinitis pigmentosa 
(268000)

10 8 6 0 0 3 7 6 197 977 1,897 13.1 0 0

Cardiomyopathy, 
familial hypertrophic 
(192600)

11 11 9 7 4 7 7 15 194 1,011 2,029 9.92 46 38.83

Thyroid carcinoma, 
papillary (188550)

11 11 0 0 0 1 0 0 217 1,059 2,142 0 1 1

* The total number of genes for a disease. †The number of disease genes that share IDs. ‡The number of disease genes above the threshold at the 
three locus sizes. §The number of non-disease genes above the threshold at the three locus sizes. ¶The total number of genes present at the loci 
considered. ¥The enrichment of disease genes in genes above the threshold compared with the initial loci, zeros denote diseases where only non-
disease genes were above the theshold.

Table 1 (Continued)

The full results of POCUS analysis for 29 OMIM diseases, over locus sizes of 100, 500 and 1,000 IDs at a threshold of 0.8
Genome Biology 2003, 4:R75
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around 10 times more than the IDs possessed by non-disease
genes. Thus, the success of POCUS is largely attributable to
patterns of ID sharing between disease genes that are unusual
with respect to other genes arbitrarily selected from the
genome. The score assigned to an ID depends on the rarity of
the ID in the genome, the number of genes at different loci
sharing it, and the size and number of loci examined. In prac-
tical terms, when genes do score above threshold they do so
as a result of possessing high-scoring IDs (greater than 0.4).
The stringency of POCUS is evident in the observation that at
the largest locus size the genes scoring above threshold
shared IDs seen only 10 or fewer times in the genome. Alter-
natively, less rare identifiers (occurring 10-50 times in the
genome) could also score highly provided they were shared
between five or more genes at different loci.

Less subtle bias could also have been introduced by IDs that
are associated with a disease itself, but on examination the
annotation of disease genes contained only four such IDs
(GO:0007601 vision, GO:0007048 oncogenesis,
GO:0008181 tumor suppressor, and GO:0008016 regulation
of heart). All these IDs were omitted from our analyses to
remove such bias. All annotation IDs for all disease genes are
available as additional data from [9] and see Additional data
files with the online version of this article.

A case study: neuroligins in autism
During the course of these analyses, and after the release of
the version of the Ensembl database we used, it was shown
that mutations in the neuroligin genes NLGN3 and NLGN4
are associated with autism [10]. These disease genes consti-
tute a compelling test of POCUS for two reasons. First, at the
time of writing NLGN3 and NLGN4 possessed no annotation
IDs related to their roles in autism and could both be identi-
fied within Ensembl (see Materials and methods). Second,
they represent one of the rare occasions when two novel dis-
ease genes have been identified simultaneously in the litera-
ture, which is important as POCUS requires two or more loci
to examine. Following the procedure above, we produced arti-
ficial locus sets 100, 500, and 1,000 IDs in size, correspond-
ing to the regions around NLGN3 and NLGN4. At the smallest
locus size, POCUS selected the two genes as the best candi-
dates within their loci from a total of 34 genes (18 genes in one
locus and 16 in the other). At the 500-ID locus size, POCUS
selected each of the two genes as the second-best candidates
within their respective locus, from 175 genes (80 in one locus
and 95 in the other), and at the 1,000-ID locus size, each of
the two genes were ranked seventh within their locus out of
383 genes (172 and 211 genes in the two loci). In spite of these
successful rankings, at the two larger locus sizes the two genes
failed to score above the 0.8 threshold - which is unsurprising
given that this threshold was developed for the sets of three or
more loci in the positive control set. This demonstrates that
POCUS can be successful where the genes' functional annota-
tion is not biased by the study of disease.

Comparison to other candidate gene prioritization 
techniques
As mentioned previously, in addition to the protocol pre-
sented here, three other techniques for candidate gene prior-
itization have recently been proposed by [4-6]. Although
these different techniques are not incompatible, it is useful to
compare the effectiveness of each approach. Freudenberg and
Propping [5] emphasize their 'medium stringency' results on
a selection of known disease genes used to test the method.
These results show that for around a third of the cases (that is,
diseases) examined the best results were achieved: the known
disease gene was ranked within the top 3% of genes scored
(321 of 10,672 genes), representing a 33-fold enrichment
(95% CI: 2.08-530.34) of disease genes. More frequently
though, in around two thirds of cases examined, the known
disease gene was within the top 15% (1,600 of 10,672 genes)
which is equivalent to sevenfold enrichment (95% CI: 0.42-
106.58). By implication, in the remaining third of cases the
known disease genes were not present in the top 15% and the
method failed to identify the known disease gene. Thus, the
method of Freudenberg and Propping [5], used at a reasona-
ble threshold, resulted two thirds of the time in sevenfold
enrichment (though half these cases achieved a maximum
enrichment of 33-fold) and one third of the time failed
altogether.

POCUS results per locus for positive control sets of disease genesFigure 1
POCUS results per locus for positive control sets of disease genes: the 
percentage of loci for each of three outcomes is plotted against locus size 
(100, 500, and 1,000 IDs) at two threshold scores (0.5 and 0.8). The 
outcome 'No genes exceed threshold' corresponds to the rate of false 
negatives, 'Only non-disease genes exceed threshold' corresponds to the 
rate of false positives, and 'Disease gene exceeds threshold' corresponds 
to the rate of true positives.
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Perez-Iratxeta et al. [4] tested their method on a series of 30-
Mb regions surrounding known disease genes and found that
for around a quarter of these regions the known disease gene
was within the eight top-ranked genes. If we assume an
approximate average gene density of one every 100 kb [8],
each region should have contained around 300 genes on aver-
age, which indicates 38-fold enrichment (95% CI: 2.57-
547.71). For around half of the regions examined, the known
disease gene was ranked within the top 30 genes, represent-
ing 10-fold enrichment (95% CI: 0.64-155.85), and failed to
be in this shortlist for the other half of the regions examined.
Thus, the method of Perez-Iratxeta et al. [4] provided a 38-
fold maximum enrichment one quarter of the time, 10-fold
enrichment half the time and failed altogether half the time.
Van Driel et al. [6] gave a more modest assessment of their
method using a test dataset of only 10 regions of variable
sizes, each containing a known disease gene. For one of these
regions the method reduced a list of 49 candidate genes to
two, providing 25-fold enrichment (95% CI: 2.26-265.80).
They observed that "on average, a list of 163 genes based on
position alone was reduced to a more manageable list of 22
genes", which is equivalent to sevenfold enrichment (95% CI:
0.48-114.27). Because all 10 of the known disease genes tested
were found by the method, the failure rate is unknown.

Although these assessments of existing techniques do not
allow rigorous comparisons between them, it seems reasona-
ble to conclude that they can perform with similar effective-
ness. All three techniques appear to provide around 25-38-
fold enrichment at best, but 7-10-fold enrichment more usu-
ally. In addition, the methods of Freudenberg and Propping
[5] and Perez-Iratxeta et al. [4] fail to identify the correct dis-
ease gene 33-50% of the time, and it seems reasonable to
assume that the method of Van Driel et al. [6] is not infallible.
We have found that POCUS provided up to 81-fold maximum
enrichment (Table 1). More commonly it achieved 12-fold
(95% CI: 9.74-15.83), 29-fold (95% CI: 18.79-43.24), and 42-
fold (95% CI: 25.36-69.45) enrichment at the three locus
sizes. Over the same three locus sizes it failed to return the
correct disease gene 58%, 86%, and 89% of the time, respec-
tively. This was usually due to a failure to return any genes
above threshold rather than solely non-disease genes. Thus, it
would appear that POCUS, using currently available annota-
tion, performs similarly to (and occasionally better than)
existing methods when it returns candidate genes above
threshold. At larger locus sizes, however, POCUS seems to be
notably more conservative than existing methods, usually
failing to return any candidate genes above threshold. In real-
ity, POCUS and all of the existing methods could be used in
combination as they are likely to be complementary to one
another.

Discussion
We have shown that the genes predisposing to a given disease
tend to share commonalities in their annotation and the

extent of such commonalities is often sufficient to identify
these genes using POCUS from regions containing hundreds,
or even thousands, of other genes. Depending on the sizes of
the loci, we correctly identified 11-45% of disease genes with a
modest degree of false positives (0.70-3.36 non-disease genes
per real disease gene). This represents a 12-42-fold enrich-
ment for disease genes in the sets of candidates that our pro-
tocol returned. The protocol is conservative, with 52-73% of
loci yielding no genes scoring highly enough to be regarded as
good candidates. As expected, not all disease gene sets pos-
sess genes that share sufficient annotation for the protocol to
be successful, but this may change as the extent and depth of
annotation of human genes increases. POCUS is also robust
to variation in the number of loci examined and to the inclu-
sion of loci containing no detectable disease genes. This is
important, as the disease literature is expected to contain sus-
ceptibility loci that are experimental artifacts. In addition,
our case study of the NLGN3 and NLGN4 autism genes shows
that POCUS can be successful in identifying real disease
genes before there is any hint of the disease process in their
functional annotation. We conclude that this protocol should
prove useful to groups who wish to prioritize genes from sus-
ceptibility loci or quantitative trait loci (QTLs) for further
study.

It should be stressed that some of these 29 diseases are
classed within OMIM as oligogenic (where each contributing
gene is not necessary but is sufficient) rather than complex
(where no particular gene is necessary and no gene is suffi-
cient). This is important, as greater functional similarity may
be expected between genes contributing to an oligogenic dis-
ease compared with those contributing to a complex disease.
For our purposes, however, it is only important that the pre-
disposing genes for a disease share some degree of functional
similarity (as this is the basis of POCUS), regardless of the
mode of inheritance. It should also be noted that some una-
voidable bias would be expected to exist in collections of
known disease susceptibility genes such as those examined
here. Where a disease gene has been successfully identified
for a given phenotype, later work may have, directly or indi-
rectly, relied on functional similarities to the original gene to
discover further genes. This would lead to bias in the disease
gene sets examined here, resulting in sets with greater func-
tional similarity to one another than average.

Other groups have recently produced protocols, conceptually
related to POCUS, for the identification of enriched func-
tional annotation IDs within a single set of genes, usually
derived from large-scale studies of gene expression using
microarrays [11-13]. To our knowledge, however, there are no
existing methods that perform such analyses between sets of
genes. It is clear that, with minor modifications, POCUS could
be used to prioritize candidate genes for any mapped trait in
any sequenced organism, which could be helpful in the inves-
tigation of QTLs in model organisms. We intend to extend
POCUS to consider any user-defined annotation, for example
Genome Biology 2003, 4:R75
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a set of genes upregulated in a microarray gene expression
experiment, to identify unexpected enrichment at susceptibil-
ity regions known from the literature.

Conclusions
POCUS is a novel protocol that appears to give comparable
levels of enrichment for disease genes to existing methods
but, in contrast, requires no prior knowledge of the etiology of
the disease under study. Indeed, it is possible to identify
candidates that are counterintuitive given the literature about
the disease. We are developing combined approaches using
POCUS as a complement to existing techniques. POCUS does
require more than one susceptibility locus to be known,
although in the study of complex diseases the bottleneck is
usually not in finding susceptibility loci but in identifying the
genes underlying them. With the completion of the human
genome, and the advancing efforts to rapidly provide func-
tional annotation for the genes [14], POCUS will become an
even more potent tool for candidate gene prioritization.

Materials and methods
Functional annotation data
InterPro domain IDs [15] and GO terms [16] for Ensembl
genes were obtained from the Ensembl human database
(Release 12.31 [17]). InterPro domains are assigned as part of
the Ensembl annotation pipeline. The GO data in Ensembl
are inherited from the European Bioinformatics Institute
GOA project [18] GO term assignments for gene products in
the Swiss-Prot and TrEMBL databases [19]. GOA assign-
ments are partly derived from four main sources: manual
curation using the literature and automated assignment using
either Swiss-Prot keywords, enzyme EC numbers or InterPro
domains. In the GOA annotation of Swiss-Prot and TrEMBL
(version 6.0) the contributions of these four sources were 2%,
40%, 7%, and 51% of assignments, respectively. The vast
majority of GO terms in Ensembl are therefore derived from
Swiss-Prot keywords and InterPro domains. As Swiss-Prot
provides high-quality, manually curated functional annota-
tion, and InterPro covers around three quarters of the pro-
teins in Swiss-Prot and TrEMBL, the functional annotation in
Ensembl represents much of the best-quality and best cover-
age functional annotation currently available for human
genes. Expression data was obtained from the National
Center for Biotechnology Information (NCBI) UniGene data-
base [20] in the form of UniGene clusters reported to be
'highly' or 'solely' expressed in a given cDNA library. Such
clusters were assigned to the appropriate Ensembl genes
according to the NCBI LocusLink database [20].

Disease mapping data
We retrieved data for 29 disorders from the OMIM database
[21] that had at least three or more contributing disease-sus-
ceptibility genes or modifier genes that were also present
within the Ensembl database. Positive control sets of disease

genes were derived from these data together with modifier
genes from [3]. Specifically, the 131 disease genes that shared
one or more ID with another gene for the same disease were
regarded as positive control genes, as POCUS can only pro-
ceed from the basis of shared IDs.

The NLGN4 gene was identified in Ensembl as
ENSG00000146938 (NCBI RefSeq: NM_020742) but in
spite of the NLGN3 gene being present in the sequence data-
bases for three years (AF217411 [22]) it was not predicted as
an Ensembl gene. NLGN3 was found to be represented by two
Ensembl 'EST genes' (gene structures predicted according to
matches between ESTs and genomic sequence) instead -
ENSESTG00000021460 and ENSESTG00000021462 - and
the region spanned by these two EST genes was taken as the
genomic location of NLGN3. Neither of the Ensembl EST
genes possessed any functional annotation, but GO and Inter-
Pro IDs were successfully retrieved from the GOA project
pages. NLGN3 was found to possess three InterPro domain
matches (IPR000460 Neuroligin; IPR002018 Carboxyleste-
rase, type B; IPR000379 Esterase/lipase/thioesterase, active
site) and five GO terms (GO:0007155 cell adhesion;
GO:0016020 membrane; GO:0016789 carboxylic ester
hydrolase activity; GO:0003824 enzyme activity;
GO:0016787 hydrolase activity). All IDs are the result of auto-
mated annotation (derived either from matches to InterPro
domains or from Philibert et al. [22]) that has remained the
same since before the publication of NLGN3 and NLGN4 as
autism genes [10]. The annotation IDs obtained for NLGN4
from Ensembl (IPR002018 Carboxylesterase, type B;
IPR000379 Esterase/lipase/thioesterase, active site;
GO:0005177 neuroligin; GO:0007155 cell adhesion;
GO:0016020 membrane; GO:0016787 hydrolase;
GO:0016789 carboxylic ester hydrolase) were similar to those
for NLGN3. The two genes shared six IDs in total.

Identification of disease genes
POCUS aims to detect significant enrichment of IDs between
loci relative to the genome at large, and then to use this infor-
mation to score the genes within these loci. The behavior of
IDs across the genome was modeled using simulated locus
sets. Locus sizes were measured in numbers of IDs to account
for variation in gene density and annotation around the
genome. We sampled 200,000 nonoverlapping simulated
loci sets (up to 15 loci per set) for each of the three locus sizes
examined: 100 IDs, 500 IDs, and 1,000 IDs. For example, at
locus size 500 IDs we recorded 61,548,000 sharing events
among five locus sets. A sharing event is defined as any occa-
sion on which genes from more than one locus possess a par-
ticular ID. The number of times each event has occurred is
then counted and divided by the total number of events
observed in the simulations. The events are then ordered by
the resulting frequencies, rarest first. Using this ordered list
we calculate a cumulative probability (p) for each possible
event, by summing the frequencies of all the events with equal
or lower frequencies.
Genome Biology 2003, 4:R75
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This cumulative probability provides the probability of
observing a sharing event equally frequent or less frequent
than the frequency of the observed event (f). In effect this is
the probability per event; a set of loci will, however, result in
a number of sharing events (n). The probability (Pf) of any of
these n events having a frequency of f or less is given by the
following formula:

Pf = 1 - (1 - p)n

Essentially, Pf is the probability that for the given set of loci
the observed event would happen by chance. The formula
given is mathematically identical to the Bonferroni inequality
correction for multiple tests [23]. A score for each ID is then
taken to be 1 - Pf. We then calculate an ad hoc score for each
gene as the sum of the scores for each ID shared by that gene.

The relative enrichment ratio for disease genes achieved by
POCUS was estimated as the proportion of disease genes
within the input loci divided by the proportion of disease
genes returned above the threshold. Such enrichment meas-
ures are essentially comparisons of two proportions and con-
sequently the confidence intervals were estimated using the
method of Newcombe [24] implemented as the 'confidence
interval calculator' (available as a spreadsheet from [25]). For
instance, at the 100 ID locus size, the 131 disease genes shar-
ing IDs were situated within loci containing 3,144 genes in
total (Table 1); that is, there was a starting concentration of
disease genes equal to 0.042. Processing these gene sets with
POCUS produced shortlists of 116 candidate genes containing
60 genuine disease genes (a final concentration of 0.517), rep-
resenting 12.4-fold enrichment. Using the method mentioned
above [24], the 95% CI for the comparison of these two ratios
(131/3144 and 60/116), the range of enrichment is 9.737-
15.827 fold.

During these calculations we have assumed for convenience
that all sharing events are independent; this assumption is
often incorrect, however. Because of the hierarchical nature
of GO classifications, the presence of lower terms will be
dependent on higher terms. For example, all genes with the
term for 'insulin receptor complex' (GO:0005899) will also
have the terms 'integral to plasma membrane'
(GO:0005887), 'intregral to membrane' (GO:0016021), and
'membrane' (GO:0016020). In many of these cases, however,
the higher terms are so common across the genome that they
will not substantially contribute to the final score of the gene.
In addition, our results show that our protocol can score
genes above the threshold on the basis of a single shared ID.

Additional data files
The following files are available with the online version of this
article: a list of all Ensembl genes with their chromosome
numbers (chromosomes 23 and 24 denote X and Y, respec-
tively) and their positions in base pairs, with associated 

InterPro domains and GO terms (Additional data file 1); a list
of the gene expression libraries in which the genes analyzed
are found (Additional data file 2); a list of all the diseases ana-
lyzed with abbreviations used (Additional data file 3); a list of
all the disease genes analyzed (Additional data file 4); Perl
scripts calculating the probability of observing each possible
pattern of sharing of identifiers for regions of a specified size
(Additional data file 5) and calculating the probability of shar-
ing (for a range of numbers of loci) from the simulations
results from Additional data file 5 (Additional data file 6); and
a fuller description of these Perl scripts (Additional data file
7). Full results of all analyses at thresholds of 0.5 and 0.8 (for-
matted as a MYSQL database or as plain text) are available on
request.
Additional data file 1A list of all Ensembl genes with their chromosome numbers (chro-mosomes 23 and 24 denote X and Y, respectively) and their posi-tions in base pairs, with associated InterPro domains and GO termsA list of all Ensembl genes with their chromosome numbers (chro-mosomes 23 and 24 denote X and Y, respectively) and their posi-tions in base pairs, with associated InterPro domains and GO termsClick here for additional data fileAdditional data file 2A list of the gene expression libraries in which the genes analyzed are foundA list of the gene expression libraries in which the genes analyzed are foundClick here for additional data fileAdditional data file 3A list of all the diseases analyzed with abbreviations usedA list of all the diseases analyzed with abbreviations usedClick here for additional data fileAdditional data file 4A list of all the disease genes analyzedA list of all the disease genes analyzedClick here for additional data fileAdditional data file 5A perl script calculating the probability of observing each possible pattern of sharing of identifiers for regions of a specified sizeA perl script calculating the probability of observing each possible pattern of sharing of identifiers for regions of a specified sizeClick here for additional data fileAdditional data file 6A perl script calculating the probability of sharing (for a range of numbers of loci) from the simulations results from Additional data file 5A perl script calculating the probability of sharing (for a range of numbers of loci) from the simulations results from Additional data file 5Click here for additional data fileAdditional data file 7A fuller description of the Perl scripts in Additional data files 5 and 6A fuller description of the Perl scripts in Additional data files 5 and 6Click here for additional data file
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