
POD-Galerkin Model Order Reduction for Parametrized
Nonlinear Time Dependent Optimal Flow Control: an

Application to Shallow Water Equations.

Maria Strazzullo], Francesco Ballarin], and Gianluigi Rozza]

]mathlab, Mathematics Area, International School for Advanced Studies (SISSA), Via
Bonomea 265, I-34136 Trieste, Italy.

maria.strazzullo@sissa.it, francesco.ballarin@sissa.it, gianluigi.rozza@sissa.it

Abstract

In this work we propose reduced order methods as a reliable strategy to efficiently
solve parametrized optimal control problems governed by shallow waters equations
in a solution tracking setting. The physical parametrized model we deal with is
nonlinear and time dependent: this leads to very time consuming simulations which
can be unbearable e.g. in a marine environmental monitoring plan application. Our
aim is to show how reduced order modelling could help in studying different con-
figurations and phenomena in a fast way. After building the optimality system, we
rely on a POD-Galerkin reduction in order to solve the optimal control problem in
a low dimensional reduced space. The presented theoretical framework is actually
suited to general nonlinear time dependent optimal control problems. The proposed
methodology is finally tested with a numerical experiment: the reduced optimal con-
trol problem governed by shallow waters equations reproduces the desired velocity
and height profiles faster than the standard model, still remaining accurate.

1 Introduction

Parametrized optimal control problems (OCP(µ)s) governed by parametrized partial
differential equations (PDE(µ)s) are very powerful mathematical formulations, to be
exploited in several applications in different scientific fields, see [42] for an overview.
Among the possible impacts that OCP(µ)s can have in scientific research, we will refer
to the investigation into problems dealing with environmental sciences. Indeed, this work
is motivated by the ongoing demand for reaching fast and accurate simulations for the
coastal marine environment safeguard. The marine ecosystem is related to other impor-
tant social factors such as, for example, economic growth, natural resources preservation,
monitoring plans. Furthermore, the marine environment is very far to be completely
understood, since it is related to very complicated natural phenomena and anthropic
consequences [19, 47, 59]. For sure, the parametric setting is necessary in order to study
different configurations: the parameter µ ∈ P ⊂ Rd could represent a variety of physi-
cal phenomena. Moreover, in the environmental field, the theory of OCP(µ)s fits well
with the need of increasing the models forecast capabilities through a data assimilation
approach [27, 35, 70]. A lot of effort is made in order to make the predictions of PDEs-
based models the most similar to collected data. Data assimilation OCP(µ)s have been
already analysed in several works, as [22, 51, 52, 64, 66]. Yet, the main drawback of data
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assimilated problems is the huge computational complexity which still limits their appli-
cability, most of all if the optimization problem deals with very complicated parametric
flow models, as the ones used in marine and coastal engineering. Furthermore, in the
described context, accurate simulations are required in a small amount of time, in order
to better study and analyse them rapidly. This is the reason that motivates the use of
Reduced Order Methods (ROMs) as a suitable approach for fast and accurate surrogate
simulations of partial differential equations PDE(µ)s [29, 50, 55]. The main feature of
ROM techniques is to solve the parametrized problem in a low dimensional framework
in order to save computational resources which can be exploited for the analysis of sev-
eral parametric configurations: ROMs recast a time consuming simulation, the truth
problem, into a new fast and reliable formulation thanks to a Galerkin projection into
reduced spaces, generated by basis functions derived from a proper orthogonal decom-
position (POD) algorithm, as presented in [9, 17, 20, 29]. In general, reduction methods
for parametrized nonlinear time dependent OCP(µ)s are very complex to analyse both
theoretically and numerically. Although the literature is quite consolidated for steady
constraints, see for example [7, 8, 21, 26, 36, 38, 39, 49, 48, 52], where the interested
reader may find theoretical and numerical analysis for different linear models, there is
very small knowledge about time dependency [33, 37, 64, 66]. Another difficulty to be
overcome is the treatment and the reduction of nonlinear OCP(µ)s, see for example
[41, 56, 64, 66, 75]. In this work, we focus on ROM for OCP(µ)s with quadratic cost
functional constrained to parametrized Shallow Waters Equations (SWEs). The latter
is a very useful model in environmental sciences, which is capable to simulate various
marine phenomena such as, for example, tidal flows and mixing, currents action on
shorelines and coasts, planetary flows and even tsunamis [19, 72]. The state equation
proposed is nonlinear and time dependent: this leads to growing complexity in the solu-
tion of the optimality system in a real-time context. Indeed, even if the state equation
have been analysed and managed numerically with many approaches, see for example
[2, 3, 4, 25, 46, 45, 44, 53, 54, 68], optimal control strategies, see e.g. [5], and their para-
metric formulation are still quite unexplored. Moreover reduced techniques has been
merely applied to the state equation [60, 61, 67].
The main novelty of this work is to perform reduction on the parametric space on the
complete SWEs model, i.e. to a nonlinear and time dependent problem, in a solution
tracking optimal control framework. Indeed, to the best of our knowledge, there are no
contributions on the topic of physical parametrized OCP(µ)s governed by such a model
that, despite its complexity, is of growing interest in many fields of applications. Thus,
we aim at making a further step towards forecasting data assimilated coastal models
which could be used as resources to manage realistic experiments involved in marine
sciences with environmental prevision purposes. In this setting, we want to provide a
versatile tool to be exploited in an interdisciplinary framework. As far as we know,
reduced algorithm have never been applied to nonlinear time dependent OCP(µ)s. We
here propose them to produce a reliable reduced order model that can be effective in
providing a large number of parametric simulations in an acceptable amount of time,
and this can improve the study of the considered physical phenomenon. Moreover, we
adapt space-time reduced techniques, already used for parabolic problems, to nonlinear
time dependent OCP(µ)s. We will show how ROMs could be a good strategy which will
give us faster, but still accurate, results, complying with standard techniques already
exploited in simpler contexts, such as the steady and linear time dependent governing
equations. The work is outlined as follows. In Section 2, we first present the SWEs
model and then we show it in an optimal control framework. Moreover, we briefly de-
scribe the discrete approximation and the algebraic version of the presented solution
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tracking problem. Section 3 will introduce the basic ideas behind ROM discretization
for OCP(µ)s [29, 34, 36]: we will describe POD sampling algorithm for OCP(µ)s and
the aggregated reduced spaces technique used in [21, 48, 49] that will guarantee the
solvability of the optimality system in its saddle point formulation. Moreover, we will
briefly mention the affine decomposition assumption, see e.g. [29], needed for an efficient
solve of the reduced system. In Section 4, we test our methodology on a parametrized
OCP(µ)s governed by the SWE equations, inspired by an uncontrolled numerical test
case of [25], where the evolution a Gaussian water height is studied. Our test case aims at
recovering a given desired velocity-height profile. Finally, conclusions and perspectives
follow in Section 5.

2 Problem Formulation and Discretization

In this section, we will introduce a OCP(µ) governed by SWEs and its truth discretiza-
tion. As already mentioned in Section 1, the SWEs are a great tool in order to simulate
coastal behaviour. A brief introduction to the state equation follows. Then, the SWEs
will be connected to their OCP(µ) framework in Section 2.2. Then, we will describe the
full order approximation of our problem based on a Finite Element space-time approach.

2.1 The Shallow Waters Equations

Now we aim at describing the parametrized SWEs. The interested reader may refer to
classical references [19, 72], where the topic is deeply analysed in its total generality for
a space-time domain Q = Ω × (0, T ) ⊂ R2 × R. This state equation has been studied
both from the analytical and numerical point of view in many works, see, for example,
[3, 2, 4, 25, 46, 45, 44, 53, 54].
Let us define Yv = H1

ΓDv (Ω), Yh = L2
ΓDh

(Ω) and the space U = [L2(Ω)]2, where ΓDv
and ΓDh are portions of the boundary domain ∂Ω where Dirichlet boundary conditions
have been imposed for the vertically averaged velocity profile of the wave v and the
free surface elevation variable h, respectively. With the term η = h − zb we indicate
the water depth, where zb represents the bottom bathymetry of the domain that we are
considering: a schematic description of the involved variables is given in Figure 1. We
used the standard 2D-model obtained by the vertical integration of the velocity variable
as presented in [2, 46].

x

z

η h

zb

Figure 1: Notations: schematic representation.
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Since we are dealing with time dependent problems, we seek our state solution in the
spaces

Yv =
{
v ∈ L2(0, T ; [Yv]2) such that ∂v

∂t
∈ L2(0, T ; [Y ∗v ]2)

}
,

and similarly in

Yh =
{
h ∈ L2(0, T ;Yh) such that ∂h

∂t
∈ L2(0, T ;Y ∗h )

}
,

for velocity and height variables, respectively.
We will denote by Y the product of the function spaces Yv and Yh, i.e. Y = Yv × Yh.
Moreover, Y is an Hilbert space with the following norm:

‖(?, ·)‖2Y = ‖?‖2Yv + ‖·‖2Yh

= ‖?‖2L2(0,T ;[Yv ]2) +
∥∥∥∥∂?∂t

∥∥∥∥2

L2(0,T ;[Y ∗v ]2)
+ ‖·‖2L2(0,T ;Yh) +

∥∥∥∥∂·∂t
∥∥∥∥2

L2(0,T ;Y ∗
h

)
.

We considered a SWEs model with the following parametrized formulation: given µ ∈
Θ ⊂ R2 and a forcing term u ∈ U := L2(0, T ;U), find the parameter dependent pair
(v, h) ∈ Y which satisfies:

∂v

∂t
+ µ1∆v + µ2(v · ∇)v + g∇η − u = 0 in Q,

∂h

∂t
+ div(ηv) = 0 in Q,

v = v0 on Ω× {0},
h = h0 on Ω× {0},
v = 0 on ∂Ω× [0, T ].

(1)

We stress that the solution depends on the parameter µ = (µ1, µ2), i.e. (v, h) :=
(v(µ), h(µ)), but in the following we will omit such dependence for compactness of no-
tation. The proposed analysis does not change with other general boundary conditions:
for an insight on the admissible boundary conditions we refer to [4]. The proposed
model describes free surface incompressible flows under the assumption of hydrostatic
pressure. This hypothesis is valid when the water height is much lower than the wave-
length: this is the case of coastal behaviour and shallow depths. In equation (1), we
simplistically represent with the forcing term u all the physical quantities which can
affect the dynamic of the solution, such as the wind stress and the bottom friction: the
reason of this choice will be clarified in the next Section. Moreover, we deal with the
following parametric context: µ1 and µ2 represent how diffusion and advection phenom-
ena affect the shallow waters system, respectively. Furthermore, we assume the bottom
to be constant with respect to time and spatial variables for simplicity. Indeed, under
this assumption, the bottom has no influence on the system considered, since:

∇η = ∇h and div(ηv) = div(hv)− zb div(v)︸ ︷︷ ︸
=0

= div(hv).

In the next Section, we propose an optimal control problem governed by SWEs, briefly
introducing Lagrangian formulation and derivation of the optimality system.
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2.2 Optimal control problem governed by Shallow Waters Equations

In this Section we are going to introduce a time dependent OCP(µ) governed by
parametrized SWEs. We will combine the state equation (1) to a minimization prob-
lem. The goal is to relate the optimal control theory coupled with SWEs coastal water
model as a powerful tool in order to manage marine monitoring issues. Theoretically,
we will follow the general theory for time dependent OCP(µ)s proposed in [69, chapter
3]. In Section 2.1 we already introduced the state variable (v, h) ∈ Y. In order to
set up an OCP(µ) we need to define a control variable u in the function space U . In
our applications, we deal with a distributed optimal control, i.e., the control variable
represents the forcing term comprising the wind action, atmospheric pressure and the
bottom slope effect. Then, even if we are not actually controlling the system, the op-
timal control framework can be interpreted as an inverse problem which specifies the
physical conditions guaranteeing a desired velocity-height profile (vd, hd) ∈ Y. Let us
define the state-control variable x = ((v, h),u) ∈ X = Y ×U . As already stressed in the
previous section, even if the variables are µ−dependent, for the sake of notation we will
use ((v, h),u) := ((v(µ), h(µ)),u(µ)) and x := x(µ).
The parametrized OCP(µ) has the following formulation: given a parameter µ ∈ P,
find x ∈ X which minimized the function J(x) defined as

1
2

∫ T

0

∫
Ω

(h− hd(µ3))2 dΩdt+ 1
2

∫ T

0

∫
Ω

(v − vd(µ3))2 dΩdt+ α

2

∫ T

0

∫
Ω
u2 dΩdt, (2)

under the constraint (1), where α ∈ (0, 1] is a penalization parameter over the control
action. Namely, the optimal control problem depends on a physical parameter µ =
(µ1, µ2, µ3) in the parameter space P ⊂ R3. The role of the parameters µ1 and µ2 was
already introduced in Section 2.1, while the component µ3 affects the desired solution
profile as one can observe from the functional (2). In order to solve the problem, we
exploit a Lagrangian approach which allowed us to build the optimality conditions that
will be discretized in the following sections: in other words we applied an optimize-then-
discretize strategy, which first derives the optimality system at the continuous level and
approximates it only at the end of the procedure as presented in [24]. First of all, the
problem can be read as: given a parameter µ ∈ P, find x ∈ X which minimizes (2)
such that the weak state equation S(x, (κ, ξ);µ) = 0 is verified for all (κ, ξ) ∈ Y, where
S(x, (κ, ξ);µ) = 0 will denote the weak formulation of (1). After defining an adjoint
variable (χ, λ) ∈ Y, we build the following Lagrangian functional

L ((v, h),u, (χ, λ)) = J(x) + S(x, (χ, λ);µ). (3)

To perform a constrained minimization of (2), we differentiate with respect to the vari-
ables ((v, h),u, (χ, λ)) obtaining the optimality system:

DvL ((v, h),u, (χ, λ))[z] = 0 ∀z ∈ Yv,
DhL ((v, h),u, (χ, λ))[q] = 0 ∀q ∈ Yh,
DuL ((v, h),u, (χ, λ))[τ ] = 0 ∀τ ∈ U ,
DχL ((v, h),u, (χ, λ))[κ] = 0 ∀κ ∈ Yv,
DλL ((v, h),u, (χ, λ))[ξ] = 0 ∀ξ ∈ Yh.

(4)

The differentiation with respect to the adjoint variable (χ, λ) coincides with the state
equation that in strong form reads as (1). Moreover, differentiation with respect to the
control variable u leads to the optimality equation in Q of the form αu = χ, while we
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can derive the adjoint equation differentiating with respect to the state variable and its
strong form is

v − ∂χ

∂t
+ µ1∆χ− µ2(v · ∇)χ+ µ2(∇v)Tχ− h∇λ = vd in Q,

h− ∂λ

∂t
− v · ∇λ− gdiv(χ) = hd in Q,

χ = 0 on ∂Ω× (0, T )
χ = 0 on Ω× {T},
λ = 0 on Ω× {T}.

The three equations combined together will denote the strong form of the optimality
system we will deal with and that will be solved through numerical approximation. Some
details on the weak formulation of the problem can be found in Appendix A. In the next
Section we propose a space-time approach as full order numerical discretization in a all-
at-once framework, as presented in [30, 31, 62, 63] for linear and nonlinear constraints.

2.3 Space-Time OCP(µ)s: All-at-Once Approach

In this Section, we will present the space-time discretization of the OCP(µ) defined in
Section 2.2. Indeed, a first discretization is needed for the Reduced Order Model (ROM)
approximation, as we will clarify later in Section 3. Namely, a truth problem solution is
a necessary step in order to build reduced basis functions to apply model reduction.
First of all, we will focus on the Finite Element (FE) approximation. As already intro-
duced, our aim is to build a discretized optimality system based on the first optimize,
then discretize approach, see e.g. [24]. Namely, we first derive the optimality conditions
and then we perform a discretization in time and space through Euler’s methods and
FE approximation, respectively.
For this purpose, we define a triangulation T over the spatial domain Ω. We can now
provide the FE spaces as Y Nvv = [Yv]2 ∩Xrv , Y Nhh = Yh ∩Xrh and UNu = U ∩Xru ,
where Xr = {sN ∈ C0(Ω) : s|K ∈ Pr, ∀K ∈ T N }. The space Pr consists of all the
polynomials of degree at most equal to r and K is a triangular element of T . Let us
refer to N as the global FE dimension of the system, i.e. N = 2Nv+2Nh+Nu. Indeed,
in this new configuration, the state and adjoint velocity belong to

YNv =
{
v ∈ L2(0, T ;Y Nvv ) such that ∂v

∂t
∈ L2(0, T ;Y Nvv

∗)
}
,

and, similarly, the state and adjoint elevation variables are in the space

YNh =
{
h ∈ L2(0, T ;Y Nhh ) such that ∂h

∂t
∈ L2(0, T ;Y Nhh

∗)
}
.

Finally, the function space considered for state and adjoint velocity-height variables is
YN = YNv × YNh , while the control variable is in UN = L2(0, T ;UNu). For the sake
of notation, we used as apex the global dimension N over the spaces, even if it is
not the actual dimension of the space considered. Indeed, we are dealing with finite
dimensional Hilbert spaces and with the basis functions ({φi}Nvi=1, {φi}

Nh
i=1) and {ψi}Nui=1

for state/adjoint and control spaces, respectively.
The parametrized FE optimality system reads: given µ ∈ P, find the discrete variable
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((vN , hN ),uN , (χN , λN )) which solves:

DvL ((vN , hN ),uN , (χN , λN ))[z] = 0 ∀z ∈ YNv ,
DhL ((vN , hN ),uN , (χN , λN ))[q] = 0 ∀q ∈ YNh ,
DuL ((vN , hN ),uN , (χN , λN ))[τ ] = 0 ∀τ ∈ UN ,
DχL ((vN , hN ),uN , (χN , λN ))[κ] = 0 ∀κ ∈ YNv ,
DλL ((vN , hN ),uN , (χN , λN ))[ξ] = 0 ∀ξ ∈ YNh .

(5)

As we did in Section 2.2, we indicate the state-control variable ((vN , hN ),uN ) with xN .
We now deal with the time approximation. The time interval (0, T ) is divided in Nt

equispaced subintervals with ∆t as time step. Indeed, at each time tk = k × ∆t for
k = 1, · · · , Nt, our FE solution variables can be respectively written as:

vNk =
Nv∑
1
vikφ

i, hNk =
Nh∑
1
hikφ

i, uNk =
Nu∑
1
uikψ

i,

χNk =
Nv∑
1
χikφ

i, and λNk =
Nh∑
1
λikφ

i.

Following the strategy presented in [30, 62, 63] for linear state equations and in [31]
for Navier-Stokes equations, we define v̄ = [v1, . . . , vNt ]T , h̄ = [h1, . . . , hNt ]T and ū =
[u1, . . . , uNt ]T , where vk, hk and uk are the row vectors of the FE coefficients for state
discrete variables at each time step. The vectors representing the initial condition for the
velocity field v and the water height h are v̄0 = [v0, 0, . . . , 0]T and h̄0 = [h0, 0, . . . , 0]T ,
respectively. Following the same argument, we can define both adjoint vectors χ̄ =
[χ1, . . . , χNt ]T and λ̄ = [λ1, . . . , λNt ]T and the desired profiles v̄d = [vd1, . . . , vdNt ]T
and hd = [hd1, . . . , hdNt ]T . Also in this case, χk and λk represent the vectors of the
component of the FE variables at the k−th time step, for k = 1, . . . , Nt. Moreover,
from now on, with wN := (vN , hN ,uN ,χN , λN ) we refer to the global FE variable
including all the time instances, i.e. the FN for F = v, h,u,χ, λ will indicate the
global discretized space-time variable and FNk will be the global variable evaluated at
the time tk. The shown structure is consistent with the space-time formulation exploited
in several works as [71, 73, 74]: in this specific case, the backward Euler scheme in time
coincides with a piecewise constants Discontinuous Galerkin approach, as underlined in
[23]. Although, for the sake of simplicity, we will always refer to Euler’s schemes.
First of all, let us proceed with the discretization of the state equation governing the
problem (1). Using a backward Euler, the state equation is discretized forward in time.
The discretization gives the following result for the governing equation at each time
step, for k ∈ {0, . . . , Nt − 1}:

vNk+1 − vNk
∆t + µ1∆vk+1 + µ2(vNk+1 · ∇)vNk+1 + g∇(hNk+1) = uNk+1

hNk+1 − hNk
∆t + div(hNk+1v

N
k+1) = 0

(6)

The same discretization strategy can be applied for the optimality equation. In this case,
at each time step, one solves the equation:

α∆tuNk = ∆tχNk for k ∈ {1, . . . , Nt}. (7)

The last step of the full order discretization involves the adjoint equation. Since we are
given the value of the adjoint variables at time T , the equations are discretized backward
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in time, through a forward Euler’s method. In this case, at each time step, we have to
solve the following system for k ∈ {Nt, . . . , 2}:

vNk−1 +
χNk−1 − χNk

∆t + µ1∆χNk−1 − µ2(vNk−1 · ∇)χNk−1

+µ2(∇vNk−1)TχNk−1 − hNk−1∇λNk−1 = vd
N
k−1,

hNk−1 +
λNk−1 − λNk

∆t − vNk−1 · ∇λNk−1 − gdiv(χNk−1) = hd
N
k−1.

(8)

We now have all the ingredients to define the whole discrete optimality system, i.e. given
a µ ∈ P find the vector

w̄ =



[
v̄

h̄

]
ū[
χ̄

λ̄

]
 ,

which solves the following nonlinear system

R(wN ,µ) = G(wN ;µ)w̄ − f̄ = 0, (9)

where R(w̄,µ) represents the residual vector given by the difference of the action the
aforementioned nonlinear optimality equations in matrix form and the right hand side
vector, respectively denoted with G(wN ,µ) and f̄ . In order to find the space-time
optimal solution w̄, we rely on Newton’s method, i.e., defining J(w̄;µ) = D(G(wN ;µ)w̄)
the Frechét derivative of the operator G(wN ;µ)w̄, we iterate the solution

w̄j+1 := w̄j + J(w̄j ;µ)−1(−R(wN j ;µ)), j ∈ N, (10)

until the convergence is reached.
In Appendix B, we provide the formulation of all the involved discrete quantities. The
linearized optimality system carries out a saddle point structure, i.e.

J(w̄;µ)w̄ =
[
A BT
B 0

] [
x̄
p̄

]
. (11)

For some properly defined matrices A and B and vectors x̄ and p̄ (see Appendix B). We
here underline this peculiar structure since it will help to understand some important
concepts of the next Section. As already specified in Section 1, in a parametric context,
space-time solutions could be unfeasible due to the huge computational effort required
since the system to be solved has Ntot = Nt × N as actual dimension. In the next
Section, we will describe reduced order modelling (ROM) techniques, that we use in
order to overcome the problem of finding the parametric solution of an expensive optimal
control system.

3 ROM Approximation for OCP(µ)s

In this Section, we provide a brief introduction on ROM approximation techniques
and we show how to exploit it in the solution of SWEs optimal control parametrized
systems. Even if we propose the reduced strategy for a very specific governing state
equation, the approach could be used for general problems: indeed, we refer to [64, 75]
for previous applications to steady nonlinear OCP(µ)s. Besides, in order to deal with
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time dependency, we follow the numerical strategy already presented in [65, 66]. We start
with some basic ideas that guarantee an efficient ROM applicability and then, in Sections
3.2 and 3.3, we will move towards the space-time Proper Orthogonal Decomposition
(POD) algorithm, see for example [65, 66] as references, as an adaptation of what is
already known for linear OCP(µ)s.

3.1 Reduced Problem Formulation

In Section 2.1, we proposed optimal flow control as a way to formulate inverse problems
in marine environmental sciences, exploiting the velocity-height model of SWE. As we
already specified in Section 1, the space-time method could be computationally unfea-
sible when interested in solving several instances of the proposed OCP(µ), most of all,
in a parametrized setting. ROM techniques replace the truth system, with a surrogate
one, which is often smaller in terms of dimension. We now briefly introduce ROM ideas
in the OCP(µ)s setting. In order to clarify the role of the parametric setting, we will
explicit the µ−dependency in the quantities that are involved in the reduction process.
By varying the value of µ in the parameter space P, the parametric solution of (4) will
define a manifold

M = {(v(µ), h(µ),u(µ),χ(µ), λ(µ)) | µ ∈ P},

which we assume to be smooth. If we restrict our attention to the space-time approxi-
mation, the ensemble of the truth solutions is an approximation of M :

MNtot = {(vN (µ), hN (µ),uN (µ),χN (µ), λN (µ)) | µ ∈ P}.

Also in this case, the variables FN are actually considered in the space-time function
spaces of dimension Nt×NF for F = v, h,u,χ, λ, withNv = Nχ andNh = Nλ, since the
same discretized space is used for state and adjoint variables. ROM aims at describing
the structure of the approximated solution manifold MNtot through the construction of
bases derived from snapshots, i.e. properly chosen space-time solutions of the variables
involved in the optimization system. In other words, reduced spaces are subspaces of
the full order spaces and they are chosen through algorithms that guarantee a proper
description of how the optimality system (4) changes with respect to a new value of µ.
After the basis functions building process, a standard Galerkin projection is performed,
in order to find a low-dimensional surrogate solution, which is computationally efficient
and still accurate with respect to the previous model. Let us assume to have already
built the reduced function spaces YN ⊂ YN ⊂ Y and UN ⊂ UN ⊂ U for state/adjoint
variables and control, respectively. The projected reduced OCP(µ) reads: given µ ∈ P,
find ((vN (µ), hN (µ)),uN (µ), (χN (µ), λN (µ))) which solves:

DvL ((vN (µ), hN (µ)),uN (µ), (χN (µ), λN (µ)))[z] = 0 ∀z ∈ YvN ,
DhL ((vN (µ), hN (µ)),uN (µ), (χN (µ), λN (µ)))[q] = 0 ∀q ∈ YhN ,
DuL ((vN (µ), hN (µ)),uN (µ), (χN (µ), λN (µ)))[τ ] = 0 ∀τ ∈ UN ,
DχL ((vN (µ), hN (µ)),uN (µ), (χN (µ), λN (µ)))[κ] = 0 ∀κ ∈ YvN ,
DλL ((vN (µ), hN (µ)),uN (µ), (χN (µ), λN (µ)))[ξ] = 0 ∀ξ ∈ YhN .

(12)

The reduced system (12) is still nonlinear and it can be solved thanks to a Newton’s
method, as already specified in Section 2.3. In the next Sections, we will show an ap-
proach that leads to the construction of the reduced spaces and what are the techniques
to be used in order to deal with the reduced Frechét derivative aiming at preserving the
saddle point structure shown in (23) and its numerical stability.

9



3.2 POD Algorithm for OCP(µ)s

In order to build a reduced environment, two of the major techniques that have been
exploited in the literature are POD [9, 17, 20, 29] and greedy algorithm [26, 29, 48,
49, 57]. We decided to rely on the first approach since the applicability of the latter
requires an error estimator, which is still not available for our nonlinear time dependent
optimization problem.
We now describe the POD algorithm which consists in two phases: an exploratory
process based on a sample in the parameter space, in order to generate Nmax snapshots,
and a compressing stage, where the snapshots are manipulated and N < Nmax basis
functions are generated with the elimination of redundant information. We provide the
algorithm description as proposed in [9, 17, 20, 29]. First of all, a discrete subset of
parameters PNmax ⊂ P is chosen. If we compute truth solutions for µ ∈ PNmax we
obtain the following sampled manifold:

MNtot
h = {(vN (µ), hN (µ),uN (µ),χN (µ), λN (µ)) | µ ∈ PNmax} ⊂MNtot .

We define Nmax as the cardinality of the set PNmax and it is clear that, when Nmax is
large enough, the sampled manifold MNtot

h is a reliable surrogate of MNtot .
We decided to apply the POD algorithm separately for all the variables involved in the
system: we refer to this strategy as partitioned approach. The final goal of the POD is
to provide reduced spaces of dimension N which realize the minimum of the quantities:√√√√ 1

Nmax

∑
µ∈PNmax

min
zN∈YvN

‖vN (µ)− zN‖2Yv ,

√√√√ 1
Nmax

∑
µ∈PNmax

min
qN∈YhN

‖hN (µ)− qN‖Yh ,

√√√√ 1
Nmax

∑
µ∈PNmax

min
τN∈UN

‖uN (µ)− τN‖2U ,

√√√√ 1
Nmax

∑
µ∈PNmax

min
κN∈YvN

‖χN (µ)− κN‖2Yv ,

√√√√ 1
Nmax

∑
µ∈PNmax

min
ξN∈YhN

‖λN (µ)− ξN‖Yh .

We now summarise the POD-Galerkin procedure algorithm only for the velocity vari-
able v(µ). In any case, the proposed approach can be identically used for the other four
variables as well.
Let us define a set of ordered parameters µ1, . . . ,µNmax ∈ PNmax . To this para-
metric set, it will correspond an ordered ensemble of truth solutions, i.e. snapshots,
vN (µ1), . . . ,vN (µNmax). We can now define the correlation matrix Cv ∈ RNmax×Nmax
of snapshots of the velocity state variable, i.e.:

Cv
ml = 1

Nmax
(vN (µm),vN (µl))Y , 1 ≤ m, l ≤ Nmax.

The next step is to solve the following eigenvalue problem

Cvxvn = θvnx
v
n, 1 ≤ n ≤ N,
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with ‖xvn‖Y = 1. Assuming that the eigenvalues θv1 , . . . , θvNmax are sorted in decreasing
order we retain only the first N ones, namely θv1 , . . . , θvN , and the corresponding eigen-
vectors xv1 , . . . , xvN . We can now build ordered basis functions {ζv1 , . . . , ζvN} spanning
the reduced space YvN . Defining (xvn)m as the m-th component of the state velocity
eigenvector xvn ∈ RM , the basis functions are given by the following relation:

ζvn = 1√
θvm

Nmax∑
m=1

(xvn)mvN (µm), 1 ≤ n ≤ N.

Even if we performed a different POD algorithm for all the involved variables, we have
not separate time instances: indeed, the snapshots are FE solutions including all the
considered temporal steps. This strategy is consistent with respect to the space-time
FE full order discretization introduced in Section 2.3.
In the proposed framework, there is no a–priori knowledge on how far the POD-besed
reduced solution is from the truth approximation. Indeed, the accuracy of the reduced
optimal solution is not guaranteed unless the number of snapshots Nmax is sufficient to
reliably represent how the problem dynamics chances with respect to the parameters
[11, 40]. Despite the heuristic nature behind the application of POD, the algorithm is
of very common use for its great versatility since it adapts to very complex problems
too, from linear to nonlinear ones, for steady or time dependent settings. In the next
Section, we analyze how the obtained basis functions, i.e. {ζvn}Nn=1, {ζhn}Nn=1, {ζun}Nn=1,
{ζχn }Nn=1 and {ζλn}Nn=1 have to be manipulated in order to guarantee the solvability of
system (12).

3.3 Aggregated Spaces Approach

It is very well known in the literature that linear PDEs constrained optimization leads
to the solution of a system in saddle point formulation [12, 13, 32, 63]. The saddle point
framework can be extended also for lienar time dependent problems [30, 31, 62, 63]. In
Section 2.3 we showed that the saddle point framework is typical also of the linearized
nonlinear system (23). The main point of solving problems based on this structure is to
guarantee the inf-sup condition for the matrix B, which represents the state equation.
In other words, for every µ ∈ P, we want to verify the following inequality:

inf
06=p̄

sup
06=x̄

p̄TBx̄
‖x̄‖X ‖p̄‖Y

≥ βN (µ) > 0, (13)

see [6, 14, 16] as references. At the space-time level, relation (13) actually holds thanks to
the hypothesis on the coincidence between state and adjoint discretized spaces, which is
guaranteed by the same assumption at the continuous level, as we introduced in Section
2.2. Now, let us suppose to have applied standard POD described in Section 3.2 and
have obtained the following basis matrices:

Zx̄ =

ZvZh
Zu

 , Zp̄ =
[
Zχ
Zλ

]
and Z =

[
Zx̄
Zp̄

]
,

where ZF = [ζF1 | · · · |ζ
F
N ] ∈ RNtNF×N , for F = v, h,u,χ, λ. In order to solve the

optimality system in an algebraic low dimensional framework a Galerkin projection is
performed into the reduced spaces: indeed, this leads to a reduced system of the form

GN (w̄N ;µ)w̄N = f̄N , (14)
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where
GN (w̄N ;µ) := ZTG(Zw̄N ;µ) and f̄N := ZT f̄ .

The system (14) is nonlinear, in order to solve it, we applied Newton’s method and we
iteratively perform

w̄j+1
N := w̄jN + JN (w̄jN ;µ)−1(f̄N − G(w̄jN ;µ)), j ∈ N, (15)

where the Frechét derivative preserves the saddle point structure, i.e.

JN (w̄N ;µ)w̄N =
[
AN BTN
BN 0

] [
x̄N
p̄N

]
, (16)

with JN (w̄N ;µ) = ZT J(Zw̄N ;µ)Z, AN = ZTx̄ AZx̄, BN = ZTp̄ BZx̄, x̄N := ZTx̄ x̄ and
p̄N := ZTp̄ p̄. Also at the reduced level, equation (16) implies that we still need to verify
a reduced inf-sup condition of the form

inf
06=p̄N

sup
06=x̄N

p̄TNBN x̄N
‖x̄N‖X ‖p̄N‖Y

≥ βN (µ) > 0. (17)

Once again, the inequality is verified if the reduced space for state and adjoint variables
is the same. However, the introduced POD procedure will not necessarily result in the
same reduced order approximation for state and adjoint. Indeed, the application of the
strategy described in Section 3.2 will lead to the following spaces:

YvN = span{ζvn , n = 1, . . . , N},
YhN = span{ζhn , n = 1, . . . , N},
YuN = span{ζun , n = 1, . . . , N},
YχN = span{ζχn , n = 1, . . . , N},
YλN = span{ζλn , n = 1, . . . , N}.

Let QN be the product space of YχN and YλN : in other words, the POD defines an
adjoint space QN 6= YN , even if the state and the adjoint space are assumed to be the
same at the continuous level. It is clear that, as already specified for the continuous
and discretized system, in order to guarantee the solvability of the reduced optimality
system, we have to build our reduced spaces in such a way the basis functions can
describe state variables as well as adjoint variables. This goal is reached thanks to
the aggregated spaces technique as presented in [21, 48, 49]. The main purpose of this
strategy is to build a space that can be used both for state and adjoint variables. Then,
let us define the aggregated spaces

Zχv N = span {ζvn , ζχn , n = 1, . . . , N} and ZλhN = span {ζhn , ζλn , n = 1, . . . , N}.

The product space ZN = Zχv N ×ZλhN can actually give a representation of the reduced
state variable (vN (µ), hN (µ)) and the reduced adjoint variable (χN (µ), λN (µ)). More-
over, setting YN ≡ QN ≡ ZN , the inf-sup condition (17) holds. Concerning the control
function space, a standard POD-procedure can be applied, building

UN = span {ζun , n = 1, . . . , N}.

The aggregated space technique allows us to define new basis matrices of the form:
Zv ≡ Zχ = [ζv1 | · · · |ζvN |ζ

χ
1 | · · · |ζ

χ
N ] ∈ RNtNv×2N , Zu = [ζu1 | · · · |ζuN ] ∈ RNtNu×N and

12



Zh ≡ Zλ = [ζh1 | · · · |ζhN |ζλ1 | · · · |ζλN ] ∈ RNtNh×2N . The new spaces are actually increasing
the dimension of the system since the global reduced dimension is Ntot = 9N . Al-
though, the strategy guarantees the reduced inf-sup condition (17) and, consequently,
the existence of an optimal solution. Still, Ntot < Ntot, i.e. we still work in a reduced
dimensional framework.
We introduced all the notions needed in order to reduce nonlinear time dependent
OCP(µ)s. Anyway, we still miss fundamental assumptions which allow ROM to be
very advantageous under the point of view of computational costs: it will be the topic
of the next Section.

3.4 Efficient ROM and Affinity Assumption: Offline–Online decompo-
sition

Exploiting a reduced strategy is convenient only if fast simulations can be assured in
order to analyse different configurations of the physical system for several parameters.
To guarantee an efficient applicability of ROM techniques, the system is assumed to be
affinely decomposed. In other words, all the quantities involved in the system have to be
interpreted as the product of µ− dependent quantities and µ−independent quantities,
i.e. the equations involved can be recast as:

DvL ((v, h),u, (χ, λ))[z] =
QDvL∑
q=1

Θq
DvL (µ)DvL q((v, h),u, (χ, λ))[z],

DhL ((v, h),u, (χ, λ))[q] =
QDhL∑
q=1

Θq
DhL (µ)DhL

q((v, h),u, (χ, λ))[q],

DuL ((v, h),u, (χ, λ))[τ ] =
QDuL∑
q=1

Θq
DuL (µ)DuL q((v, h),u, (χ, λ))[τ ], (18)

DχL ((v, h),u, (χ, λ))[κ] =
QDχL∑
q=1

Θq
DχL (µ)DχL q((v, h),u, (χ, λ))[κ],

DλL ((v, h),u, (χ, λ))[ξ] =
QDλL∑
q=1

Θq
DλL (µ)DλL

q((v, h),u, (χ, λ))[ξ].

for some finite QDvL , QDhL , QDuL , QDχL , QDλL , where Θq
DvL ,Θ

q
DhL ,Θ

q
DuL , Θq

DχL

and Θq
DλL are µ−dependent smooth functions, whereas DvL q((v, h),u, (χ, λ)),

DhL
q((v, h),u, (χ, λ)), DuL q((v, h),u, (χ, λ)), DχL q((v, h),u, (χ, λ)) and

DλL
q((v, h),u, (χ, λ)) are µ−independent quantities describing the optimality system.

Thanks to affine decomposition, the solution of an OCP(µ) can be performed in two
different steps: an offline stage which consists in assembling all the parameter inde-
pendent quantities, building the reduced function spaces and storing all the mentioned
quantities; then, an online stage deals with all the µ−dependent quantities and solves
the whole reduced system (12). The latter phase is performed at every new parameter
evaluation and gives us information about physical configurations in a small amount of
time since it does not depend on the discrete full order dimension Ntot. We underline
that the case of interest deals at most with only quadratically nonlinear terms, we can
guarantee the affinity assumption storing the appropriate nonlinear terms in third order
tensors. If the OCP(µ) does not fulfill the decomposition (18), the empirical interpola-
tion method (EIM) can recover the assumption, see [10] or [29, Chapter 5] as references.
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In the next Section, we are going to present some numerical results for a nonlinear time-
dependent OCP(µ) governed by SWE equations, in order to assert the applicability of
ROM for this complicated model, which can be of great interest for in many fields of
natural sciences and engineering.

4 Numerical Results

This Section aims at validating the numerical performances of POD-Galerkin projection
over a nonlinear time dependent OCP(µ) governed by SWEs. We put in a parametrized
optimal control framework the academic test case presented in [25]. The experiment can
be read as an inverse problem on the forcing term, i.e. find the control variable, needed in
order to have a desired velocity-height state profile. Given a parameter µ = (µ1, µ2, µ3)
in the parametric space P = (0.00001, 1.)×(0.01, 0.5)×(0.1, 1.), we solved the optimality
system (4) built through Lagrangian approach, in the fashion of optimize-then-discretize
technique, over the water basin described by Ω = (0, 10) × (0, 10). As we already
discussed in Section 2.1, the flat bathymetry does not actually affect the system, so we
used zb = 0. We simulate our system evolution in the time interval (0, T ) with T =
0.8s. The OCP(µ) simulates the spreading of a mass of water with an initial Gaussian
distributed elevation and null initial velocity: i.e.

v0 = 0, and h0 = 0.2(1 + 5e(−(x1−5)2−(x2−5)2+1))),

where x1 and x2 are the spatial coordinates. Under a controlling forcing term represent-
ing wind action and bottom friction, we want our solution to be similar to (µ3vd, µ3hd),
where (vd, hd) is the solution of the uncontrolled state equation (1), with null initial
velocity and initial elevation hd0 = 2e(−(x1−5)2−(x2−5)2+1) and null forcing term u = 0.
In Section 2.1, we already specified the diffusive and advective role of µ1 and µ2. In
Table 1 we report all the specifics of the experiment that we are going to describe. The
goal of the presented optimal control problem is to make our solution (v, h) the most
similar to the desired above mentioned profile. Once again, we underline that we work
in a parametrized framework, i.e. the controlled solution changes for different values of
µ ∈ P. All the results we present are given by the parameter µ = (0.1, 0.5, 1.). Follow-
ing the space-time discretization technique proposed in [58], we used linear polynomials
for the truth approximation of all the variables, i.e. rv = rh = ru = 1. With respect
to time discretization, we divided the time interval with ∆t = 0.1, which leads to a
number of time steps Nt = 8. The problem solved is quite complex even with this small
amount of time steps. In any case, ∆t can be reduced following the iterative techniques
exploited in [30, 31, 62, 63]. Although, for the sake of simplicity, we exploited a direct
solver for the algebraic system (9). In the end, at the truth approximation level, we deal
with a system of a total dimension Ntot = Nt ×N = 94′016.

In order to build the reduced optimality system (12), we applied the partitioned
POD-Galerkin approach presented in Section 3.2. First of all, we built five correlation
matrices with Nmax = 100 for all the variables, respectively. The choice of Nmax is
affected by an increasing effort in solving the offline phase. Indeed, the described problem
has huge computational limitations both in time and in storage memory exploited for
the basis construction: they drastically grow for large values of Nmax. Although, the
value we used led to a feasable offline phase in terms of computational time.
Let us define the basis number N , i.e. the number of eigenvalues/eigenvectors retained
from the correlation matrices compression process of the POD. For this test case, the
basis functions were obtained choosing N = 30. The basis number considered allowed
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us to well describe the full order approximated system in the reduced framework, as
the reader can notice from the average relative errors represented in Figure 2 with the
following norms: ∫ T

0
‖vN − vN‖2H1 dt,

∫ T

0
‖hN − hN‖2L2 dt∫ T

0
‖uN − uN‖2L2 dt,

∫ T

0
‖χN − χN‖2H1 dt, and

∫ T

0
‖λN − λN‖2L2 dt.

Table 1: Data for the OCP(µ) governed by SWEs.

Data Values

P (0.00001, 1)× (0.01, 0.5)× (0.1, 1)

[0, T ] [0s, 0.8s]

values of (µ1, µ2, µ3, α) (0.1, 0.5, 1, 10−1)

Nmax 100

N 30

Sampling Distribution Uniform

Ntot 94’016

ROM System Dimension 270

The errors is averaged over a testing set of 20 parameters uniformly distributed:
as expected, it decreases with respect the basis number N reaching a minimum value
of 10−3 state and adjoint velocity and a value of 10−4 for state and adjoint elevation
together with the control variable.

Figure 2: Averaged relative error between space-time and ROM approximation for state velocity
and elevation profile (top left), adjoint velocity and elevation profile (top right), and control
(bottom).

Moreover, the effectiveness of the reduced model can be understood also from the com-
parison between the space-time solutions and the ROM solutions presented in Figures
3 and 5 for the velocity and elevation state at t = 0.2s, 0.4s, 0.6s, 0.8s, respectively.
The ROM procedure leads to a good representation of the space-time solutions for the
different time instances considered. The same conclusions can be drawn for the adjoint
variables for velocity and height in Figure 4 and 6, respectively. For the sake of brevity
we do not show the control variable. Indeed, the adjoint variable has the same behaviour
of the control variable scaled by the factor α, as a consequence of the optimality equation
(7). Let us analyse the computational time comparison between space-time and ROM
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simulations. We refer to the speedup index: it represents how many reduced simulations
can be performed in the time of one space-time optimality system solve. The speedup
depends very mildly on the value of N , and it is of the order of O(30) for N = 1, . . . , 30.
We remind that in order to guarantee the solvability of the reduced saddle point prob-
lem arising from the linearized system, we used aggregated space technique presented
in Section 3.3: it increased the reduced dimension of the system to Ntot = 9N = 270.
Anyway, the speedup index underlines that it is actually convenient to perform a pro-
jection even in this larger reduced space, since the whole optimality system is actually
very complex to be solved at the space-time level, most of all if many simulations are
required in order to better study several parametric configurations. The next Section
is dedicated to some comments and perspectives on improvements and future research
focus with respect to the presented topic.

Figure 3: FE state velocity profile (top) compared to ROM state velocity profile (bottom) for
t = 0.2s, 0.4s, 0.6s, 0.8s and for µ = (0.1, 0.5, 1).

Figure 4: FE adjoint velocity profile (top) compared to ROM adjoint velocity profile (bottom)
for t = 0.2s, 0.4s, 0.6s, 0.8s and for µ = (0.1, 0.5, 1).
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Figure 5: FE state elevation profile (top) compared to ROM state elevation profile (bottom)
for t = 0.2s, 0.4s, 0.6s, 0.8s and for µ = (0.1, 0.5, 1).

Figure 6: FE adjoint elevation profile (top) compared to ROM adjoint elevation profile (bottom)
for t = 0.2s, 0.4s, 0.6s, 0.8s and for µ = (0.1, 0.5, 1).

5 Conclusion and Perspectives

In this work, we propose ROMs as a suitable tool to solve a parametrized nonlinear time
dependent OCP(µ) governed by SWE, a very important model widely spread in several
environmental applications such as marine ecosystem management and coastal engineer-
ing. To the best of our knowledge, it is the first time that parametrized reduction is
exploited for this kind of solution tracking coastal model: this work aims at showing
how ROMs could be very effective in the marine management field deeply characterized
by a growing demanding computational effort. Working in a low dimensional frame-
work allows us to perform accurate simulations in a small amount of time compared to
the space-time approximation. Moreover, the proposed methodology, based on a POD-
Galerkin projection of the Lagrangian based optimality system, is general and can be
easily applied to other nonlinear time dependent state equations. Indeed, a complete re-
duced data assimilated nonlinear and time dependent framework is presented and, since
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it can be used for general state equations, it can be exploited in several environmental
problem configurations. We remark that the proposed formulation has the strength of
sharing many similarities with steady problems. Besides this property, we reach the goal
of showing how ROMs can be effective in this context and this was a first step towards
a deeper investigation of the topic.
Indeed, some possible advances to this work follow. First of all, a more theoretical anal-
ysis of the considered problem is still partially missing due to the great complexity of
the state equation itself. The analysis of the parametrized optimal control framework
governed by SWEs could be a topic of future investigation, as well as the development
of an error estimator which could allow us to rely on more efficient ROM greedy-based
algorithms.
Another point of interest concerns the hyperbolic nature of the system. Indeed, it is
well known that SWE might lead to a poor ROM approximation [28, 67], however, the
example we proposed seemed not to suffer from this issue. In order to take into consid-
eration more complex problems, a deeper analysis of the role of optimal control in this
setting is needed.
Moreover, for environmental sciences applications, another important development for
nonlinear time dependent problems could be the use of random input parameters as
an extension of [18], since, in marine ecosystems, it is not always possible to assign
deterministic values for the parameters describing the physical model.

A Details on the Continuous Model

We here propose a more detailed discussion on the problem formulation introduced
in Section 2.2. First of all, the state equation (1) can be interpret in weak formu-
lation: given a parameter µ ∈ P, find x ∈ X which minimizes (2) constrained to
S(x, (κ, ξ);µ) = 0 for all (κ, ξ) ∈ Y, where S(x, (κ, ξ);µ) = 0 reads as follows:

∫ T

0

∫
Ω

∂v

∂t
·κ dΩdt+ µ1a1((v, h), (κ, ξ)) + µ2

∫ T

0
anl

1 ((v, h), (v, h), (κ, ξ)) dt

+
∫ T

0
a2((v, h), (κ, ξ) dt =

∫ T

0

∫
Ω
u·κ dΩdt∫ T

0

∫
Ω

∂h

∂t
ξ dΩdt+

∫ T

0
anl

2 ((v, h), (v, h), (κ, ξ)) dt = 0.

The forms a1(·, ·), a2(·, ·), anl1 (·, ·, ·), anl2 (·, ·, ·) are defined as follows:

a1 : Y × Y → R a1((v, h), (κ, ξ)) =
∫

Ω
∇v:∇κ dΩ,

a2 : Y × Y → R a2((v, h), (κ, ξ)) =
∫

Ω
gκ:∇h dΩ,

anl
1 : Y × Y × Y → R anl

1 ((v, h), (w, ϕ), (κ, ξ)) =
∫

Ω
κ:(v · ∇)w dΩ,

anl
2 : Y × Y × Y → R anl

2 ((v, h), (w, ϕ), (κ, ξ)) =
∫

Ω
ξdiv(ϕv) dΩ.

The nonlinear nature of the bilinear forms have been specified through the apex “nl”.
Considering the adjoint variable (χ, λ) := (χ(µ), λ(µ)) ∈ Y, it is clear that the weak
form of the optimality equation is given by

α

∫ T

0

∫
Ω
u·τ dΩdt =

∫ T

0

∫
Ω
χ·τ dΩdt ∀τ ∈ U ,
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while the weak adjoint equation, reads:

∫ T

0

∫
Ω
v·z dΩdt−

∫ T

0

∫
Ω

∂χ

∂t
·z dΩdt+ µ1

∫ T

0
a∗1((χ, λ), (z, q)) dt

+µ2

∫ T

0
anl

1
∗((v, h), (χ, λ), (z, q)) dt

+
∫ T

0
anl

2
∗((v, h), (χ, λ), (z, q)) dt =

∫ T

0

∫
Ω
vd·z dΩdt,∫ T

0

∫
Ω
hq dΩdt−

∫ T

0

∫
Ω

∂h

∂t
q dΩdt+

∫ T

0
anl

3
∗((v, h), (χ, h), (z, q)) dt

+
∫ T

0
a∗3((χ, λ), (z, q)) dt =

∫ T

0

∫
Ω
hdq dΩdt,

for all (z, q) ∈ Y, where the involved forms are defined as

a∗1 ≡ a1 : Y × Y → R a1((χ, λ), (z, q)) =
∫

Ω
∇χ:∇z dΩ,

anl
1
∗ : Y × Y × Y → R anl

1
∗((v, h), (χ, λ), (z, q)) = −

∫
Ω

(v · ∇)χ·z dΩ

+
∫ T

0

∫
Ω

(∇v)Tχ·z dΩdt,

anl
2
∗ : Y × Y × Y → R anl

2
∗((v, h), (χ, λ), (κ, ξ)) = −

∫
Ω
h∇λ·z dΩ,

anl
3
∗ : Y × Y × Y → R anl

3
∗((v, h), (χ, λ), (z, q)) = −

∫
Ω
v · ∇λq dΩ,

a∗3 : Y × Y → R a∗3((χ, λ), (z, q)) = −g
∫

Ω
div(χ)q dΩ.

B Details on the Space-Time Formulation

We here propose a detailed discussion of the algebraic structure briefly presented in
Section 2.3. First of all, we specify the nature of the residual vector R(wN ;µ). Then,
we aim at underlining the saddle point structure of J(w̄;µ). This concept is fundamental
for our formulation to comply with classical references for optimization problems such
as [12, 30, 31, 62, 63]. Moreover, the saddle point structure arising from linearization
justifies the reduction techniques proposed in Section 3.3, already exploited for linear
steady OCP(µ)s in [48, 49, 56] and, for time dependent problems in [65, 66].
To this purpose, we define Mv, Mu and Mh as mass matrices with respect to the variables
v,u and h, respectively, and K, D, H(vNk ), H∗(vNk ), G(vNk ), G∗(vNk ) and F ∗(hNh )
where:

(K)ij = a1((φj , φj), (φi, φi)),
(D)ij = a2((φj , φj), (φi, φi))

(H(vNk ))ij = anl
1 ((vNk , hNk ), (φj , φj), (φi, φi)),

(H∗(vNk ))ij =
∫

Ω
(∇vNk )Tφiφj dΩ,

(G(vNk ))ij = anl
2 ((vNk , hNk ), (φj , φj), (φi, φi)).

(G∗(vNk ))ij = anl∗
3 ((vNk , hNk ), (φi, φi), (φj , φj)),

(F ∗(hNk ))ij = anl∗
2 ((vNk , hNk ), (φi, φi), (φj , φj)).
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Moreover, for the sake of notation, let us define the operators S(vNk ) = µ1∆tK +
µ2∆tH(vNk ) and S∗(vNk ) = µ1∆tK − µ2∆tH(vNk ) + µ2∆tH∗(vNk ). Then, the explicit
form for the residual vector is

R(wN ;µ) =


∆tMv v̄ +K∗1(vN )χ̄+K∗2(hN )λ̄

∆tMhh̄+K∗3χ̄+K∗4(vN )λ̄
α∆tMuū−∆tMuχ̄

K1(vN )v̄ +K2h̄−∆tMuū

K4(vN )h̄


︸ ︷︷ ︸

G(w̄;µ)w̄

−


∆tMvv̄d
∆tMhh̄d

0̄
Mv v̄0
Mhh̄0


︸ ︷︷ ︸

f̄

, (19)

whereMv,Mh andMu are block diagonal matrices with diagonal entries {Mv, . . . ,Mv},
{Mh, . . . ,Mh} and {Mu, . . . ,Mu}, respectively. In addition, we define the block diago-
nal matrices given by K2 = diag{∆tD, . . . ,∆tD},
K∗2(hN ) = diag{∆tF ∗(hN1 ), . . . ,∆tF ∗(hNNt)}, K

∗
3 = diag{∆tDT , . . . ,∆tDT } and the ma-

trices K1(vN ), K4(vN ), K∗1(vN ) and K∗4(vN ), respectively, as:
Mv + S(vN1 ) 0 · · · 0
−Mv Mv + S(vN2 ) 0 · · · 0

0 −Mv Mv + S(vN3 ) 0 · · · 0
. . . . . .

0 · · · 0 −Mv Mv + S(vNNt
)

 ,

Mh + ∆tG(vN1 ) 0 · · · 0

−Mh Mh + ∆tG(vN2 ) 0 · · · 0
0 −Mh Mh + ∆tG(vN3 ) 0 · · · 0

. . . . . .
0 · · · 0 −Mh Mh + ∆tG(vNNt

)

 ,

Mv + S∗(vN1 ) −Mv · · · 0

0 Mv + S∗(vN2 ) −Mv · · · 0
. . . . . .

0 · · · 0 Mv + S∗(vNNt−1) −Mv 0
0 · · · 0 Mv + S∗(vNNt

)

 ,
and 

Mh +G∗(vN1 ) −Mh · · · 0
0 Mh +G∗(vN2 ) −Mh · · · 0

. . . . . .
0 · · · 0 Mh +G∗(vNNt−1) −Mh 0
0 · · · 0 Mh +G∗(vNNt

)

 .

Thus, the residual R(wN ;µ) can be also written in the following compact form

R(wN ;µ) =

∆tM[v̄, h̄] +K∗(vN , hN )[χ̄, λ̄]
α∆tMuū−∆tMuχ̄

K(vN )[v̄, h̄]−∆tMu0[ū, 0̄]

−
∆tM[v̄d, h̄d]

0̄
M[v̄0, h̄0]

 , (20)

where M =
[
Mv, 0

0, Mh

]
, K(vN ) =

[
K1(vN ) K2

0 K4(vN )

]

K∗(vN , hN ) =
[
K∗1(vN ) K∗2(hN )
K∗3 K∗4(vN )

]
and Mu0 =

[
Mu, 0

0, 0

]
. We remark that the first,
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the second and the last row of R(wN ,µ) represent adjoint, optimality and state equa-
tions, respectively. We want now focus our attention on J(w̄;µ). For the sake of
clarification, we underline that with the notation (·)D, we denote a quantity which
derives from the differentiation of operators. The differentiation will be applied to
general space-time variables that are denoted with v, h, u, χ, λ. Let us start our anal-
ysis with the state equation. New operators are needed: H(vNk ), with H(vNk )ij =
anl

1 ((φj , φj), (vNk , hNk ), (φi, φi)), and F (hNk ) with F (hNk )ij = anl
2 ((φj , φj), (vNk , hNk ), (φi, φi)).

Then, defining

S(vNk )D := D(S(vNk )vk) = µ1∆tK + µ2∆tH(vNk ) + µ2∆tH(vNk ),

we can differentiate the state equation as follows: D(K(vN )
[
v̄

h̄

]
−∆tMuū). The process

will affect only nonlinear terms and will lead to a linearized system of the form

KD(vN , hN )
[
v
h

]
−∆tMuu, (21)

with KD =
[
KD

1 (vN ) K2
KD

3 (hN ) K4(vN )

]
where KD

3 = diag{F (hN1 ), . . . , F (hNNt)} and KD
1 is


Mv + S(vN1 )D 0 · · · 0
−Mv Mv + S(vN2 )D 0 · · · 0

0 −Mv Mv + S(vN3 )D 0 · · · 0
. . . . . .

0 · · · 0 −Mv Mv + S(vNNt
)D

 .

The differentiation of the optimality equation (7) leads to the same equation, due to
its linearity. Let us differentiate the adjoint equation. In order to write the linearized
system we define four more operators: H∗(χNk ), H∗(χNk ), F (λNk ) and G(λNk ) where:

(H∗(χNk ))ij = −
∫

Ω
(φi · ∇)χNk φj dΩ, (H∗(χNk ))ij =

∫
Ω

(∇φNi )TχNk φj dΩ,

(F (λNk ))ij = anl
2 ((φj , φj), (χNk , λNk ), (φj , φj))

and
(G(λNk ))ij = anl

2 ((φj , φj), (χNk , λNk ), (φj , φj)).

Thanks to these quantities, we can perform the differentiation of the adjoint equation

D(∆tM
[
v̄

h̄

]
+K∗(vN , hN )

[
χ̄

λ̄

]
),

which will result in the following linearized system

∆t (M+K∗D(χN , λN ))︸ ︷︷ ︸
MD(χN ,λN )

[
v
h

]
+K∗(vN , hN )

[
χ
λ

]
, (22)

where MD =
[
MD

1 (χN ) MD
2 (λN )

MD
3 (λN ) MD

4

]
with the block diagonal matrices defined by

MD
1 (χN ) = diag{Mv + µ2H

∗(χN1 ) + µ2H
∗(χN1 ), . . . ,Mv + µ2H

∗(χNNt) + µ2H
∗(χNNt)},
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MD
2 (λN ) = diag{F (λN1 ), . . . , F (λNNt)},M

D
3 (λN ) = diag{G(λN1 ), . . . , G(λNNt)} andMD

4 =
diag{Mh, . . . ,Mh}. We underline that, in (20) the K∗ 6= KT , due to the nonlinearity of
the involved forms in the system, then no saddle point structure arises. However, we
can recast the linearized problem in a saddle point formulation since K∗ ≡ KDT . Indeed,

calling with x̄ the state-control space-time vector variable


[
v̄

h̄

]
ū

 and with p̄ =
[
χ̄

λ̄

]
the

adjoint variable, and defining

A =
[
∆tMD 0

0 α∆tMu

]
and B =

[
KD −∆tMu

]
,

it is simple to remark that the Frechét derivative can be read in the following saddle
point framework:

J(w̄;µ)w̄ =
[
A BT
B 0

] [
x̄
p̄

]
. (23)

We remark that J(w̄;µ) is actually a generalized saddle point matrix, see [12] as refer-
ences, where A 6= AT . Still, we will always talk about saddle point structure from now
on, since the generalization does not affect the reduced strategy used [15]: indeed, the
solvability condition remains the fulfillment of the inf-sup condition [6, 14, 16] over the
state equation for the symmetric part of A. Moreover, the saddle point structure does
not depend on the discretization scheme used: it can be generalized for other space and
time approximations.
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