
Communications in Applied
and Industrial Mathematics

ISSN 2038-0909

Research Article

Commun. Appl. Ind. Math. 8 (1), 2017, 210–236 DOI: 10.1515/caim-2017-0011

POD-Galerkin reduced order methods for CFD

using Finite Volume Discretisation: vortex

shedding around a circular cylinder

Giovanni Stabile1*, Saddam Hijazi1, Andrea Mola1, Stefano Lorenzi2,

Gianluigi Rozza1

1SISSA, International School for Advanced Studies, Mathematics Area, mathLab
Trieste, Italy

2Department of Energy, Politecnico di Milano, Italy

*Email address for correspondence: gstabile@sissa.it

Communicated by Luca Formaggia

Received on 12 01, 2017. Accepted on 08 02, 2017.

Abstract

Vortex shedding around circular cylinders is a well known and studied phenomenon

that appears in many engineering fields. A Reduced Order Model (ROM) of the incom-

pressible flow around a circular cylinder is presented in this work. The ROM is built

performing a Galerkin projection of the governing equations onto a lower dimensional

space. The reduced basis space is generated using a Proper Orthogonal Decomposition

(POD) approach. In particular the focus is into (i) the correct reproduction of the pres-

sure field, that in case of the vortex shedding phenomenon, is of primary importance

for the calculation of the drag and lift coefficients; (ii) the projection of the Governing

equations (momentum equation and Poisson equation for pressure) performed onto dif-

ferent reduced basis space for velocity and pressure, respectively; (iii) all the relevant

modifications necessary to adapt standard finite element POD-Galerkin methods to a

finite volume framework. The accuracy of the reduced order model is assessed against

full order results.

Keywords: ROM, POD-Galerkin, Finite Volumes, CFD, vortex shedding

AMS subject classification: 78M34, 97N40, 35Q35

1. Introduction

A large part of physical systems is described by partial differential equa-
tions and their numerical solution is essential in many engineering fields.
Even though several progresses have been made over the last decades, the
numerical solution of fluid dynamics problems, using standard finite element
methods (FEM), spectral element methods (SEM), finite volume methods
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Vortex shedding around a circular cylinder using a POD-Galerkin method

(FVM) or finite differences methods (FDM), may be extremely expensive
by a computational standpoint. The development of efficient and reliable
Reduced Order Models (ROMs) could be a great advantage especially when
dealing with control, optimization and uncertainty quantification problems,
where a large number of different system configurations are in need of being
tested.

Vortex Induced Vibrations (VIVs) are an important phenomena in many
different engineering fields where it has been observed and studied either
both for air or water flows for many years [1,2]. The importance of studying
such a problem comes from the fact that it can be the source of evident
damage or failure of the engineering system. Disregarding VIVs through
the design process can in fact lead to severe structural failures. This phe-
nomenon is caused by the oscillating flow arising from the alternate vortex
shedding. Among all possible existing phenomena that may occur on flexi-
ble cylindrical structures, VIVs are potentially one of the most dangerous
and hard to predict. If a rigid and fixed cylinder is considered, the frequency
of the vortex shedding phenomenon fv can be deduced with fv = StU/D [3]
in which St is the Strouhal number, U is the free stream velocity and D is
the diameter of the cylinder. For the particular case of the vortex shedding
phenomenon around a circular cylinder [4,5] one can find several attempts
to create a ROM. In some cases no attempt to model completely the flow
field is done such as in [6–8] where only the lift and drag forces acting on
the cylinder are modelled using wake oscillator models. When the interest
is into the complete reconstruction of the flow field, Reduced Basis (RB)
method can be applied. In this method the governing equations, describ-
ing the phenomenon, are projected onto a low dimensional space called the
reduced basis space [9,10] that is optimally constructed starting from high
fidelity simulations. In particular in this work the ROM is constructed us-
ing a POD-Galerkin approach [11–17]. As previously mentioned, since the
main purpose of this paper is the correct modelling of the vortex shedding
phenomenon, particular attention is paid to the reconstruction in the re-
duced order model of the pressure field. Differently from [13], in this paper
we propose a ROM that includes also the Poisson equation for the pressure
modelling. To the best of the authors knowledge, this is the first attempt
to use this approach, commonly employed in the FE framework, in the
POD-Galerkin approach using finite volume discretization.

The work is organized as follows. In § 2 the governing equations of the
physical model and the high fidelity (HF) discretisation techniques used to
solve the full order model are presented. The development of the ROM is
introduced in § 3 and in § 4 the numerical example, regarding the vortex
shedding phenomenon around a circular cylinder, is analysed. Finally in § 5
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conclusions and suggestions for future developments are given.

2. The Full Order Model

The physical model is described below by using the parametrized in-
compressible unsteady Navier-Stokes equations. They consists into the well
known conservation of momentum law and continuity equations. In an Eu-
lerian framework they are expressed by:

(1)











































∂u
∂t

+ (u ·∇)u−∇ · ν∇u = −∇p in Ωf × [0, T ],

∇ · u = 0 in Ωf × [0, T ],

u(t, x) = f(x, µ) on ΓIn × [0, T ],

u(t, x) = 0 on Γ0 × [0, T ],

(ν∇u− pI)n = 0 on ΓOut × [0, T ],

u(0,x) = k(x) in (Ωf , 0)

where Γ = ΓIn ∪ Γ0 ∪ ΓOut is the boundary of the fluid domain Ωf and is
composed by three different parts ΓIn, ΓOut and Γ0 that indicate respec-
tively inlet boundary, outlet boundary and physical walls. u is the flow
velocity vector, t is the time, ν is the fluid kinematic viscosity, and p is
the normalized pressure, which is divided by the fluid density ρf , f is a
generic function that gives the value of the velocity on the inlet ΓIn and
it is parametrised through the scalar quantity µ. k is the initial velocity
field and T is the time window we considered. Since in the present work
the problem is solved using a finite volume discretisation technique [18,19],
where the standard is to work with a Poisson equation for pressure rather
than directly with the continuity equation, the system of equations 1 is
modified into:

(2)







































































∂u
∂t

+ (u ·∇)u−∇ · ν∇u = −∇p in Ωf × [0, T ],

u(t, x) = f(x, µ) on ΓIn × [0, T ],

u(t, x) = 0 on Γ0 × [0, T ],

∇u · n = 0 on ΓOut × [0, T ],

u(0,x) = k(x) in (Ωf , 0),

+

∆p = −∇ · (u · ∇)u in Ωf × [0, T ],

∇p · n = 0 on Γ \ ΓOut × [0, T ],

p = 0 on ΓOut × [0, T ].

In the above system of equations all the quantities assume the same mean-
ing of those presented in System 1 and the Poisson equation for pressure is
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obtained taking the divergence of the momentum equation and exploiting
the divergence free costraint. The two equations are solved using a segre-
gated approach and more details are given in § 2.1. Historically the FVM
discretisation technique is widely used in industrial applications and for
flows characterized by high values of the Reynolds numbers. An advan-
tage of the FVM is that of ensuring local enforcement of the conservative
law since equations are written in conservative form. In this work the high
fidelity simulations are carried out making use of the finite volume C++
library OpenFOAM R© (OF) [20].

2.1. The Finite Volume discretisation

As mentioned in § 1 the governing equations are discretised in space
using a finite volume approximation. Once a suitable polygonal tessellation
is chosen, the system of partial differential equations in (1) is written in
integral form over a control volume. In the present two-dimensional frame-
work the tessellation is represented by a subdivision of the domain into a
finite number of non-overlapping polygonal cells. The dimension of the full
order model, which consists into the number of degrees of freedom of the
discretised problem, will be henceforth indicated with Nh. The strategies
for the discretisation of both the momentum and continuity equation are
briefly reported in the following.

2.1.1. Momentum equation

The momentum balance equation is written for each volume Vi in inte-
gral form as:

(3)

∫

Vi

∂

∂t
utdV +

∫

Vi

(u · ∇)udV −

∫

Vi

∇ · ν∇udV +

∫

Vi

∇pdV = 0.

The gradient terms and in particular the gradient of pressure, making use
of the Gauss’s theorem, are discretised as:

(4)

∫

Vi

∇pdV =

∫

Si

dS · p ≈
∑

f

Sfpf ,

where Sf is the area vector of each face of the control volume and pf is the
value of pressure at the center of the faces (Figure 1).

Making use of the Gauss’s theorem, the convective term is discretised
as follow:

(5)

∫

Vi

(u · ∇)udV =

∫

Si

(dS · uf )uf ≈
∑

f

(Sf · uf )uf =
∑

f

Ffuf ,
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uf is the velocity vector evaluated at the center of each face of the control
volume. Since the unknowns of the mathematical problem are the velocity
values at the cell centers, uf must be be obtained from the cell center
values with suitable interpolation schemes. Possible alternatives could be a
central, upwind, second order upwind and blended differencing schemes. In
this particular case a second order upwind differencing scheme is used for
the convective term. Ff = Sf · uf is the mass flux through each face of the
control volume. The diffusion term is discretised as:

(6)

∫

Vi

∇ · ν∇udV =

∫

Si

dS · ν∇u ≈
∑

f

νSf · (∇u)f ,

where (∇u)f is the gradient of u at the faces. In case the value of the
gradient ∇φi of a generic conservative variable φ at the center of the cell
is needed, as in equation 6, this can be computed dividing the expression
in equation 4 by the volume of the cell Vi. In case of orthogonal meshes
(i.e. the face dividing two cells is orthogonal with respect to the distance
connecting the two cell centers) the term Sf · (∇u)f could be computed
using:

(7) Sf · (∇u)f = |Sf |
uN − uP

|d|
,

where uN and uP are the velocities at the centers of two neighboring cells
and d is the distance vector connecting the two cell centers (see Figure 1).
In the case of non-orthogonal meshes one needs to correct the above scheme.
In this work this term is split into two contributions, an orthogonal one and
a non-orthogonal one [21]:

(8) Sf · (∇u)f = |∆|
uN − uP

|d|
+ k · (∇u)f ,

where the two vectors ∆ and k satisfy Sf = ∆+ k. The first vector ∆ is
chosen parallel to Sf . The term (∇u)f is obtained through interpolation of
the the values of the gradient at the cell centers (∇u)N and (∇u)P in which
the subscripts N and P (Figure 1) indicate the values at center of the cells
of the two neighboring cells. There are different strategies to determine
the vectors ∆ and k such as minimum correction approach, orthogonal
correction approach and over-relaxed approach, more details can be found
in [21].

2.1.2. Poisson equation for pressure

As mentioned in § 1 the coupling between momentum conservation and
the Poisson equation for pressure is treated making use of a segregated ap-
proach. The PIMPLE algorithm [19] is used, it consists into a combination
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of an inner correction cycle using the PISO [22] algorithm and an outer
correction procedure performed using the SIMPLE [23] algorithm. The two
considered equations are the momentum equation and the Poisson equation
for pressure, which as already mentioned, is obtained taking the divergence
of the momentum equation and exploiting the continuity equation:

(9) ∆p = −∇ · (u · ∇)u.

The use of a Poisson equation for pressure is considered also at reduced
order level where the two equations are instead solved in a monolithic way.

3. The Reduced Order Model

This section introduces the derivation of the ROM and the necessary
modifications in order to be able to adapt a standard FEM-Galerkin ROM
to a FVM-Galerkin framework. Here few details are only recalled, for further
details one may see [13]. The relevant details introduced here are:

• Introduction of a reduced basis space also for the mass flux term
of equation (5) with a similar approach presented also in [13]. This
reduced basis space is the one used during the projection phase of
the momentum equation.

• Differently to what proposed in [13,14], where only the momentum
equation is considered and where it is assumed that velocity and
pressure share the same temporal coefficients, the Poisson equa-
tion for pressure reported in Equation (9) is projected onto the
POD pressure modes in order to enforce the continuity equation
constraint. Such approach, that is proposed in literature by several
authors [12,24] for FEM approximations, is here adapted to a FVM
framework.

The reduced order model is obtained performing a Galerkin projection onto
the space spanned by the reduced basis modes and approximating the fields
with the following expansions:

(

u(x, t)
F (x, t)

)

≈

(

ur(x, t)
Fr(x, t)

)

=

Nu
∑

i=1

ai(t)

(

ϕi(x)
ψi(x)

)

,(10)

p(x, t) ≈ pr(x, t) =

Np
∑

i=1

bi(t)χi(x),(11)

where the ai and bi are temporal coefficients and ϕi , ψi and χi are the
modes of the reduced basis spaces for velocity, mass flux and pressure,
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respectively. Nu and Np define the dimension of the reduced basis spaces for
velocity/mass flux and pressure. Clearly, Nu and Np are not constrained to
have coincident values. In the above expansions the following assumptions
are considered:

• Velocity u and mass flux F fields are approximated using the same
temporal coefficients. This assumption is reasonable since also the
mass fluxes over the surfaces of the finite volumes depend strongly
on the velocity itself. The mass flux term which is a scalar field
defined on the surfaces of all the cells, as indicated in equation 5,
is defined as a product of the velocity at face, which is obtained
through interpolation, and the area of the face. Moreover the re-
duced basis space of mass flux and velocity respectively have the
same dimension Nu.

• Pressure field p is approximated using different temporal coefficients
respect to the velocity/mass flux fields and for this reason during
the projection phase both the momentum conservation and Poisson
equation for pressure must be considered. This space can have also
a different dimension respect to the reduced basis space considered
for velocity.

uN

uP

d

Sf
uf

Figure 1. Sketch of a finite volume in 2 dimensions

3.1. Generation of the POD spaces

In order to create a reduced basis space onto which the governing equa-
tions are projected, one can find many techniques in literature such as the
Proper Orthogonal Decomposition (POD), The Proper Generalized De-
composition (PGD), as well as Reduced Basis (RB) method with a greedy
approach. For more details about the different methods the reader may
see [9,10,25–28]. In this work the POD approach is used. The POD consists
into the decomposition of the flow fields into temporal coefficients ai(t) and
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orthonormal spatial bases ϕi(x):

(12) u(x, t) =

Ns
∑

i=1

ai(t)ϕi(x),

where ϕi(x) are orthonormal spatial bases that minimizes the average
of the error between the snapshots and their orthogonal projection onto
the bases and Ns is the number of considered snapshots. The POD space
VPOD = span(ϕ1,ϕ2, . . . ,ϕNs

) is then constructed solving the following
minimization problem:

(13) VPOD = arg min
1

Ns

Ns
∑

n=1

||un −

Nr
∑

n=1

(un,ϕi)L2(Ω)ϕi||
2
L2(Ω),

for each Nr = 1, . . . , Ns. Where un ..... is a general snapshot of the velocity
field at time t = tn. This problem can be solved computing a singular
value decomposition U = WuΣuVuT of the so called snapshots matrix
U ∈ R

Nh×Ns . Where U = [u1,u2, . . . ,uNs
] contains the flow fields for

all the different time steps, Wu ∈ R
Nh×Nh is a rectangular matrix of left

singular vectors, Vu ∈ R
Ns×Ns is a square matrix of right singular vectors,

and Σu ∈ R
Nh×Ns is a diagonal matrix of eigenvalues. The POD modes ϕi

are then given by the columns of the matrix Wu. This approach might be
however computationally expensive, especially increasing the dimension of
the grid used to discretise the domain. An equivalent and more efficient way
to tackle this problem, based on the method of snapshots, firstly introduced
in [29], consists in solving the eigenvalue problem:

(14) CuQu = Quλu,

where Cu ∈ R
Ns×Ns is the correlation matrix of the velocity field snap-

shots,Qu ∈ R
Ns×Ns is a square matrix whose columns are the eigenvectors

and λu ∈ R
Ns×Ns is a diagonal matrix containing the eigenvalues λuii. The

correlation matrix can be determined using:

(15) Cu
ij = (ui,uj)L2(Ω)

where (·, ·)L2(Ω) is the L
2 inner product over the domain Ω.

Remark 3.1. Normally, in a standard finite element framework, the H1

norm is preferred for the velocity field since its natural functional space is
H1(Ω). Here it is decided to use the L2 norm for both the pressure and the
velocity fields. In a finite volume setting in fact both velocity and pressure
belong to discontinuous spaces and, as illustrated in equation 4, in order
to compute the gradients necessary for the H1 norm evaluation one would
introduce further discretization error.
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The POD modes can be finally obtained with:

(16) ϕi =
1

√

λuii
UQu

i .

The same procedure can be repeated also for the pressure field considering
the snapshots matrix P = [p1, p2, . . . , pNs

] one can compute the correlation
matrix of the pressure field snapshots Cp and solve a similar eigenvalue
problem CpQp = Qpλp. The POD modes χi for the pressure field can be
computed with:

(17) χi =
1

√

λpii
PQ

p
i .

The modes for mass flux field are obtained using the same eigenvectors and
eigenvalues computed solving the eigenvalue problem of the velocity field
and are expressed by:

(18) ψi =
1

√

λuii
FQu

i ,

where, again, F = [F1, F2, . . . , FNs
] is a snapshots matrix containing the

mass flux field at different time steps. For what concern the basis for the
mass flux term it is decided to use the same eigenvector of the eigenvalue
problem solved for the velocity field because it is assumed that mass flux
and velocity share the same temporal coefficients. More details are given in
the next subsection.

3.2. Galerkin projection onto the POD space

In this section the Galerkin projection of the governing equations onto
the POD space is highlighted and discussed. The idea here is to exploit
both the momentum conservation and continuity equation.

3.2.1. ROM for velocity - Momentum equation

The reduced order model of the momentum equation is obtained per-
forming an L2 orthogonal projection onto the reduced bases space VPOD

spanned by the POD velocity modes with a procedure similar to what pre-
sented in [12].

(19) (ϕi,ut + (u · ∇)u− ν∆u+∇p)L2(Ω) = 0.

Respect to what presented in [12] here also the gradient of pressure is
considered inside the momentum equation. This term is considered also
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in [13,14] but, there, it is assumed that velocity and pressure modes share
the same temporal coefficients. More details about the treatment of this
term are given in § 3.2.2. Substituting the POD approximations of u, F
and p into equation (19) and exploiting the orthogonality of the POD modes
ϕi one obtains the following dynamical system:

(20) ȧ = νBa− aTCa−Kb,

where a and b are vectors containing all the temporal coefficients ai(t) and
bi(t) and the terms inside equation (20) read:

Bij = (ϕi,∆ϕj)L2(Ω) ,(21)

Cijk = (ϕi,∇ · (ψj ,ϕk))L2(Ω) ,(22)

Kij = (ϕi,∇pj)L2(Ω) .(23)

In Equation (22) the term ∇·(ψj ,ϕk), with an abuse of notation, is used to
indicate the convective term. This term is obtained exploiting equation (5)
and the velocity approximation:
(24)
∫

Vi

(ϕj · ∇)ϕkdV =

∫

∂Vi

(dS ·ϕj)ϕk =
∑

f

Sf ·ϕj,fϕk,f =
∑

f

ψj,fϕk,f

For each mode of the velocity and mass fluxes POD spaces, the velocity base
ϕk, which is defined at the center of each cell, must be interpolated in order
to obtain the value ϕk,f at the center of each face. Multypling the value
of the velocity base at the faces ϕk,f by the base for mass flux ψj , which
is already defined at the center of each face, and performing a summation
over the faces of each face, it is possible to evaluate the convective term at
the center of each cell.

Remark 3.2. To ensure an efficient offline–online decomposition, even
though we are dealing with an affine parametric dependence problem, in
the case of the non-linear convective term, further difficulties arise. The
third order tensor Cijk is stored [30,31] to deal with the non-linear term in
the present work. During the online solution, at each fixed point iteration
of the solution procedure the ith component of the the residual due to the
non-linear term is evaluated as:

(25) Ri = aTCi••a.

Since the dimension of the C tensor is growing with the cube of the number
of basis functions employed for the velocity space, this approach may lead
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in some cases to high storage costs. In all the test cases presented in this
work, the small dimension (N < 10) of the reduced space did not lead to
such problem. Yet, if richer reduced spaces are used, possible alternatives
to the present approach could be using EIM-DEIM [32,33] approaches or
Gappy-POD [34].

3.2.2. ROM for pressure - Poisson equation for pressure

System (20) accounts for Nu equations, given by the momentum equa-
tion projected on each of the velocity modes. Yet, the system presents
Nu + Np unknowns given by the temporal coefficients of velocity a and
pressure b. Additional equations are required to close the problem. In the
reduced framework, the continuity equation cannot be directly exploited
because the velocity modes, which are generated with divergence free snap-
shots, are in turn divergence free up to numerical precision. The additional
unknowns inside (20) are multiplied by the gradient of pressure that in
many cases is neglected [24,35]; in fact, in many contributions available in
literature no attempt to recover the pressure term is performed. The pro-
jection of the pressure gradient onto the POD spaces is in fact zero for
the case of enclosed flows as presented in [11,36,37] or in the case of inlet-
outlet problems with outlet far from the obstacle [12]. However in many
applications the pressure term is needed as highlighted in [35] and can-
not be neglected. In the analysed case moreover, since the interest is into
the reconstruction of the fluid forces acting onto the cylinder surface, the
reconstruction of the reduced pressure term is crucial.

According to [24] in literature one can find basically two different ap-
proaches for pressure ROMs depending if they use pressure POD modes
or not. In methods using only a POD basis for velocity the momentum
equation without the gradient of pressure term is solved. The pressure field
is then a posteriori reconstructed exploiting the Poisson equation for pres-
sure 9. The velocity field on the right hand side of the equation is approxi-
mated with the reduced order model approximation of the velocity:
(26)

−∆pr = ∇ ·





(

Nu
∑

i=1

aiϕi · ∇

)

Nu
∑

j=1

ajϕj



 =

Nu
∑

i=1

Nu
∑

j=1

aiaj∇ · ((ϕi · ∇)ϕj) ,

Since the temporal coefficients do not depend on space, the pressure term
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can be recovered with:

pr =

Nu
∑

i=1

Nu
∑

j=1

aiajp0ij ,(27)

−∆p0ij = ∇ · ((ϕi · ∇)ϕj)(28)

Using such an approach the term p0ij of equation 28 needs to be precom-
puted and this implies the resolution of (Nu + 1)Nu/2 Poisson problems
(due to the symmetry of p0ij) that have the dimension of the full order
problem.

In ROMs exploting also the pressure modes two different approaches
can be found whether they use only the momentum equation or also the
continuity/Poisson equation.

In the first approach [13,14] it is assumed that velocity and pressure
share the same temporal coefficients (a = b) and only the momentum
equation is exploited at reduced order level.

In the second approach it is assumed that velocity and pressure at
reduced order level are approximated with different temporal coefficient
(a 6= b) and also the continuity equation or the Poisson equation for pres-
sure are exploited. Among the methods using also pressure modes, some
work directly on the system composed by the continuity and momentum
equation and use ad hoc stabilization techniques to enforce the well posed-
ness of the problem [24,38–40]; other methods work with the momentum
equation, without the gradient of pressure term, and the Poisson equation
for pressure [12,24]. In the latter approaches, the momentum equation is
decoupled from the Poisson equation for pressure and the pressure is recon-
structed in a post processing stage after the resolution of the momentum
Poisson equation.

Here the second approach is used, two different coefficients depending
on time are considered (one for velocity and the other one for pressure)
and then the Poisson equation for pressure is exploited. Respect to what
done in [12,24] as shown in equation 19, the gradient of pressure term is
not neglected in the momentum equation and this gives rise to a coupled
system also at reduced order level.

We remark that in the finite volume solver employed, the PIMPLE
algorithm for pressure coupling is indeed based on the Poisson equation for
pressure. Thus, the ROM procedure used has also the benefit of making the
ROM equations consistent with the high fidelity model ones.

Poisson equation is projected onto the POD space spanned by the pres-
sure modes χi and after integration by part of the Laplacian term inside
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equation (9) one obtains:

(29) (∇χi,∇p)L2(Ω) = (χi,∇ · ((u · ∇)u))L2(Ω) ,

which can be rewritten in matrix form as:

(30) Db = −E + aTGa,

and the terms inside (30) read:

Dij = (∇χi,∇χj)L2(Ω) ,(31)

Ei = (∇χi,∇p)L2(Ω) ,(32)

Gijk = (χi,∇ · (∇ · (ψj ,ϕk)))L2(Ω) .(33)

In the above expressions we made use of the assumption that the pressure
term is decomposed into a mean and a fluctuating term p = p+p′. The bases
for pressure χi are then constructed starting from the snapshots matrix of
the fluctuating pressure P ′ = [p′1, p

′
2, . . . , p

′
Ns

]. The pressure field is then
approximated with:

(34) p(x, t) ≈ pr(x, t) = p+

Np
∑

i=1

bi(t)χi(x).

The approach for the treatment of the non-linear term G is analogous
to what done for the convection term C of the momentum equation. Also
the mass flux bases are considered as a consequence of the finite volume
discretisation and a third order tensor is stored. During the online procedure
it is exploited the same approach used in equation 25.

3.3. The boundary conditions

The interest here is to deal with parametrized boundary conditions also
at reduced order level. In literature different approaches to enforce the BCs
in the ROM can be found. In this section it is explained how the Dirichlet
boundary conditions are enforced at the reduced order level. The penalty
method is used in [13,41,42] where the BCs are imposed weakly using a
penalty term, however, this method relies on a penalty parameter that has
to be tuned with a sensitivity analysis [42]. In this work, in order to en-
force the BCs at the ROM level a control function method is used. Within
this method, before applying the POD, the inhomogenous boundary con-
ditions are removed from the original snapshots. Using such an approach
it is possible to produce homogeneous basis functions and later on, at re-
duced order level, is possible to deal with any boundary condition (of course
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it must be sufficiently close to those used to train the ROM model). The
problem is then solved and the lifting function is added again to the so-
lution. Only boundary conditions that can be parametrized with a single
time-dependent coefficient as in Graham [43] are considered. To retain the
divergence-free property of the snapshots the lifting function has also to
be divergence free. In particular it is chosen to use as lifting function the
arithmetic average of the velocity snapshots, that is opportunely scaled in
order to have the desired value at the Dirichlet boundary. Each snapshot
of the velocity snapshots matrix is then modified as:

(35) u′

i = ui − uD(t)φc,

where φc is a function that has unitary value at the reference point chosen
for the scaling Dirichlet boundary. This lifting function can be evaluated as
the arithmetic average of the velocity snapshots um opportunely divided
by its own value um,r at the reference point on the Dirichlet boundary:

(36) φc =
1

Nsum,r

Ns
∑

i=1

ui.

The POD is then applied to the snapshots matrix U ′ = [u′

1
,u′

2
, . . . ,u′

Ns

]
that contains only snapshots with homogeneous boundary conditions. The
velocity field is then approximated as:

(37) u(x, t) ≈ uD(t)φc +

Nu
∑

i=1

ai(t)ϕi(x),

where uD(t) is a scaling factor depending on time that assumes the value
of the Dirichlet BC at the reference point. For sake of simplicity, since time
dependent BCs are not considered, the time dependency on uD(t) will be
henceforth omitted. The same procedure is also repeated for the mass fluxes
where the term Fc is the mass flux associated with the velocity field φc and
the mass flux is then approximated as:

(38) F (x, t) ≈ uDFc +

Nu
∑

i=1

ai(t)ψi(x).

During the projection stage illustrated in § 3.2.1 and § 3.2.2 also the above
modified approximations of the velocity and mass flux fields have to be
considered. The Galerkin projection produces then some additional terms
inside the coupled dynamical system that now reads:

{

ȧ = ABC + (B +BBC)a− aTCa−Kb

b = D−1(E + EBC + FBCa+ aTG1a),
(39)
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where ABC , BBC , EBC and FBC are equal to

ABC = νuDA1 − u2DA2,(40)

BBC = −uDB1 − uDB2,(41)

EBC = u2DE1,(42)

FBC = uD(F1 + F2).(43)

The terms are obtained through Galerkin projection of the momentum
equation and the Poisson equation for pressure onto the POD velocity and
pressure space, respectively:

A1i = (ϕi,∆φc)L2(Ω) ,(44)

A2i = (ϕi,∇ · (Fc,φc))L2(Ω) ,(45)

B1ij = (ϕi,∇ · (ψj ,φc))L2(Ω) ,(46)

B2ij = (ϕi,∇ · (Fc,ϕj))L2(Ω) ,(47)

E1i = (χi,∇ · (∇ · (Fc,φc)))L2(Ω) ,(48)

F1ij = (χi,∇ · (∇ · (ψj ,φc)))L2(Ω) ,(49)

F2ij = (χi,∇ · (∇ · (Fc,ϕj)))L2(Ω) .(50)

The non-linear system of equation 39 is then discretised in time using a
backward Euler’s method and the non-linear system of equations, which is
derived after the time discretisization, is solved using a Newton-Raphson
procedure. Once the system is solved it is possible to retrieve the velocity
and pressure fields, at each time step, using the values of the a anf b vectors
and the fields approximation as presented in equation 10 and 11.

4. A numerical example

In the present section we will discuss the results obtained in the first
application of the proposed model reduction procedure for Navier–Stokes
flows. Given all the aforementioned features, the fluid dynamic problem
considered is that of the vortex shedding caused by the low Re flow past a
circular cylinder with main axis perpendicular to the undisturbed stream
velocity U∞. This is a well known and studied benchmark widely discussed
and treated in literature from both the experimental and numerical point of
view [1]. Due to the considerably larger extension of the cylinder in its ax-
ial direction and to the synchronisation observed in the vortices detaching
from the cylinder at different axial locations, the vortex shedding mech-
anism exhibits an intrinsic two-dimensional nature. For such reason, the
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laminar Navier–Stokes equations (Equation (1)) written in a 2D domain
represent a suitable model for the flow at hand. The resulting 2D computa-
tional grid is depicted in Figure 2, which also shows the domain height and
width as a function of the cylinder diameter D = 0.027 m. The structured
grid accounts for 13296 quadrilateral cells. The fluid considered in the sim-
ulations is water, having constant density ρw = 1000kg/m3 and kinematic
viscosity ν = 10−6m2/s. The boundary conditions are set according to Ta-
ble 1. In each flow simulation, the fluid is started from rest and impulsively
accelerated through the imposition of uniform and constant horizontal ve-
locity U∞ at the inlet boundary. Each simulation evolves in time until a
final periodic regime solution is reached, and is then finally carried on for
about 20 to 25 periods. The fluid dynamic drag and lift forces coefficients
time history over the latter part of the simulation is then used to carry out
Fourier analysis and assess the main vortex shedding frequency.

Table 1. Boundary Conditions

inlet outlet cylinder sides

u uin = [uxin
, 0] ∇u · n = 0 u = 0 u · n = 0

p ∇p · n = 0 p = 0 ∇p · n = 0 ∇p · n = 0

8D 15D

20D

sides

in
le
t

sides

o
u
t l
e
t

cylinder

(a) overall view

x

y

(b) zoom of the cylinder

Figure 2. A sketch of the structured computational grid used for the high fidelity sim-
ulations. The picture also shows the main dimensions of the computational domain Ωf ,
as a function of the cylinder diameter D = 0.027 m.

4.1. Constant Inflow Velocity

In this first test case considered, an inlet velocity of uin =
[3.7e−3, 0]m/s, corresponding to Re = 100, is prescribed. The results of
the HF simulations at several time instants are then used as the snapshots
needed to compute the basis functions and set up the ROM model. Not only
the comparison between HF and ROM solution provides a first assessment
of the overall ROM performance, but it also helps understanding what is
the effect of each value of the ROM parameter (that is the inlet velocity in
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our case) on the reduced solution. In particular, we will investigate on the
number of bases required for a suitably accurate ROM solution. It will be
investigated the response of the ROM also for a longer time window, larger
respect to the one used to train the ROM model (Figure 8).

4.1.1. Details of the full order simulation

The computational grid is the one presented in § 4. The convective term
is discretised in space making use of the Gauss’s theorem (see Equation (5)).
The face center values of the variables are obtained from the center cell ones,
which are the numerical problem unknowns, with an interpolation scheme
consisting into a combination of a linear and upwind scheme. The diffusive
term is discretised (see Equation (6)) in a similar fashion. In this case
though, a central differencing interpolation scheme with non-orthogonality
correction is preferred. Also the pressure gradient is discretised making use
of Gauss’s theorem (see equation (4)). Here, the face center pressure values
are obtained from the cell center ones by means of a linear interpolation
scheme, in which a limiting operation on the gradient is performed so as
to preserve the monotonicity condition and ensure that the extrapolated
face value is bounded by the neighbouring cell values [21]. As for the time
discretisation, a backward Euler scheme is used. The overall time extent
of the simulation is equal to T = 3645s, which is sufficiently long to reach
a perfectly periodic response of the lift and drag forces. The simulation is
run in parallel on 4 Intel R© CoreTM i7-4710HQ 2.50GHz processors, taking
TCPUHF

= 1483s ≈ 25min to be completed.

4.1.2. Details of the ROM simulation

The ROM is constructed using the methodologies described in § 3. For
the generation of the POD spaces, we considered 120 snapshots of the ve-
locity, mass flux and pressure fields. The snapshots are collected in a time
window covering approximately 1.5 periods of the vortex shedding phe-
nomenon. More precisely, the last 73s of the HF simulation are used. The
first two modes for velocity and pressure field respectively are presented in
Figure 3 and 4. The ROM simulations are carried out using different values
of the POD velocity space dimension Nu = 3, 5, 7, 10. The dimension of
the POD pressure and mass flux space is set equal to the dimension of the
velocity POD space Nu = Np but, for the way the ROM has been devel-
oped, also other choices are possible. The ROM simulation is run in serial,
on the same processor used for the HF simulation. In this case, the time
advancing of the ROM problem is carried out using a backward Euler’s
method. Reproducing the full 3645s extent of the high fidelity simulation
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requires, using the ROM model with the highest dimension of the POD
space, approximately TCPUROM

= 9.10s. This corresponds to a speedup
SU ≈ 650.

4.1.3. Analysis of the results

Using the settings described in the previous paragraph, four different
ROM simulations are run, each featuring a different value of the POD space
dimension. The results are compared with those of the HF simulation in
terms of history of the lift and drag coefficients. In Figures 5 and 6 the time
window used for the comparison is the same window used for the collection
of the snapshots while in Figure 8 the comparison is performed on a different
time window, larger respect to the one used to train ROMmodel. In Table 3
are reported the cumulative eigenvalues for the case with only one velocity
and for the case with 5 different inlet velocities of subsection 4.2. The lift
coefficient comparison is reported in Figure 5, while the drag coefficient time
histories is presented in Figure 6. In each Figure, the four different plots
refer to the four different values of the POD space dimensions considered in
the ROM simulations. Finally, in Figure 7 the comparison is shown directly
on the velocity and the pressure fields. In this case, the time step considered
is the last one of the simulations,corresponding to T = 3645s. The left plot
in Figure 7 refer to the velocity (top) and pressure (bottom) fields computed
with the high fidelity simulations. The right plots refer to the velocity (top)
and pressure (bottom) fields computed with the ROM, in which the POD
space dimension has be set to Nu = 10. The plots show that, at a glance
the HF and ROM solutions cannot be distinguished.

To provide a more quantitative evaluation of the error in the force coeffi-
cients reconstruction, for each ROM simulation we computed the Weighted
Absolute Percentage Error (WAPE) [44] with respect to the HF simulations.
For the case of the lift coefficient the WAPE has been directly applied to
the lift signal without any modification, namely

(51) εLc
=

100

n

n
∑

t=1

∣

∣

∣

∣

∣

LHF
ct

− LROM
ct

LHF
c

∣

∣

∣

∣

∣

%

where nt is the number of sampling points, LHF
ci

and LROM
ci

are the lift
coefficients for the HF and ROM case respectively at the i−th time step.
For the case of the drag coefficient, the WAPE has been applied to D′

c

that is the value of the drag shifted by the its mean value D′
c = Dc −Dc.

From Table 2 and Figures 5–6 one can see that, for the present case, adding
more than 7 modes does not increase the accuracy of the ROM results. In
Figure 8 the HF and ROM model have been simulated for a longer time
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window larger respect to the one used to train the ROM model. The time
window used to calibrate the ROM model is indicated by the black arrow.
Using only three modes the ROM model, for long time integration exhibits
numerical instabilities as observed in [14]. Using more modes, including a
percentage of energy up to 99%, instability phenomena vanish.

(a) Velocity mode n. 1 (b) Velocity mode n. 2

Figure 3. First two modes of the velocity field

(a) Pressure mode n. 1 (b) Pressure mode n. 2

Figure 4. First two modes of the pressure field

Table 2. Error on Lc and Dc using different dimensions of the POD spaces

Nu = Np = 3 Nu = Np = 5 Nu = Np = 7 Nu = Np = 10

εLc
(%) 11.50 4.32 1.59 1.89

εDc
(%) 64.49 13.94 4.69 6.43

4.2. Varying Inflow Velocity

In the second example the inlet velocity is used as a physical parame-
ter and the HF simulations are performed using five different values of the
Reynolds number Re = [100, 125, 150, 175, 200]. Using the same procedure
described in § 4.1, 120 snapshots are collected for each different value of
Re. Thus, the POD is performed on the resulting ensemble of 600 snapshots
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Figure 5. Comparison of the lift coefficient obtained with the HF and ROM simulations.
The comparison is plotted on the same window used for the collection of the snapshots.
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(d) 10 modes

Figure 6. Comparison of the drag coefficient obtained with the HF and ROM simu-
lations. The comparison is plotted on the same window used for the collection of the
snapshots

gathered from the 5 different HF simulations. According to the results pre-
sented in § 4.1, 7 modes for each different velocity are considered In this
case, leading to a total number of modes equal to 35. The computational de-
tails of the HF simulations are the same described in § 4.1. Once the offline
phase is carried out and the ROM is set up, several reduced simulations are
performed. Such simulations are also featuring inlet velocities that corre-
spond to Reynolds numbers which were not considered in the HF analysis.
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(a) Velocity HF (b) Velocity ROM

(c) Pressure HF (d) Pressure ROM

Figure 7. Comparison between velocity and pressure HF-ROM

Table 3. Cumulative Eigenvalues

N Modes u(Re = 100) p(Re = 100) u(Re = 100 : 200) p(Re = 100 : 200)

1 0.40509 0.906293 0.351995 0.840604
2 0.726335 0.951848 0.624987 0.916326
3 0.960515 0.992383 0.893356 0.971647
4 0.978525 0.996043 0.915563 0.981464
5 0.995695 0.999308 0.937393 0.987549
6 0.997671 0.999599 0.956756 0.993371
7 0.999518 0.999875 0.973212 0.995778
8 0.999732 0.99992 0.984389 0.997518
9 0.99994 0.999962 0.987669 0.998013
10 0.999967 0.999969 0.990883 0.998502

Thus, this numerical experiment is devised to test if the ROM developed
is able to reproduce the dependence of the system output with respect to
an input parameter such as the velocity of the stream in which the cylin-
der is embedded. The comparison between the HF and ROM simulations
is performed comparing the frequency corresponding to the peak of the
power spectral density of the lift coefficient. Investigating such dependence
is particularly important, as variations in the main stream velocity might
result in different frequency components in the hydrodynamic force on the
cylinder. By an engineering standpoint, it is typically very important to
assess whether such frequency components are close to the structural nat-
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(a) Lift Coeff. 3 Modes
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(b) Lift Coeff. 7 Modes

Figure 8. Comparison of lift coefficient obtained with HF model (continuous red line)
and ROM model (dashed blue line). The left plot (a) refers to the ROM results obtained
making use of 3 modes. The right plot (b) depicts the ROM results obtained with 10
modes. The black arrow on top left of the plots indicates the time window used to train
the reduced order model.

ural frequency and might lead to resonance. The comparison can be seen
in Figure 9 where the blue line with circles and the red line with stars refer
respectively to the results of ROM and HF simulations. As one observes
from the Figure the ROM simulations match well the HF simulations that
for this range of Reynolds numbers lay on the red straight line.
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Figure 9. Comparison of ROM and HF for the case of increasing velocities - frequency
of vortex shedding

5. Conclusions and future developments

In this work a POD-Galerkin ROM based on finite volume high fidelity
simulations is presented. The ROM is generated such that to be fully con-
sistent with the full order model, and both velocity and pressure fields are
considered. In particular, the reconstruction of the reduced pressure field
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is carried out through the projection of the Poisson equation for pressure
onto the POD pressure space. The ROM is then applied to approximate the
unsteady viscous flow around a circular cylinder. In particular, the focus
and originality is into reconstruction of the reduced pressure field using the
Poisson pressure equation in a finite volume context. A reliable reconstruc-
tion of the pressure field permits the accurate reproduction of the lift and
drag forces associated with the vortex shedding phenomenon. The ROM
developed demonstrated to be capable of reproducing all the main features
of the physical phenomenon in an accurate manner leading to a consider-
able computational time reduction (speedud SU ≈ 650). Also in the case of
varying inflow velocities the ROM has demonstrated the ability of captur-
ing the dependence of frequency of vortex shedding on the inflow velocity.
As future developments the interest is into different efficient methodologies
for the reconstruction of the pressure term and in particular to study the
applicability of well known stabilization methods, used in the context of
Galerkin ROM for finite elements [38,39], to a finite volume framework [45].
The interest is also in the study of the same physical problem, but where the
fluid-structure interaction problem is also considered. This will introduce
additional complexities such as the mesh motion and additional equations
to account for the structural dynamics and the fluid structure interaction
coupling. Adding also the structural part to the ROM will be essential to
tackle real-world engineering problems.
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1. M. P. Päıdoussis, Fluid-Structure Interactions. Slender Structures and
Axial Flow. Volume 1. Academic Press, first ed., 1998.
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