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The visceral glomerular epithelial cell, also called podocyte, is

a terminally differentiated cell that lines the outer aspect of the

glomerular basement membrane (GBM). It therefore forms the

final barrier to protein loss, which explains why podocyte

injury is typically associated with marked proteinuria. Indeed,

all forms of nephrotic syndrome are characterized by abnor-

malities in the podocyte. In this review, we will provide an

update of the known functions of recent podocyte-specific

proteins and focus on the slit diaphragm (SD) and the mech-

anisms underlying foot process (FP) flattening and how the

podocyte responds to injury.

Molecular Anatomy of the Podocyte
FP Cytoskeleton

Podocyte FP are not static, but rather contain a contractile

system similar to that seen in pericytes. This contractile appa-

ratus is composed of actin, myosin-II, �-actinin-4, talin, and

vinculin (1). The actin filament bundles form arches between

adjacent FP of the same podocyte (2). Figure 1 is a schema of

our current understanding of the molecular composition of the

cytoskeleton in podocyte FP. Importantly, the actin filaments

are connected to the underlying GBM at focal contacts via an

�3�1 integrin complex (3,4). The bends of the actin filament

arches appear to be connected directly to the microtubules of

the major processes (own unpublished results). FP are an-

chored to the GBM via �3�1 integrin (5) and dystroglycans

(6,7). Neighboring FP are connected by a cell-cell junction, the

glomerular SD, which represents the main size selective filter

barrier in the kidney (8–10). The SD is thought to be a

modified adherens junction (11) that is composed of a growing

number of proteins, including nephrin (12–14), P-cadherin,

CD2AP (15–18), ZO-1 (19), FAT (20), podocin (16,21), and

possibly Neph1 (see reference 22 and below). In addition to the

contractile proteins described above, we have reported the

association of synaptopodin with the actin filaments in FP (23).

Synaptopodin is the first member of a novel class of proline-

rich proteins (24) and, like �-actinin-4, interacts with the tight

junction protein MAGI-1 (25) that is also expressed in podo-

cytes (26).

Four Major Causes of FP Effacement
The basolateral portion of the foot processes represents the

center of podocyte function and is defined by three membrane

domains: the apical membrane domain, the SD protein com-

plex, and the basal membrane domain or sole plate (27). The

submembranous regions of all compartments are connected to

the FP actin cytoskeleton, e.g., on the apical membrane do-

main, podocalyxin associates with the actin cytoskeleton

through interactions with ezrin and the actin cytoskeleton via

Na�/H�-exchanger regulatory factor 2 (NHERF2), a scaffold

protein containing two PDZ (PSD-95/Dlg/ZO-1) domains and

an ERM-binding region (28,29). The FP actin cytoskeleton is

highly dynamic and ultimately determines the structural main-

tenance of the filtration slits as demonstrated in the acute

PS/heparin model by several groups (30–32). Interference with

one of the three domains eventually leads to changes in the

actin cytoskeleton from coordinated stress fibers into a dense

network (33) with fusion of podocyte FP and obliteration of

filtration slit. Proteins regulating or stabilizing F-actin are

therefore of critical importance for sustained function of glo-

merular filtration (29,33–38).

Podocyte �-actinin-4 induction precedes FP effacement in

experimental nephrotic syndrome (36), and the podocalyxin/

NHERF2/ezrin/actin interactions are disrupted in pathologic

conditions associated with changes in FP (29). The �-actinin-4

molecule is a novel member (39) of the actin family of actin-

filament cross-linking proteins and has an important function

in podocytes. Mutations in the ACTN4 gene encoding �-acti-

nin-4 have been demonstrated by Pollak and colleagues in an

autosomal dominant form of focal segmental glomerular scle-

rosis (FSGS) (see related article by Pollak in this issue of JASN

[40]) and underscore the exquisite role of the actin cytoskele-

ton in short-term and long-term regulation of podocyte struc-

ture (41,42).

Podocytes are injured in many forms of human and experi-

mental glomerular disease, including minimal change disease,

FSGS, membranous glomerulopathy, diabetes mellitus, and

lupus nephritis (8,27). Independent of the underlying disease,

the early events are either characterized by alterations in the

molecular composition of the SD without visible changes in

morphology or, more obviously, by a reorganization of the FP

structure with fusion of filtration slits and apical displacement

of the SD (8,37,43). On the basis of recent progress in the

molecular pathology of podocytes, four major causes can be
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identified that lead to FP effacement and proteinuria: (1) in-

terference with the SD complex and its lipid rafts; (2) inter-

ference with the GBM or the podocyte-GBM interaction

(6,7,44–49); (3) interference with the actin cytoskeleton and

its associated protein �-actinin-4 (36,41); and (4) interference

with the negative apical membrane domain of podocytes, e.g.,

neutralization of negative cell surface charges (28–30,50).

In addition to the SD as the major site of glomerular perm-

selectivity (see below), glomerular filtration is also regulated

on the level of the GBM (51–53). In a comprehensive and

elegant study comparing mice lacking either the alpha3 chain

of type IV collagen, the major constituent of glomerular base-

ment membrane, the LMX1B transcription factor, or nephrin,

Hamano et al. (53) showed that defects induced by proteins of

GBM lead to an insidious plasma protein leak, whereas the

defects induced by SD proteins lead to a precipitous plasma

protein leak. Finally, there is evidence in FSGS and in idio-

pathic nephrotic syndrome in rats that podocyte damage may

be caused by circulating albuminuric factors (54,55). As de-

picted in Figure 1, the �-actinin molecule can interact with

components of the integrin complex at the GBM and with the

�-catenin molecule of the SD complex. Hence, �-actinin may

link these two different compartments of the FP together,

thereby providing a molecular explanation for the observation

that the actin cytoskeleton serves as the “common final path-

way” organizing FP effacement independent of the original

underlying site or cause of podocyte damage. From a clinical

point of view, it is important to note that these early structural

changes in podocyte morphology, such as substructural alter-

ations in SD composition or FP effacement, have to be re-

versed within a certain period of time to prevent development

of severe and progressive glomerular damage (43,56–58) (also

see below).

The SD: A Dynamic Site of
Glomerular Permselectivity

In mature podocytes, the SD represents the only cell-cell

contact between podocytes. The SD represents a tiny mem-

brane bridging the 30- to 40-nm-wide filtration slit. In 1974,

Rodewald and Karnowsky (59) showed that the SD is made up

of rodlike units connected in the center to a linear bar forming

a zipper-like appearance, but its molecular composition and

anchorage in the FP remained unknown. The normal SD func-

tion is crucial to maintaining the integrity of the FP (8–10).

The recent discovery of several novel SD proteins and their

mutation analysis, including nephrin (60), CD2AP (17,61),

podocin (62), and the nephrin homologue neph1 (22), have

shed light on the pathogenesis of proteinuria and emphasized

the critical role of the SD in maintaining the normal function of

the glomerular filtration barrier. However, the mechanisms

regulating the structural changes that occur during FP efface-

ment are still largely unknown. A fuller understanding of the

molecular basis of glomerular kidney disease requires elucida-

tion of the relationship between SD proteins and the mainte-

nance of FP structure.

Figure 1. Molecular anatomy of the podocyte foot process (FP) actin cytoskeleton. This schematic shows two adjacent podocyte FP with the

interposed slit diaphragm (SD) complex. The localization of NEPH-1 at the SD and its heterophilic interaction with nephrin remain to be

established. The actin cytoskeleton is the common downstream pathway and receives input form three podocyte domains: the apical domains,

the lateral SD-containing domain, and the basal domain of the FP sole plate, which links the podocyte to the GBM. Interference with any of

the three domains will ultimately cause FP effacement and proteinuria/nephritic syndrome. �-act4, �-actinin-4; �3�1, �3�1 integrin; �-DG,

�-dystroglycan; �-DG, �-dystroglycan; Na(�)/H(�)ERF2, Na(�)/H(�) exchanger regulatory factor 2; P, paxillin; P-cad, P-cadherin; Synpo,

synaptopodin; T, talin; V, vinculin.
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The Critical Role of Nephrin in Maintaining
the Glomerular Filtration Barrier

Twenty-five years after the hallmark finding by Rodewald

and Karnovsky (59), the discovery of the transmembrane pro-

tein nephrin as a major component of the SD complex by

Tryggvason and others (12–14) provided a seminal progress in

podocyte biology. Mutation analysis of the nephrin gene,

NPHS1, by positional cloning elucidated the underlying ge-

netic defect in congenital nephrotic syndrome of the Finnish

type as causative for FP effacement in this disease (60). Sim-

ilarly, injection of anti-nephrin antibody in animals induced

substructural alterations of the SD with reduction of perms-

electivity and consecutive proteinuria (63). The inactivation of

the nephrin gene in mice by homologous recombination re-

sulted in reduction of visible SD, severe proteinuria, and partial

FP effacement (53,64), Similarly, nephrin TRAP mice also

lack SD and show fibrotic glomeruli as well as cystic tubular

lesions (65). Nephrin is a large (1241–amino acid, 185-kD)

transmembrane molecule with Ig-like domains. N-linked gly-

cosylation is critical for the plasma membrane localization of

nephrin (66). Its predicted structure and biochemical proper-

ties, as well as electron microscopy studies, suggested that

nephrin may form dimers through homophilic interactions

across the filtration slit (67). However, several groups have

failed to show such a homophilic interaction and the nephrin

homologue in drosophila, hibris, was found to form hetero-

philic interactions with a protein called dumbfounded but not

homophilic interaction with other hibris molecules (68,69).

Nephrin may also contribute functional properties to the SD,

perhaps by participating in a protein complex in which inter-

ference with any of the components may lead to functional

destabilization of the SD and consequent FP effacement and

proteinuria (see below). Although the causal role of nephrin in

congenital nephrotic syndrome of the Finnish type is now well

established, its functional role in acquired forms of nephrotic

syndrome remains to be established. Several studies have re-

ported a modulation or correlation of nephrin expression with

levels of proteinuria, including puromycin aminonucleoside

(PAN) (70), diabetes (71,72), and minimal change disease

(MCD) (73). The latter study showed that MCD is associated

with disruption of the SD. At this point, it is too early to

conclude whether the changes are causal or secondary, but a

recent study analyzing the recurrence of nephrotic syndrome in

kidney grafts of patients with congenital nephrotic syndrome of

the Finnish type has shed some light on this issue (74). This

study showed that circulating anti-nephrin antibodies might

have a pathogenic role in the development of heavy proteinuria

in kidney grafts of NPHS1 patients with Fin-major/Fin-major

genotype (74).

A Rapidly Expanding List of Proteins that
Comprise the SD

At the intracellular insertion site of the SD, the adapter

protein CD2AP has been localized (17,18,76), which was

originally discovered as a protein interacting with the CD2

receptor in T lymphocytes (77). CD2AP is critical for orches-

trating the so-called immunologic synapse between B cells and

T cells (77,78) but has gained an unexpected important role in

podocyte cell biology, because CD2AP knockout mice die

several weeks after birth with FP effacement and nephrotic

syndrome (75). CD2AP interacts with nephrin via a novel

C-terminal domain (18) and is also capable of associating with

the actin cytoskeleton (79). The latest putative component of

the SD complex is NEPH-1, a homologue of nephrin, which

was discovered using retrovirus-mediated mutagenesis (22).

The homozygous knockout mice of NEPH-1 show FP efface-

ment (22). Whether NEPH-1 interacts with nephrin is not yet

known, but in the light of the absence of a nephrin-nephrin

homophilic interaction and the similar phenotype of both

knockouts, a heterophilic interaction between nephrin and

NEPH-1 appears plausible.

The role of other molecules that are associated with the SD

awaits clarification. ZO-1 has long been known to localize to

the intracellular site of insertion of the SD. It interacts with the

actin cytoskeleton (80) and may also participate in signaling

events through tyrosine phosphorylation (81). Of note is that

the redistribution of ZO-1 was associated with the development

of proteinuria in spontaneously proteinuric MWF rats, al-

though the podocyte FP were normal and SD preserved in these

animals (82). P-cadherin (11) and FAT (20), which are widely

expressed cadherin superfamily proteins, define the SD as a

modified adherens junction and may provide structural support

to this specialized cell-cell contact. Interestingly, the expres-

sion of ZO-1, P-cadherin, and FAT is not altered in nephrin

null mice (53).

Podocin Interacts with CD2AP and Nephrin
Podocin is a new member of the stomatin family of hairpin-

like integral membrane proteins with intracellular N- and C-

termini. Podocin is encoced by the NPHS2 gene, which is

mutated in autosomal recessive, steroid-resistant nephrotic

syndrome (62). Stomatin is present as high-order oligomers in

erythrocyte lipid rafts, where it has a scaffolding function (83).

Podocin localizes to the SD (16,21), accumulates there in an

oligomeric form in lipid rafts and associates via its C-terminus

with CD2AP and nephrin (16). Further studies revealed direct

interaction of podocin and CD2AP (16). Hence, podocin may

act as a scaffolding protein, serving in the structural organiza-

tion of the slit diaphragm and the regulation of its filtration

function. In vitro co-expression studies showed that podocin

facilitated nephrin signaling via AP-1 in HEK cells (84), but

the relevance of this finding for podocytes has not yet been

demonstrated.

Involvement of Lipid Rafts in Functional
Organization of the SD

Lipid rafts are specialized membrane domains enriched in

cholesterol, glycosphingolipids, and GPI-anchored proteins

(85). By compartmentalizing cell membranes, they recruit and

cluster membrane proteins in a selective and dynamic fashion.

Hereby, they provide molecular frameworks for numerous cell

biologic processes, such as exocytosis and endocytosis, cell
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adhesion, and signal transduction events (86–88). Recent work

from our lab established that lipid raft microdomains are crit-

ical for the dynamic functional organization of the SD (89). We

have shown that nephrin associates with lipid rafts and co-

immunoprecipitates with a podocyte-specific 9-O-acetylated

ganglioside (89). The in vivo injection of an antibody against

this ganglioside causes morphologic changes of the filtration

slits resembling FP effacement. In this model, nephrin trans-

located to the apical pole of the narrowed filtration slits and

underwent tyrosine phosphorylation (89).

Previous studies have described a role for tyrosine phosphor-

ylation in the assembly and disassembly of the slit diaphragm

(81). So far, it is unclear which kinases are involved in regu-

lating these events, but the genetic inactivation of the src

family kinase fyn caused proteinuria in mice (90). Interest-

ingly, as a double-acylated molecule, fyn, has a high affinity

for lipid rafts (91,92). Hence, it is intriguing to speculate that

fyn is involved in regulating the dynamics of the SD complex.

In summary, the last 4 yr have been extremely fruitful in

providing extensive information on the molecular composition

of the SD and have opened up new avenues to understanding

podocyte function (8,27). From a clinical perspective, it is

exciting that there are novel experimental data that may link

the salutary effects of angiotensin-converting enzyme (ACE)

inhibitors and angiotensin receptor blockers drugs to changes

in the composition of the SD (93–97).

Podocyte Number Contributes
to Glomerulosclerosis

As discussed above, podocytes are the target of many forms

of injury, including antibodies to podocyte membrane antigens

(membranous nephropathy, minimal change disease) (98), he-

modynamic injury (reduced nephron number, diabetes, meta-

bolic diabetes) (99–101), gene mutations (nephrin, �-actinin,

CD2AP; see review by Pollak in this issue [40]), protein

overload states (102), toxins (NSAIDS, adriamycin) (103),

infections (HIV) (see review by Ross and Klotman in this issue

[104]), and unknown causes (idiopathic FSGS) (105). More-

over, in secondary forms of FSGS, such as after loss of

nephron number, hypertension, and tubulointerstitial disease,

podocytes are also injured (106). However, regardless of the

type of renal injury, loss of podocyte number contributes to the

development of glomerulosclerosis (see below).

There is a growing body of experimental and clinical liter-

ature showing that podocyte number is a critical determinant

for the development of glomerulosclerosis and that a decrease

in podocyte number leads to progressive renal failure. For

example, Wiggins and colleagues (107) recently showed that

glomerulosclerosis correlated with podocyte loss during the

normal physiologic aging process in rats. A single injection of

PAN, a podocyte toxin, causes a marked decrease in podocyte

number in rats. Kim et al. (107) showed that repeated injec-

tions of PAN further augmented podocyte loss and that the

regions devoid of podocytes developed glomerulosclerosis.

However, glomerulosclerosis was only initiated when podo-

cyte number decreased by 10 to 20%. Moreover, there was a

significant correlation between the decrease in podocyte num-

ber and the development of glomerulosclerosis, because the

authors showed that increased podocyte loss with repeated

PAN injections correlated with scarring (107). Kriz and col-

leagues (108) showed that a decrease in podocyte number in

the Masugi nephritis model also contributed significantly to the

development of renal failure.

One of the first studies to show that a decrease in podocyte

number also correlated with disease progression in human

disease was performed by Meyer and colleagues (109). They

showed that a decrease in podocyte number in type II diabetic

Pima Indians correlated closely with those patients who had

microalbuminuria, the earliest manifestation of diabetic ne-

phropathy. Moreover, they showed that the decrease in podo-

cyte number was more pronounced in patients with more

advanced nephropathy (109). In contrast to the decrease in

podocyte number, mesangial and glomerular endothelial cell

number remained normal. More recently, Steffes et al. (110)

showed a similar paradigm in patients with type I diabetic

nephropathy. Taken together, these important studies showed

that a decrease in podocyte number is a significant predictor of

disease progression in diabetic nephropathy. Finally, Lemley

and coworkers (111) recently showed that despite injury to the

mesangial cell in IgA nephropathy, a decrease in podocyte

number correlated significantly with reduced renal function

and global glomerulosclerosis.

Mechanism Underlying Glomerulosclerosis after
a Decrease in Podocyte Number

The mechanism(s) underlying the development of glomeru-

losclerosis following a decrease in podocyte number has been

proposed by Kriz, Rennke, and others (56,112–115). Because

podocytes are located on the outer aspect of the glomerular

basement membrane, one of the functions of podocytes is to

provide a tensile support to the underlying glomerular capillary

loop, by opposing the hydrostatic capillary pressure (115,116).

It is the belief of most authorities that there is a finite number

of podocytes/glomerulus and that individual podocytes cover a

specific area of GBM. Thus if podocyte number is decreased,

there are insufficient podocytes to cover that specific area of

basement membrane. The sequence of events in the develop-

ment of glomerulosclerosis are as follows (56,113). First,

podocyte loss, and the inability to replace those lost because of

a lack of proliferation (see below), results in a localized “bare”

or denuded GBM at that site. Second, the lack of tensile

support normally provided by podocytes (117) is lost in the

area of denudation and leads to the outward bulging of the

capillary loop (due to hydrostatic capillary pressures). Because

many forms of glomerular diseases are associated with in-

creased intraglomerular hydrostatic capillary pressure, this pro-

cess is further augmented. Third, the “expanding” capillary

loop causes the denuded basement membrane to abut on Bow-

man’s capsule, leading to synechia formation, which Schwartz

and Lewis (105) have shown is the first committed step to the

development of FSGS. Finally, inspissated proteins and hyali-

nosis develop in the capillary loops, and progressive scarring

ensues.
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Causes of Podocytopenia
Because a decrease in podocyte number (podocytopenia)

underlies glomerulosclerosis, recent studies have focused on

the causes underlying podocytopenia (Figure 2). The etiology

of podocytopenia includes apoptosis, detachment, and the in-

ability or lack of podocytes to proliferate; each will be dis-

cussed below.

Apoptosis
Cell number reflects the balance between an increase in cell

number due to proliferation, and a decrease in cell number due

to apoptosis (programmed cell death). Although earlier studies

failed to document significant podocyte apoptosis (118), recent

studies have shown that podocytes undergo apoptosis in glo-

merular disease (119). One explanation for the earlier difficulty

in detecting podocyte apoptosis is that apoptotic podocytes are

likely flushed out in the urine, making it technically difficult to

detect these cells. However, apoptosis has recently been shown

in podocytes with human glomerular disease (V. D’Agati,

personal communication). Moreover, Wiggins and colleagues

(107) have clearly demonstrated podocyte apoptosis after toxic

injury in the PAN model. Bottinger and colleagues (119)

recently showed that apoptosis is increased in TGF-� trans-

genic mice, which leads to a decrease in podocyte number and

glomerulosclerosis. Follow-up studies by Bottinger’s group

(120) showed that TGF-� induced podocyte apoptosis was

mediated by specific Smad pathways, and we have recently

shown that TGF-� induced podocyte apoptosis is augmented in

the absence of the CDK-inhibitors p21 and p27 (unpublished

data).

Recent studies have further examined the mechanisms un-

derlying podocyte apoptosis. Singhal and colleagues (121)

showed that angiotensin II (AngII) induces apoptosis in cul-

tured rat podocytes. This effect was dose- and time-dependent.

AngII-induced apoptosis was reduced by blocking either the

subtype I or II receptors and was completely prevented when

both receptors were inhibited. AngII-induced apoptosis was in

part TGF-�–dependent. The Smad signaling pathways under-

lying TGF-�–induced podocyte apoptosis have recently been

delineated by Bottinger and coworkers (119). Other mediators

of podocyte apoptosis have been shown. For example, puro-

mycin induces podocyte apoptosis in culture, which is medi-

ated through reactive oxygen species (122). Taken together,

these studies show that apoptosis increases in podocytes under

certain circumstances and contributes to the loss of cell num-

ber. Future studies are now focusing on understanding the

pathways mediating this process.

Detachment
A second mechanism underlying a decrease in podocyte

number is detachment of cells from the underlying GBM

(Figure 2). Indeed, studies by Hara and colleagues (123–125)

showed that cells obtained in the urine of patients with various

glomerular diseases stained positive for the podocyte marker,

podocalyxin. Similar results have been shown in PAN model

of podocyte injury in rats (107). We have recently asked if

podocytes detaching are viable or only apoptotic, as has been

discussed above. Our data show that in the passive Heymann

nephritis model of membranous nephropathy and in the strep-

tozotocin model of diabetic nephropathy in rats, podocytes

were readily detected in the urine, identified by immunostain-

ing with podocyte-specific antibodies, such as nephrin, podo-

cin, and Glepp-1. When these cells obtained in the urine were

resuspended in tissue culture media and plated onto tissue

culture dishes and grown under cell culture conditions, they

adhered to tissue culture plates (75). The vast majority of

adherent cells were podocytes. Moreover, there was an in-

crease in podocyte cell number during the first days in culture.

These results suggest that a fraction of podocytes detaching

from the GBM in experimental membranous and diabetic ne-

phropathy are viable and that they may have proliferative

potential under these conditions. Future studies need to be

directed toward better understanding the mechanisms of podo-

cyte detachment, especially the role of specific integrins, such

as the �3�1 integrin (126) or dystroglycans (6).

Lack of Proliferation
A decrease in podocyte number has also been shown to be

consequent to a lack of appropriate proliferation after injury in

this cell type (113). As a result, after cell loss (by detachment

and/or apoptosis), the inability to proliferate prevents the res-

Figure 2. Causes of podocytopenia. After injury, podocytes can un-

dergo apoptosis or detachment or fail to proliferate. These events lead

to a decrease in podocyte number (podocytopenia), which contributes

to the development of progressive glomerulosclerosis. The mecha-

nisms underlying podocytopenia are being elucidated. Apoptosis re-

sults from increased transforming growth factor–� (TGF-�), angio-

tensin II, reactive oxygen species (ROS), and a decrease in the

cyclin-dependent kinase (CDK) inhibitors p21 and p27. The �3�1

integrin is most likely to be critical in podocyte detachment from the

underlying glomerular basement membrane (GBM). In contrast to

other glomerular cells, podocytes do not typically proliferate in re-

sponse to injury and cannot replace those lost by apoptosis and

detachment. The inability to proliferate is secondary to increased

levels of the CDK-inhibitors p21, p27, and/or p57.
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toration of normal podocyte number (118). This contrasts with

mesangial and glomerular endothelial cells, which readily pro-

liferate in response to many forms of injury (127). There is a

large body of literature showing that podocyte proliferation

correlates closely with its state of differentiation, which may

provide important clues into the mechanisms underlying the

lack of proliferation (128). During glomerulogenesis, presump-

tive and immature podocytes proliferate and are actively en-

gaged in the cell cycle (129). However, during the critical

S-phase of kidney development, podocytes exit the cell cycle

to take on a terminally differentiated and quiescent phenotype,

which is required for their highly specialized function.

Proliferation is governed at the level of the cell cycle by cell

cycle regulatory proteins (130). To proliferate, cyclins must

bind to and activate partner cyclin-dependent kinases (CDK).

In contrast, CDK are inactivated by CDK-inhibitors, including

p21, p27, and p57 (131). Thus the balance of cyclin-CDK

complexes and CDK-inhibitors determines if cells proliferate

or are quiescent. In both mice and humans, immunostainings

for p27 and p57 are absent in immature proliferating podocytes

during the S-shaped stage of glomerular development. How-

ever, podocyte differentiation coincides with a marked increase

in the expression of the CDK-inhibitors p27 and p57 in podo-

cytes (132,133). This differential expression of CDK-inhibitors

persists in normal podocytes. However, the CDK-inhibitors

p21, p27, and p57 alone are not required for normal glomerular

development, because the kidneys from these null mice are

histologically normal (134–136).

The passive Heyman nephritis (PHN) model has many sim-

ilarities to human membranous nephropathy, and it is induced

by the administration of an antibody directed against the Fx1A

antigen on the rat podocyte (137). We began by asking if

podocytes are capable of increasing cyclins and CDK required

for proliferation. After C5b-9–induced injury in PHN rats,

protein levels for cyclin A and CDK2 increase (118), suggest-

ing that the lack of podocyte proliferation may be due to a cell

cycle inhibitor(s), rather than a failure to engage the cell cycle

per se. Indeed, the levels of the CDK-inhibitors p21 and p27

increase specifically in podocytes after complement-dependent

injury in PHN rats (118). Furthermore, the CDK-inhibitors

limit podocyte proliferation by binding to and inhibiting spe-

cific cyclin-CDK complexes.

A key role for p21 and p27 in limiting the proliferative

response of podocytes has been confirmed in studies utilizing

specific CDK-inhibitor null mice. The administration of an

anti-glomerular antibody to induce experimental podocyte in-

jury caused marked podocyte de-differentiation in p21�/�

(135) and p27�/� (134) mice compared with control wild-

type mice receiving the same antibody, and this was accom-

panied by increased podocyte proliferation. Glomerular extra-

cellular matrix protein accumulation was also increased in

diseased p21 and p27�/� mice, and this was accompanied by

a significant decrease in renal function (134,135). The role of

the CDK-inhibitor p57 remains enigmatic due to the lack of a

viable knockout mouse (138). However, podocyte protein lev-

els for p57 are decreased in PHN, and in anti-glomerular

antibody disease in the mouse, loss of expression localizes

predominantly in proliferating podocytes (136).

Although the vast majority of human podocyte diseases are

not associated with proliferation, podocyte proliferation does

occur in idiopathic collapsing glomerulopathy and HIV-asso-

ciated nephropathy (see review by Ross and Klotman in this

issue [104]). In these diseases, there is increased expression of

cyclin A and Ki-67 and a reduction in p27 and p57 in cells that

are proliferating (139,140). In contrast, CDK-inhibitors do not

decrease in human diseases characterized by the absence of

podocyte proliferation (membranous nephropathy, MCD and

FSGS). Taken together, these studies show that the CDK-

inhibitors p21, p27, and p57 have a critical role in determining

the outcome of diseases of podocytes and limit proliferation by

reducing DNA synthesis (Figure 2).

Abnormalities in Podocyte Mitosis. Studies have un-

equivocally shown podocyte polyploidy in experimental mem-

branous nephropathy (141,142). Polyploidy is defined as an

increase in DNA content and is seen histologically as multinu-

cleated cells. These observations suggest that podocytes can

undergo mitosis but that there is either an abnormality in the

completion of mitosis and/or in cytokinesis (cell division).

When cultured podocytes are exposed to sublytic C5b-9 attack,

a variety of signaling pathways are activated, including JNK,

phospholipases, calcium, and MAPK cascades (143–145).

Sublytic C5b-9 attack also causes cells to engage the cell cycle

in vitro and in vivo. However, our data suggested a delay

and/or inhibition of podocytes entering mitosis (146). To test

the possibility that this observation could be due to a defect in

the G2/M checkpoint, cultured podocytes were exposed to

antibody with and without a complement source. Sublytic

C5b-9 injury caused a marked increase in the cell cycle inhib-

itor p53, and this was also accompanied by an increase in p21.

This was accompanied by a delayed entry into mitosis. An

increase in p53 and p21 was also shown in vivo in the PHN

model of C5b-9 induced podocyte injury.

Follow-up studies showed that sublytic C5b-9 induced DNA

damage in podocytes in vitro and in vivo. Moreover, C5b-9

increased the levels of checkpoint kinase-1 and -2 protein

levels, which have been shown to arrest cells at G2/M. Taken

together, these results suggest that the reduction in podocyte

mitosis after sublytic C5b-9 induced injury is due to DNA

damage.

Mechanical Stretch Reduces Podocyte Proliferation.

Glomerular disease is initiated by specific types of injury to

individual glomerular cell types. However, regardless of the

inciting injury, studies have shown that the common pathway

to progressive glomerular scarring is an increase in intraglo-

merular capillary pressure, also known as glomerular hyper-

tension (147). Indeed, lowering intraglomerular pressure with

ACE inhibitors and/or angiotensin receptor blockers reduces

the progression of glomerular diseases, including diabetic ne-

phropathy (94). One of the consequences of increased intra-

glomerular pressure is increasing mechanical stretch on resi-

dent glomerular cell types (148). Studies have shown that

applying mechanical stretch to glomerular cells is a useful

model to study the effect of stretch on these cell types. Apply-
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ing mechanical stretch to cultured mesangial cells activates a

variety of signaling pathways and leads to increased prolifer-

ation (149). In contrast, mechanical stretch decreases podocyte

proliferation, and the decrease in cell number was not due to

apoptosis (150).

Recent studies have shown that when podocyte were grown

in serum (a source of growth factors), stretch decreased the

levels of cyclins D1, A and B1 and cdc2 in cultured podocytes

(150). Moreover, in cultured mouse podocytes, stretch also

increases the levels of specific CDK-inhibitors. Stretch caused

an early increase in p21, followed by an increase in p27 at 24 h

and a delayed increase in p57 at 72 h (150). In contrast to the

growth arrest seen in wild-type cells exposed to stretch, p21Cip1

�/� podocytes exposed to stretch continued to proliferate.

These results show that a role for CDK-inhibitors in limiting

the podocyte’s proliferative capacity after stretch, and may

explain in part why podocytes do not proliferate in states of

increased intraglomerular pressure.

The studies discussed above show that podocytes typically

try to maintain their differentiated, specialized, and quiescent

phenotype at all costs, even to the detriment of renal function.

The inability to readily proliferate and replace those lost due to

apoptosis or detachment results in a “nude” basement mem-

brane, which leads to glomerulosclerosis. The notion that

podocytes undergo “compensatory” hypertrophy to cover

the “nude” areas has been proposed. However, with time,

podocyte hypertrophy is detrimental, and this uncompen-

sated state leads to scarring. Nagata and coworkers (151)

recently showed that podocyte hypertrophy was mediated by

specific CDK-inhibitors.

In summary, our understanding of podocyte biology has

increased significantly in the past few years, and we are learn-

ing about new proteins that are specifically expressed in this

cell type and may underlie certain diseases that we previously

classified as “idiopathic.” The molecular mechanisms leading

to podocyte effacement are now better understood, as is the

response to injury. As more investigators continue to focus on

podocytes, it is likely that future therapeutic targets will be

identified, which will improve the renal survival of patients

with podocyte diseases.
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