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Abstract

Background: Selenoproteins contain selenocysteine (Sec), commonly considered the 21st

genetically encoded amino acid. Many selenoproteins, such as the glutathione peroxidases and

thioredoxin reductases, protect cells against oxidative stress by functioning as antioxidants and/or

through their roles in the maintenance of intracellular redox balance. Since oxidative stress has

been implicated in the pathogenesis of diabetic nephropathy, we hypothesized that selenoproteins

protect against this complication of diabetes.

Methods: C57BL/6 mice that have a podocyte-specific inability to incorporate Sec into proteins

(denoted in this paper as PodoTrsp-/-) and control mice were made diabetic by intraperitoneal

injection of streptozotocin, or were injected with vehicle. Blood glucose, body weight,

microalbuminuria, glomerular mesangial matrix expansion, and immunohistochemical markers of

oxidative stress were assessed.

Results: After 3 and 6 months of diabetes, control and PodoTrsp-/- mice had similar levels of blood

glucose. There were no differences in urinary albumin/creatinine ratios. Periodic acid-Schiff staining

to examine mesangial matrix expansion also demonstrated no difference between control and

PodoTrsp-/- mice after 6 months of diabetes, and there were no differences in

immunohistochemical stainings for nitrotyrosine or NAD(P)H dehydrogenase, quinone 1.

Conclusion: Loss of podocyte selenoproteins in streptozotocin diabetic C57BL/6 mice does not

lead to increased oxidative stress as assessed by nitrotyrosine and NAD(P)H dehydrogenase,

quinone 1 immunostaining, nor does it lead to worsening nephropathy.
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Background
Selenium, a trace element, is found in the amino acid
selenocysteine (Sec) and is cotranslationally incorporated
into the protein polypeptide chain via the codon UGA.
Although UGA generally signals translation termination,
mRNAs that contain a conserved SECIS element in their 3'
untranslated regions are able to decode UGA as Sec [1].
Sec is synthesized on a unique tRNA [2,3], termed
tRNA[Ser]Sec because it is first aminoacylated by serine,
which is then converted to selenocysteine. Since this is the
only tRNA that supports Sec incorporation into proteins,
the absence of tRNA[Ser]Sec results in protein chain termi-
nation instead of Sec incorporation. As discussed below,
selenoproteins are enzymes with Sec in the active site.
Therefore, even if a truncated protein lacking Sec is stable,
it will not be biologically active. Thus, the absence of
tRNA[Ser]Sec results in complete functional selenoprotein
deficiency. Whole mouse homozygous deletion of the
tRNA[Ser]Sec gene Trsp is embryonic lethal [4]. However, the
generation of mice carrying Trsp alleles flanked by loxP
sites has allowed the study of organ-specific deletion of
selenoprotein synthesis [5].

The human genome encodes 25 selenoproteins and the
mouse genome 24 [6]. Many selenoproteins function as
antioxidant enzymes or in redox signaling. Examples of
selenoproteins with these activities include the glutath-
ione peroxidases (Gpx) and thioredoxin reductases (Trxr)
(reviewed in [7]). Other selenoproteins such as seleno-
phosphate synthetase and selenoprotein P indirectly sup-
port those activities by functioning in Sec synthesis and
selenium transport and storage [7].

Superoxide is a highly reactive and potentially toxic oxi-
dant produced during mitochondrial respiration and by
several cytoplasmic enzymes such as NAD(P)H oxidase.
In diabetes, hyperglycemia induces overproduction of
superoxide via the mitochondrial electron transport chain
as well as by increased NAD(P)H oxidase activity [8] lead-
ing to oxidative stress [9]. Oxidative stress is thought to
play an important role in the progression of diabetic com-
plications, including nephropathy [10]. Podocyte
(glomerular epithelial cell) damage is central to the devel-
opment of diabetic nephropathy [11]. An increase in
glomerular oxidative stress occurs early in diabetic neph-
ropathy and enhanced mitochondrial and cytoplasmic
oxidant stress leads directly to apoptosis in podocytes
exposed to high extracellular glucose [12]. It has been
shown that injury to diabetic kidneys is reduced in trans-
genic mice that over express superoxide dismutase
(SOD1) [13]. In addition, streptozotocin (STZ) diabetic
mice developed increased oxidative stress and kidney
damage when subjected to a selenium deficient diet [14].
However, a recent study of diabetic Gpx1 homozygous

null mice found that Gpx1 was not protective against
renal injury [15].

C57BL/6 mice are relatively resistant to the development
of diabetic nephropathy [16]. Given the evidence support-
ing a role of oxidative stress in diabetic nephropathy and
the role of selenoproteins in protecting against oxidative
stress, we postulated that podocyte selenoproteins protect
against the development of diabetic nephropathy in
C57BL/6 mice. To test this hypothesis, we created a podo-
cyte specific knock out of all selenoproteins (PodoTrsp-/-)
in C57BL/6 mice, induced diabetes with STZ, and exam-
ined the mice for progression of diabetic nephropathy.
Contrary to our hypothesis, we found the PodoTrsp-/-

mice did not develop increased nephropathy.

Methods
Targeted Inactivation of the Selenocysteine tRNA[Ser]Sec 

gene Trsp in Podocytes

C57BL/6 transgenic mice expressing Cre recombinase
driven by the 2.5 kb human podocin (NPHS2) promoter
were obtained from L.B. Holzman (University of Michi-
gan, Ann Arbor, MI) [17]. The expression of Cre recombi-
nase in these mice does not cause glomerular
abnormalities [17-19]. Podocin-Cre mice were mated
with C57BL/6 mice in which both Trsp alleles are flanked
by loxP sites, denoted TrspL/L [5]. The resulting podocin-
Cre;TrspL/+ mice were mated with TrspL/L mice to generate
podocin-Cre;TrspL/L mice, denoted in this paper as
PodoTrsp-/-. Littermates of the genotype TrspL/L were used
as controls. Genotyping was performed by PCR using the
following oligonucleotide primers for Trsp: 5'-CAA AAC
CTC GCC TCC AAG TGA C-3' and 5'-TGT GAG ACG ACC
TTC TAT GCT CG-3'; and for Cre: 5'-GCG GTC TGG CAG
TAA AAA CTA TC-3' and 5'-GTG AAA CAG CAT TGC TGT
CAC TT-3'. The PCR program used for Trsp detection is as
follows: step 1, 95°C for 5 min; step 2, 95°C for 15 sec;
step 3, 64°C for 30 sec; step 4, 68°C for 2 min; step 5, 30
repetitions of steps 2 to 4. The PCR program used for Cre
detection is as follows: step 1, 95°C for 5 min; step 2,
94°C for 30 sec; step 3, 51°C for 45 sec; step 4, 72°C for
1 min; step 5, 35 repetitions of steps 2 to 4. All animal care
and handling procedures were approved by the University
of Michigan Committee on Use and Care of Animals.

Induction of diabetes

Ten week old male PodoTrsp-/- and TrspL/L (as controls)
mice were fasted for 4 hours and then injected intraperito-
neally with 50 mg/kg STZ (Sigma) or vehicle for 5 consec-
utive days according to the low dose protocol of the
Animal Models of Diabetic Complications Consortium
http://www.amdcc.org. STZ was prepared in freshly made
100 mM sodium citrate buffer pH 4.5 at 7.5 mg/ml and
used within 15 minutes. For each experiment, the number
of mice used is stated in the figure legend.

http://www.amdcc.org
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Immunohistology

Immunoperoxidase staining for Wilms' tumor homolog
(Wt1) and Gpx1 was performed on 2% paraformalde-
hyde-lysine-periodate (PLP) fixed kidney cryostat consec-
utive sections (3 μm). PLP-fixed tissue sections were
incubated for 2 hrs at 90°C in Retrieve-All 1 (Covance),
followed by 3% hydrogen peroxide in methanol for 30
mins and 1.5% normal rabbit serum in 3% BSA, 0.1%
Tween 20 in 1× PBS for 20 mins according to Vectastain
Elite ABC kits-Goat IgG and Sheep IgG. Sections were then
incubated with primary antibodies at 1 μg/μl of either
goat anti Wt1 polyclonal (1:200) (Santa Cruz) or sheep
anti Gpx1 polyclonal (1:4,000) (Novus Biologicals) for 1
hr at room temperature. After washes in PBS, sections
were incubated in biotinylated secondary antibodies
(biotinylated anti sheep IgG or biotinylated anti goat IgG)
for 1 hr at room temperature, followed by incubation with
ABC reagent for 1 hr at room temperature (Vectastain Elite
ABC kits-Sheep IgG and Goat IgG). Sections incubated
with anti Wt1 polyclonal antibody were developed using
Vector SG (Vector) for 5 mins to produce a gray color and
sections incubated with anti Gpx1 polyclonal antibody
were developed using Vector NovaRED (Vector) for 5
mins to produce a red color.

To assess oxidative stress, immunoperoxidase staining
was performed on PLP fixed, paraffin kidney sections.
Consecutive 3 μm sections were stained with rabbit anti
nitrotyrosine (1:100) (Millipore) or goat anti Wt1
(1:300). As a negative control, the anti nitrotyrosine anti-
body was preincubated with 25 μM nitrotyrosine for 1
hour and 25 μM nitrotyrosine also was included during
the primary antibody incubation. To assess whether anti-
oxidant enzymes might be induced to compensate for the
loss of selenoproteins, consecutive 3 μm sections were
stained for Wt1 or NAD(P)H dehydrogenase, quinone 1
(NQO1) using rabbit anti NQO1 (1:100) (Abcam). The
general procedures for these immunostainings were as
described above, except that the sections stained for nitro-
tyrosine and NQO1 were developed with 3,3'-diami-
nobenzidine. All immunostainings for nitrotyrosine, as
well as all for NQO1 and Wt1, were done at the same time
and were photographed under identical conditions.
Adobe Photoshop was used to adjust the color of the Wt1
images to facilitate identification of podocytes when the
images were merged.

Biochemical Analysis

Glucose levels in fresh blood obtained between 9 and 10
AM from the tail veins of nonfasted mice were measured
once a month by glucometer (Therasense). Urine was col-
lected at 3 and 6 months of diabetes from mice housed in
metabolic cages for 4 hrs. Elisa kits-Albuwell M and Creat-
inine Companion (Exocell) were used to measure urine
levels of albumin and creatinine.

Histology and Morphometry

PLP-fixed tissue paraffin sections (3 μm) were stained
with periodic acid-Schiff's (PAS) reagent to identify kid-
ney structure and hematoxylin to visualize cell nuclei.
Microscopic images of glomeruli (10 images per sample)
were taken at 20× magnification and used for calculating
the mesangial matrix cell volume per glomerular tuft. The
mean area of each glomerular tuft was measured by man-
ually tracing the glomerular outline on a computer screen
and calculating that area by computerized morphometry
using Metamorph 6.1 (Molecular Devices) at a final mag-
nification of 150×. The mesangial matrix cell volume was
then quantified by measuring the area of the glomerulus
stained pink to purplish red (PAS positive) using Meta-
morph 6.1. Percent of mesangial matrix was calculated as
(area PAS positive/total glomerular tuft area) multiplied
by 100.

Results
Deletion of selenoproteins in PodoTrsp-/- podocytes

To demonstrate the knockout of podocyte selenoproteins,
consecutive kidney sections from control and PodoTrsp-/-

mice were immunostained for Wt1 to identify podocytes
(Fig. 1A &1E) and Gpx1 to identify a selenoprotein (Fig.
1B &1F). Gpx1 is ideal for this purpose because, in the
absence of Sec incorporation, Gpx1 mRNA is degraded by
nonsense mediated decay, so that very little truncated
Gpx1 protein (lacking Sec) is made [20,21]. A merge of
the Wt1 and Gpx1 immunostainings shows that control

Immunoperoxidase staining demonstrating a reduction in podocyte Gpx1 expression in PodoTrsp-/- miceFigure 1
Immunoperoxidase staining demonstrating a reduc-
tion in podocyte Gpx1 expression in PodoTrsp-/- 

mice. Consecutive 3 μm kidney sections were stained from 
control (TrspL/L) mice (A-D) and PodoTrsp-/- mice (E-H). A, E 
Anti-Wt1 antibody staining to identify podocytes (arrows). B, 
F Anti-Gpx1 antibody staining (arrows indicate the same cells 
as in A, E). C, G Merge of Wt1 and Gpx1 sections from A, B 
and E, F, respectively. C, Arrows indicate podocytes from 
control mice express both Wt1 and Gpx1. G, Arrows indi-
cate podocytes from PodoTrsp-/- mice lose Gpx1 expression. 
D, H stained with normal sheep IgG as a negative control for 
the Gpx1 antibody.
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mice express Gpx1 in podocytes (Fig. 1C), whereas expres-
sion is very low to nil in PodoTrsp-/- podocytes (Fig. 1G).

PodoTrsp-/- and control mice developed similar degrees of 

hyperglycemia and body weight changes in response to 

STZ

STZ diabetes was induced in male PodoTrsp-/- and control
mice. The blood glucose levels for STZ treated PodoTrsp-/

- and control mice were similar at 3 and 6 months of dia-
betes (Fig 2A). STZ treated mice also showed a decrease
(means ± SEM; P < 0.01) in body weight compared to
vehicle treated mice at 3 and 6 months of diabetes (Fig
2B).

PodoTrsp-/- mice do not have an increased susceptibility to 

nephropathy after 6 months of diabetes

Microalbuminuria was assessed to evaluate diabetic renal
damage. The albumin to creatinine ratios were not
increased in PodoTrsp-/- versus control mice after 3 or 6

months of diabetes, and in fact were similar to the levels
seen in non-diabetic mice (Fig 3). To further explore dia-
betic nephropathy, mesangial matrix expansion was ana-
lyzed. PAS and hematoxylin staining of kidney sections
again showed no significant differences between
PodoTrsp-/- and control mice after 6 months of diabetes
(Fig 4).

PodoTrsp-/- mice do not have increased glomerular or 

podocyte oxidative stress after 6 months of diabetes

Consecutive 3 μm kidney sections from control and
PodoTrsp-/- mice were immunostained for nitrotyrosine as
a marker for oxidative stress and for Wt1 to identify podo-
cytes. No differences were observed between the podo-
cytes of PodoTrsp-/- and control mice for nitrotyrosine
immunostaining (Figure 5). Consecutive 3 μm kidney sec-
tions also were stained for Wt1 and NQO1 as an antioxi-
dant enzyme that could be induced to compensate for the
loss of selenoproteins (Fig 6). Again, no differences were
observed between the podocytes of PodoTrsp-/- and con-
trol mice for NQO1 immunostaining.

Discussion
Although multiple lines of evidence suggest an important
role for oxidative stress in the pathogenesis of diabetic
complications including nephropathy [9-14], the precise
role of oxidative stress is not known. In addition, there are
many endogenous factors that potentially can counteract
oxidative stress, and it is not known which of these are
most important in protecting against diabetic complica-
tions.

Urinary albumin/creatinine ratios are not increased in PodoTrsp-/- versus control (TrspL/L) miceFigure 3
Urinary albumin/creatinine ratios are not increased 
in PodoTrsp-/- versus control (TrspL/L) mice. Three 
months after the onset of diabetes (or after vehicle injec-
tion): control mice, vehicle n = 10, STZ n = 7; PodoTrsp-/- 

mice, vehicle n = 12, STZ n = 13. Six months after the onset 
of diabetes (or after vehicle injection): control mice, vehicle n 
= 8, STZ n = 6; PodoTrsp-/- mice, vehicle n = 9, STZ n = 13.
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In the diabetic kidney, oxidative stress coincides with
podocyte apoptosis [12]; hence, podocyte antioxidant
proteins are expected to be important in protecting
against diabetic nephropathy. Given the toxicity of uncon-
trolled oxidative stress, it is likely that substantial redun-
dancy exists in the functions of antioxidant proteins. The
majority of selenoproteins with known functions are
involved in the management of oxidative stress. This
includes four selenoprotein glutathione peroxidases in
rodents and three thioredoxin reductases, and likely
includes numerous others such as selenoproteins H, K, P,
R, S and W ([22] and reviewed in [7]). Thus, we hypothe-
sized that selenoproteins as a group protect against dia-
betic nephropathy, and that deletion of all selenoproteins
would reveal their importance by preventing compensa-
tory effects. We tested this hypothesis by deleting the
tRNA[Ser]Sec gene Trsp in podocytes of C57BL/6 mice. The
choice of mouse strain was dictated by the fact that both
the podocin-Cre and TrspL/L genotypes were on pure
C57BL/6 backgrounds. The fact that diabetic C57BL/6
mice are relatively resistant to nephropathy [16] also
made this a logical choice, allowing us to test whether
selenoproteins at least in part underlie this resistant phe-
notype.

The loss of podocyte selenoproteins did not result in
increased nitrotyrosine staining as a marker for oxidative
stress, nor did it enhance the development of diabetic
nephropathy as assessed by microalbuminuria and
mesangial matrix expansion. Our findings extend those of
de Haan et al [15], who showed that deletion of Gpx1
alone did not enhance diabetic nephropathy.

The data suggest that podocyte selenoproteins are not
important in the protection against diabetic nephropathy,

or that remaining antioxidant mechanisms can compen-
sate. However, we did not find increased expression of the
antioxidant enzyme NQO1. Our results may not extend to
other mouse strains or to animals with a longer duration
or greater severity of diabetes. Additionally, oxidative
stress and selenoproteins in glomerular cells other than
podocytes may be important in the development and pro-
gression of nephropathy.

Conclusion
The loss of podocyte selenoproteins does not enhance
nephropathy or oxidative stress in C57BL/6 mice after 6
months of STZ-induced diabetes. Either podocyte seleno-
proteins are not important in protecting against diabetic
nephropathy, or additional antioxidant proteins compen-
sate for the absence of selenoproteins. As with any model

Immunoperoxidase staining demonstrating similar levels of nitrotyrosine in podocytes of PodoTrsp-/- and control (TrspL/L) miceFigure 5
Immunoperoxidase staining demonstrating similar 
levels of nitrotyrosine in podocytes of PodoTrsp-/- and 
control (TrspL/L) mice. Consecutive 3 μm kidney sections 
from vehicle control, vehicle KO (PodoTrsp-/-), STZ control, 
and STZ KO (PodoTrsp-/-) mice were stained for nitrotyro-
sine or Wt1 (to identify podocytes). Arrows indicate 
selected podocytes in the Wt1 and merged images, and indi-
cate the identical positions in the nitrotyrosine images. Nega-
tive control staining for Wt1 utilized normal IgG in place of 
the primary antibody, and for nitrotyrosine utilized coincuba-
tion of the primary antibody with nitrotyrosine.
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system, the results may not be transferable to other dia-
betic models or to diabetic nephropathy in humans.
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