
POEMS: End-to-End Performance Design of
Large Parallel Adaptive Computational Systems

Vikram S. Adve, Member, IEEE, Rajive Bagrodia, Senior Member, IEEE,

James C. Browne, Member, IEEE, Ewa Deelman, Member, IEEE, Aditya Dube, Elias N. Houstis,

John R. Rice, Member, IEEE, Rizos Sakellariou, Member, IEEE, David J. Sundaram-Stukel,

Patricia J. Teller, Member, IEEE, and Mary K. Vernon, Member, IEEE Computer Society

AbstractÐThe POEMS project is creating an environment for end-to-end performance modeling of complex parallel and distributed

systems, spanning the domains of application software, runtime and operating system software, and hardware architecture. Toward

this end, the POEMS framework supports composition of component models from these different domains into an end-to-end system

model. This composition can be specified using a generalized graph model of a parallel system, together with interface specifications

that carry information about component behaviors and evaluation methods. The POEMS Specification Language compiler, under

development, will generate an end-to-end system model automatically from such a specification. The components of the target system

may be modeled using different modeling paradigms (analysis, simulation, or direct measurement) and may be modeled at various

levels of detail. As a result, evaluation of a POEMS end-to-end system model may require a variety of evaluation tools including

specialized equation solvers, queuing network solvers, and discrete-event simulators. A single application representation based on

static and dynamic task graphs serves as a common workload representation for all these modeling approaches. Sophisticated

parallelizing compiler techniques allow this representation to be generated automatically for a given parallel program. POEMS includes

a library of predefined analytical and simulation component models of the different domains and a knowledge base that describes

performance properties of widely used algorithms. This paper provides an overview of the POEMS methodology and illustrates several

of its key components. The methodology and modeling capabilities are demonstrated by predicting the performance of alternative

configurations of Sweep3D, a complex benchmark for evaluating wavefront application technologies and high-performance, parallel

architectures.

Index TermsÐPerformance modeling, parallel system, message passing, analytical modeling, parallel simulation, processor

simulation, task graph, parallelizing compiler, compositional modeling, recommender system.

æ

1 INTRODUCTION

DETERMINING the performance of large-scale computa-
tional systems across all stages of design enables more

effective design and development of these complex soft-
ware/hardware systems. Toward this end, the Performance
Oriented End-to-end Modeling System (POEMS) project is
creating and experimentally evaluating a problem solving

environment for end-to-end performance analysis of com-
plex parallel/distributed systems, spanning application
software, operating system (OS) and runtime system soft-
ware, and hardware architecture. The POEMS project
leverages innovations in communication models, data
mediation, parallel programming, performance modeling,
software engineering, and CAD/CAE into a comprehensive
methodology to realize this goal. This paper presents an
overview of the POEMS methodology, illustrates the
component models being developed in the POEMS project
by applying them to analyze the performance of a highly-
scalable application, and finally, describes preliminary
work being performed in integrating multiple different
models for a single application using the POEMS
methodology.

The key innovation in POEMS is a methodology that

makes it possible to compose multidomain, multipara-

digm, and multiresolution component models into a

coherent system model. Multidomain models integrate

component models from multiple semantic domains; in the

case of POEMS, these domains are application software,

OS/runtime software, and hardware. Multiparadigm mod-

els allow the analyst to use multiple evaluation

paradigmsÐanalysis, simulation, or direct measurement

of the software or hardware system itselfÐin a single

system model. To facilitate the integration of models from

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 11, NOVEMBER 2000 1027

. V. Adve is with the Computer Science Department, University of Illinois at
Urbana-Champaign, Urbana, IL 61801. E-mail: vadve@cs.uiuc.edu.

. R. Bagrodia and E. Deelman are with the Computer Science Department,
University of California at Los Angeles, Los Angeles, CA 90095-1596.
E-mail: {rajive, deelman}@cs.ucla.edu.

. J.C. Browne and A. Dube are with the Department of Computer Science,
University of Texas at Austin, Austin, TX 78712-1188.
E-mail: {browne, dube}@cs.utexas.edu.

. E. Houstis and J. Rice are with the Computer Science Department, Purdue
University, West Lafayette, IN, 47907-1398.
E-mail: {jrr, enh}@cs.purdue.edu.

. R. Sakellariou is with the Computer Science Department, University of
Manchester, Manchester M13 9PL, UK. E-mail: rizos@cs.man.ac.uk.

. D. Sundaram-Stukel and M. Vernon are with the Computer Science
Department, University of Wisconsin-Madison, Madison, WI 53706.
E-mail: {sundaram, vernon}@cs.wisc.edu.

. P. Teller is with the Department of Computer Science, The University of
Texas at El Paso, El Paso, TX 79968. E-mail: pteller@cs.utep.edu.

Manuscript received 18 Apr. 1999; revised 29 Dec. 1999; accepted 15 Mar.
2000.
Recommended for acceptance by A. Cheng, P. Clementes, and M. Woodside.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 111938.

0098-5589/00/$10.00 ß 2000 IEEE

different paradigms, the specification and implementation
of POEMS models is accomplished through formulating
component models as compositional objects with associa-
tive interfaces [11], [12]. Associative module interfaces
extend conventional interfaces to include complete specifi-
cation of component interactions. A specification language
(the POEMS Specification Language or PSL) for specifica-
tion of multidomain, multiparadigm, multiresolution per-
formance models has been designed and a compiler for this
language is under development.

The POEMS project is building an initial library of
component models, at multiple levels of granularity, for
analyzing both nonadaptive and adaptive applications on
highly-scalable architectures. POEMS supports analytical
models, discrete-event simulation models at multiple levels
of detail, and direct execution. The analytical models
include deterministic task graph analysis [1], the LogP
[15] family of models including LogGP [5] and LoPC [18],
and customized Approximate Mean Value Analysis
(AMVA) [36]. Simulation models include validated state-
of-the-art processor and memory hierarchy models based
on SimpleScalar [14], interconnection network models using
the PARSEC parallel simulation language [9], large-scale
parallel program simulations using the MPI-Sim simulator
[28], [10], and parallel I/O system simulators [8]. A unified
application representation based on a combination of static
and dynamic task graphs has been developed that can serve
as a common workload representation for this wide range
of performance models.

Ongoing research within POEMS is developing techni-
ques to integrate subsets of two or more of these component
models, as a first step towards automatic integration of
models within the POEMS framework. One such effort is
integrating a compiler-generated analytical model based on
the static task graph with the MPI-Sim simulator. This
integrated model has the potential to increase greatly the
size of problems and systems that can be simulated in
practice. In addition, it can be expanded to include detailed
processor simulation (e.g., with the SimpleScalar simulator),
ideally for a small subset of the computational tasks.
Another effort is examining the integration of MPI-Sim,
LogGP, and SimpleScalar models. These ongoing efforts are
described briefly in Section 6.

The project also is building a knowledge base of
performance data, gathered during the modeling and
evaluation process, which can be used to estimate, as a
function of architectural characteristics, the performance
properties of widely used algorithms. The knowledge base,
along with the component models, application task graphs,
and formal task executions descriptions (called TEDs), is
stored in the POEMS database, an integral part of the
POEMS system.

POEMS development is being driven by the design
evaluations of highly-scalable applications executed on
parallel architectures. The first driver application is the
Sweep3D [22] program that is being used to evaluate
advanced and future parallel architectures at Los Alamos
National Laboratory.

Section 2 presents an overview of the Sweep3D applica-
tion, which is used to illustrate the POEMS methodology

and performance prediction capabilities. Section 3 describes

the conceptual elements of the POEMS methodology and

illustrates it with an example. Section 4 presents the suite of

initial POEMS performance tools and the initial library of

component models that are under development for

Sweep3D. Section 5 presents results of applying these

models to provide performance projections and design

results for Sweep3D. Section 6 describes ongoing research

on the development and evaluation of integrated multi-

paradigm models in POEMS. Section 7 discusses related

work. Conclusions are presented in Section 8.

2 POEMS DRIVER APPLICATION: SWEEP3D

The initial application driving the development of POEMS

is the analysis of an ASCI kernel application called

Sweep3D executed on high-performance, parallel architec-

tures such as the IBM SP/2, the SGI Origin 2000, and future

architectures. The Sweep3D application is an important

benchmark because it is representative of the computation

that occupies 50±80 percent of the execution time of many

simulations on the leading edge DOE production

systems [19]. Our analysis of this application has three

principal goals. One goal is to determine which of the

alternative configurations of the Sweep3D application has

the lowest total execution time on a given architecture. A

related, second goal is to provide quantitative estimates of

execution time for larger systems that are expected to be

available in the near future. The third goal is to predict the

quantitative impact of various possible architectural and/or

OS/runtime system improvements in reducing the required

execution time. This section contains a brief description of

this application; Sections 4 and 5 discuss how the POEMS

methodology is being applied to obtain the desired

performance projections for Sweep3D.
The Sweep3D kernel is a solver for the three-dimen-

sional, time-independent, neutron particle transport equa-

tion on an orthogonal mesh [22]. The main part of the

computation consists of a balance loop in which particle flux

out of a cell in three Cartesian directions is updated based

on the fluxes into that cell and other quantities such as local

sources, cross section data, and geometric factors.

1028 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 11, NOVEMBER 2000

Fig. 1. One wavefront of Sweep3D on a 2�4 processor grid.

Fig. 1 illustrates how the three-dimensional computation
is partitioned on a 2�4 two-dimensional processor grid.
That is, each processor performs the calculations for a
column of cells containing J/2 � I/4 � K cells. The output
fluxes are computed along a number of directions (called
angles) through the cube. The angles are grouped into eight
octants, corresponding to the eight diagonals of the cube
(i.e., there is an outer loop over octants and an inner loop
over angles within each octant). Along any angle, the flux
out of a given cell cannot be computed until each of its
upstream neighbors has been computed, implying a
wavefront structure for each octant. The dark points in the
figure illustrate one wavefront that originates from the
corner marked by the circle. The processor containing the
marked corner cell is the first to compute output fluxes,
which are forwarded to the neighboring processors in the i
and j dimensions, etc. In order to increase the available
parallelism, the wavefront is pipelined in the k dimension.
That is, a processor computes the output fluxes for a partial
column of cells of height mk, as shown in the figure, and
then forwards the output fluxes for the partial column to its
neighboring processors before computing the next partial
block of results. (Since the octant starts in the marked upper
corner of the cube, the next partial block of cells to be
computed is below the dark shaded partial block in each
column.) The computation is pipelined by groups of mmi
angles, not shown in the figure. Therefore, the amount of
computation for each ªpipelined blockº is proportional to
it�jt�mk�mmi, where it and jt are the number of points
mapped to a processor in the i and j dimensions, mk is the
number of points in the k dimension per pipeline stage and
mmi is the number of angles per pipeline stage.

The inputs to Sweep3D include the total problem size (I,
J, K), the size of the processor grid, the k-blocking factor
(mk), and the angle-blocking factor (mmi). Two aggregate
problem sizes of particular interest for the DOE ASCI
program are one billion cells (i.e., I=1000, J=1000, K=1000)
and 20 million cells (i.e., I=255, J=255, J=255). Key
configuration questions include how many processors

should be used for these problem sizes, and what are the
optimal values of mk and mmi.

3 POEMS METHODOLOGY

Using POEMS, a performance analyst specifies the work-
load, operating system, and hardware architecture for a
system under study, henceforth referred to as the target
system. In response, as depicted in Fig. 2, the completed
POEMS system will generate and run an end-to-end model
of the specified software/hardware system. The target
system is defined via an integrated graphical/textual
specification language (the POEMS Specification Language
or PSL) for a generalized dependence graph model of
parallel computation. Section 3.1 describes the process of
component model composition and evaluation tool
interfacing. The generalized dependence graph model of
parallel computation is described in Section 3.2. The PSL is
briefly introduced and illustrated in Section 3.3.

The nodes of the dependence graph are models of system
components, i.e., instances of component models in the
application, OS/runtime, and hardware domains. In speci-
fying the target system, the analyst defines the properties of
each system component in the context of and in terms of the
attribute set of its semantic domain. For example, for a
hardware component, the analyst defines the design
parameters, the modeling paradigm, and the level of detail
of the component model. As discussed in Section 3.3, the
component models are implemented as compositional
objects, i.e., ªstandard objectsº encapsulated with associa-
tive interfaces [11], [12], [16] specified in the PSL. These
component models, together with application task graphs,
and performance results, are stored in the POEMS database,
described in Section 3.6. POEMS also includes a knowledge-
based system, called Performance Recommender, to assist
analysts in choosing component models. The Performance
Recommender is sketched in Section 3.5. As described in
Section 3.2, the application domain represents a parallel
computation by a combination of static and dynamic task
graphs, which are specialized forms of generalized

ADVE ET AL.: POEMS: END-TO-END PERFORMANCE DESIGN OF LARGE PARALLEL ADAPTIVE COMPUTATIONAL SYSTEMS 1029

Fig. 2. Overview of the POEMS environment.

dependence graphs. Generalized dependence graphs can be
used in the operating system domain to model process and
memory management, interprocess communication, and
parallel file systems. In the hardware domain, the nodes of a
graph are associated with models of hardware components.
Fig. 3 is a schematic of a generalized dependence graph
model spanning multiple domains.

When specifying the target system, the analyst selects the
components that are most appropriate for the goals of her/
his performance study. As discussed in Section 3.4, model
composition is facilitated by task execution descriptions
(TEDs), which characterize the execution of components of
the task graph on particular hardware domain components,
e.g., processors, memory hierarchies, and interconnection
networks. It also relies on the models being implemented as
compositional objects and on data mediation methods. The
performance knowledge base of the POEMS database may
provide guidance to the analyst in the selection of
components. The compiler for the POEMS specification
language will access the specified component models from
the POEMS database, when appropriate component models
are present and will incorporate them into the system
model.

3.1 Component Model Composition and Evaluation
Tool Integration

As noted earlier, POEMS composes its system models from
component models of different types ranging from simple
analytical models such as LogGP to detailed simulation
models of instructions executing on modern processor/
cache architectures. Each component model can be char-
acterized as a ªdocumentº that carries an external interface
defining its properties and behavior. Successful composi-
tion requires that this interface specifies the properties and
behavior of the component models with which the given
component model can be composed successfully.

Evaluation of the multiparadigm system models requires
interfacing and integration of evaluation tools for each
component model type. Each evaluation tool also can be
characterized as a processor that "understands" and acts
upon information supplied for the component model it is
evaluating. Each tool evaluates the behavior of the
component model types it ªunderstands.º The input to
each tool must be in the types set it ªunderstands.º
Interfacing and integration of tools requires that the output

of one tool be the input of another tool. Successful
interfacing and integration of tools, each of which ªunder-
standsº different type sets, requires that the output of a
source tool (which will be in the type set it ªunderstandsº)
must be mapped to the type set ªunderstoodº by its target
tool. The information necessary to support these mappings
must be defined in the external interfaces from which the
tools are invoked.

Manual composition of component models to create
system models is now accomplished on an ad hoc basis by
humans reading documentation and applying their experi-
ence and knowledge to select component models with
properties and behaviors such that the components can be
integrated. Manual interfacing of evaluation tools that
utilize different representations of components is now
accomplished by manual specification of mappings from
outputs to inputs and hand coding of these mappings.
Design and implementation of these mappings is often a
very laborious and error-prone process, sufficiently so that
these tasks are seldom attempted. A major reason for the
difficulty of these tasks is that there is no consistent
specification language in which to describe the properties
and behaviors of either components or tools. The human
system model composer and evaluation tool integrator
must resolve the ambiguities and inconsistencies of map-
pings among languages with different semantics on an
ad hoc, case-by-case basis. Automation of component
model composition and tool interfacing and integration
will require that the interfaces of component models and
evaluation tools be specified in a common representation
with semantics sufficiently precise to support automated
translations.

The POEMS Specification Language (PSL) [16] is the
representation used in POEMS to specify the information
necessary to support composition of component models
and interfacing and integration of evaluation tools. PSL is
an interface specification language. Components and tools
are treated as objects and each is encapsulated with a PSL-
specified interface. PSL-specified interfaces, called associa-
tive interfaces, are a common language for expressing both
component model composition and mappings across
evaluation tool interfaces. An object encapsulated with an
associative interface is called a compositional object.
Associative interfaces and compositional objects are defined
and described in Section 3.3.2. An example of PSL
specifications is given in Section 3.3.4.

A compiler for PSL-specified interfaces that has access to
a library of component models and evaluation tools can
automatically compose a set of component models selected
by a performance engineer into a system model and
generate the mappings among the outputs and inputs of
the evaluation tools. The compiler for PSL programs will
generate an instance of the generalized hierarchical depen-
dence graph defined in Section 3.2. A feasibility demonstra-
tion prototype of a PSL compiler has been developed [16]
and a more capable version of the PSL compiler is under
development.

PSL-specified associative interfaces also facilitate manual
composition and integration processes since they provide a
systematic framework for formulation of component model

1030 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 11, NOVEMBER 2000

Fig. 3. Multidomain dependence graph.

and evaluation tool interfaces. The applications of the
POEMS methodology to performance studies of Sweep3D
given in Sections 5 and 6 are manually executed examples
of the model composition and evaluation tool interfacing
methods and concepts defined and described in this section
and in Sections 4 and 5.

3.2 General Model of Parallel Computation

Given a PSL program, the PSL compiler generates an
instance of a generalized hierarchical dependence graph.
This model of parallel computation and its use in POEMS
system modeling are described in this section after
introducing some basic definitions and terminology.

3.2.1 Definitions and Terminology

Generalized Hierarchical Dependence Graph. A general
graphical model of computation in which each node
represents a component of the computation and each
edge represents a flow of information from node to node.
The graph is hierarchical in that each node can itself be
an interface to another generalized dependence graph.
Each edge in such a graph may represent either a
dataflow relationship or a precedence relationship. For
each node, an extended firing rule (that may include
local and global state variables in addition to input data
values) specifies when each node may begin execution.
For a precedence edge, the node at the head of the edge
may not begin execution until the node at the tail has
completed.

Dynamic Task Graph. An acyclic, hierarchical dependence
graph in which each node represents a sequential task,
precedence edges represent control flow or synchroniza-
tion, and dataflow edges (called communication edges)
represent explicit data transfers between processes.

Static Task Graph. A static (symbolic) representation of the
possible dynamic task graphs of a program, in which
each node represents a set of parallel tasks and each edge
represents a set of edge instances. Unlike the dynamic
task graph, this graph includes loop and branch nodes to
capture logical control flow (and hence the graph may
contain cycles).

3.2.2 Dependence Graph Model of Parallel Systems

The POEMS representation of a parallel system is a
hierarchical dependence graph in which the nodes are
instances of compositional objects and the edges represent
flows of information from node to node. As shown in Fig. 3,
the nodes may be defined in different domains and a node
in one domain may invoke nodes in both its own and
implementing domains. For example, the implementing
domains for an application are the OS/runtime system and
hardware domains.

The graph model is executable, where an execution
represents a model solution for the specified application
software and system configuration. The nodes and edges
may be instantiated during execution, thus defining a
dynamic instance of the graph that captures the behavior of
the entire system during the execution being modeled. This
dynamic graph may or may not be constructed explicitly at
runtime, depending on the specified solution methods.

A node executes when the computation reaches a state in
which its associated ªfiring ruleº evaluates to true. A firing
rule is a conditional expression over the state of the input
edges and the local state of a node. Each edge has associated
with it a data type specification, which is called a
transaction. Clock-driven execution is obtained by adding
to the data dependence relationships (and specifications of
the firing rules for the nodes) an edge between each source
sink node pair carrying the current time of each source
node. Each node executes the Lamport [23] distributed
clock algorithm to determine the current time.

3.2.3 Common Application Representation

The POEMS application representation is designed to
provide workload information at various levels of abstrac-
tion for both analytical and simulation models. More
specifically, the representation is designed to meet four
key goals [3]. First, it should provide a common source of
workload information for the various modeling techniques
envisaged in POEMS. Second, the representation should be
computable automatically using parallelizing compiler tech-
nology. Third, the representation should be concise and
efficient enough to support modeling terascale applications
on very large parallel systems. Finally, the representation
should be flexible enough to support performance predic-
tion studies that can predict the impact of changes to the
application, such as changes to the parallelization strategy,
communication, and scheduling. The design of the repre-
sentation is described in more detail in [3] and is
summarized briefly here.

The application representation in POEMS is based on a
combination of static and dynamic task graphs. As defined
earlier, the static task graph (STG) is a compact, symbolic
graph representation of the parallel structure of the
program. The nodes represent computational tasks,
CPU components of communication, or control flow. The
graph also includes extensive symbolic information in order
to capture symbolically the structure of the parallel
computation as a function of parameters such as the
number of processors and relevant program input vari-
ables. For example, each static task node contains a
symbolic integer set that describes the set of task instances
that are executed at runtime (e.g., the following set can be
used to denote a task node with P instances:

f�i� : 0 � i � P ÿ 1g�:
Each edge between parallel task nodes contains a symbolic
integer mapping that describes the edge instances connect-
ing task instances (e.g., the mapping

f�i! j� : 1 � j � P ÿ 1 ^ j � i� 1g
denotes P-1 edge instances connecting instance i of the node
at the tail to instance i+1 of the node at the head). Finally,
control-flow nodes contain symbolic information about loop
bounds or branching conditions. Together, this information
enables the STG to capture the parallel structure of the
program while remaining independent of program input
values. In addition, each computational task also has an
associated scaling function describing how the computa-
tional work for the task scales as a function of relevant

ADVE ET AL.: POEMS: END-TO-END PERFORMANCE DESIGN OF LARGE PARALLEL ADAPTIVE COMPUTATIONAL SYSTEMS 1031

program variables. For example, this information can be
used to support simple extrapolation of performance
metrics as a function of input size.

The dynamic task graph, which is instantiated from the
static task graph, is a directed acyclic graph that captures
the precise parallel structure of an execution of the
application for a given input [1]. The dynamic task graph
is important for supporting detailed and precise modeling
of parallel program behavior. For many modeling techni-
ques, however, the dynamic task graph need not be
instantiated explicitly but the same information can be
obtained by traversing the static task graph at model
runtime. This is a key capability already available in the
graph-based runtime system on which the POEMS im-
plementation will be based.

3.2.4 Sweep3D Task Graph

The task graph concepts are illustrated by the static task
graph for the sweep phase of Sweep3D, shown on the left-
hand side of Fig. 4. This task graph was generated manually
and is a simplified version of the graph that would be
generated using the task graph synthesis techniques in the
dHPF compiler, described in Section 4.1. (The actual static
task graph differs mainly in that there are additional small
computational tasks between the communication tasks and
the k-block actually consists of several computation and a
few control-flow nodes.)

The right hand side of Fig. 4 shows the dynamic
communication pattern of the sweep phase that would be
realized assuming a 3�3 processor grid. This shows four of
the eight octants in each time step of Sweep3D and the

computation and communication tasks performed by each
processor for each octant can be seen on the left. An
illustration of the dynamic task graph and a more detailed
description can be found in [3].

3.3 Modeling Using Compositional Objects

The interfaces of compositional objects carry sufficient
information to enable compiler-based integration of multi-
domain, multiparadigm, multiresolution component mod-
els into a system model. Section 3.3.1 defines compositional
objects. Section 3.3.2 defines the interfaces of compositional
objects. Section 3.3.3 describes how compositional objects
are incorporated into the dependence graph model of
computation and Section 3.3.4 illustrates compositional
modeling with an example from Sweep3D.

3.3.1 Compositional Objects

The POEMS Specification Language and programming
environment enable creation of performance models as
instances of the general dependence graph model of parallel
computation. The nodes of the graph are instances of
compositional objects that represent components. Composi-
tional objects are defined in the context of an application
semantic domain, an OS/runtime semantic domain, and/or
a hardware semantic domain. The properties of objects are
defined in terms of the attribute set of the appropriate
semantic domain.

Each component is specified by a set of attributes. A
component model is an instantiation of a component. There
may be many instances of a given component model each
with the same set of attributes, but with different values
bound to these attributes.

1032 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 11, NOVEMBER 2000

Fig. 4. Static task graph for Sweep3D and the dynamic communication structure on a 3x3 processor grid.

3.3.2 Associative Interfaces

An associative interface is an extension of the associative
model of communication [11], [12] used to specify complex,
dynamic interactions among object instances. An associa-
tive interface specifies the functions it implements, domain-
specific properties of the functions it implements, the
functions it requires, and the domain-specific properties
of the functions it requires.

An associative interface has two elements: an ªacceptsº
interface for the services that the component model
implements and a ªrequestsº interface that specifies the
services the component model requires. Interfaces are
specified in terms of the attributes that define the behavior
and the states of standard objects [13], [31], [33]. An object
that has associative interfaces is said to be a compositional
object and an object that interacts through associative
interfaces is said to have associative interactions.

An ªacceptsº interface consists of a profile, a transaction,
and a protocol. A profile is a set of name/value pairs over
the attributes of a domain. An object may change its profile
during execution. A transaction is a type definition for a
parameterized unit of work to be executed. A protocol
specifies a mode of interaction such as call-return or data
flow (transfer of control) and/or a sequence of elementary
interactions. A ªrequestsº interface consists of a selector
expression, a transaction, and a protocol. A selector expres-
sion is a conditional expression over the attributes of a
domain. The selector references attributes from the profiles
of target objects. When evaluated using the attributes of a
profile, a selector is said to match the profile whenever it
evaluates to true. A match that causes the selector to
evaluate to true selects an object as the target of an
interaction. The parameters of the transaction in the match
should either conform or the POEMS component model
library must include a routine to translate the parameters of
the transaction in the requests interface instance to the
parameters of the transaction in the matched accepts
interface and vice versa. A compositional object may have
multiple accepts and requests in its associative interface.
Multiple accepts arise when a component model imple-
ments more than one behavior. A component model may
have a request instance for a service from an implementing
domain and a request instance for continuation of execution
in its own domain.

3.3.3 Mapping of Compositional Objects to

Dependence Graphs

POEMS compositional objects are defined by encapsulating
"standard objects" [13], [31], [33] with associative interfaces
and data-flow execution semantics. Fig. 5 shows the
structure of a POEMS compositional object. The edges of
the generalized dependence graph defined in Section 3.2 are
derived by matching request interfaces with accepts
interfaces. The selector must evaluate to true and the
transaction must be conformable for an edge to be created.
Transactions are conformable if the parameters of the
transaction can be mapped to one another. The requirement
for the mapping of parameters arises when component
models in a system model either are defined at different
levels of resolution or use different paradigms for evalua-
tion. The POEMS compiler uses a library of domain-aware
type coercions to implement mappings when required. The

firing rule for a component model is derived by requiring
that all of the parameters in the transaction in the interface
be present on its input edges. Requests and accepts
interfaces can be matched when a system model is compiled
or at runtime.

The matching of selectors in requests to profiles in accepts
thus composes a dynamic data flow graph and controls the
traversal of the graph that models the execution behavior of
the system.

Note that a component model at the application or
OS/runtime level may have dependence arcs to and from
its own and implementing levels.

3.3.4 Illustration of Compositional Modeling for

Sweep3D

As an example of compositional modeling, the specification
of two of the component models that are composed to create
an end-to-end model of Sweep3D are illustrated in Figs. 6
and 7. The target hardware system is an IBM SP/2, except
that the memory hierarchy of the 604e processors is
modeled as being different from that of the SP/2. (This
modification is particularly relevant because measurements
have shown that Sweep3D utilizes only about 20±25 percent
of the available cycles on a single processor in high-
performance systems [34].)

This example assumes that the Sweep3D application
being modeled is represented by the task graph of Fig. 4
with "recv" nodes, "k-block" nodes, and "send" nodes. It also
is assumed that the analyst has specified that execution of
the compute operations be modeled using detailed
instruction-level simulation, including a detailed simulation
of memory access, and that the execution of communication
and synchronization operations be modeled using MPI
simulation.

This example involves the application domain, the
OS/runtime domain, and the hardware domain. (In the
interest of brevity and clarity, the syntax is a simplified
form of the actual syntax of PSL.) In the example that
follows, the PSL interfaces for a ªk-blockº node of the
dependence graph and the first ªsendº node after a
ªk-blockº node are specified. In the specification for the
ªk-blockº component model the profile element ªdomain
= application[Sweep3D]º specifies that this component is

ADVE ET AL.: POEMS: END-TO-END PERFORMANCE DESIGN OF LARGE PARALLEL ADAPTIVE COMPUTATIONAL SYSTEMS 1033

Fig. 5. A node of a dependence graph as a compositional object.

from the Sweep3D application. ªEvaluation mode =
simulation[SimpleScalar]º specifies that the evaluation of
this component will be done by the SimpleScalar
simulator. In this case, the ªk-blockº is a sequence of
instructions to be executed by the SimpleScalar simulator.
The PSL compiler composes these component model
specifications into an instance of the generalized hierarch-
ical dependence graph defined in Section 3.2.1.

The accepts interface for the compositional object repre-
senting the k-block node is straightforward. The k-block
node has been generated by the task graph compiler and
belongs to the application domain. The identifier "k-block"
specifies a set of instructions that are to be executed. The
requests interface for the k-block node has two request
instances, one for the implementing (hardware) domain for
the k-block and a second request instance continuing the
flow of control to the next send node in the application
domain.

The first request in the requests interface selects the
SimpleScalar simulator to execute the instructions of the
k-block node and evaluate the execution time of the code
for the k-block node. The transaction associated with the
first selector invokes an execute code block entry point
defined for SimpleScalar. The protocol for this selector is
call-return since SimpleScalar must complete its execution
and return control to the k-block node before the k-block
node can transfer the computed data to the send node and
send node execution can be initiated. SimpleScalar has

been encapsulated in the POEMS library as a single node
dependence graph in the hardware domain.

The second selector in the requests interface selects the
send node immediately following the k-block instance in
the task graph to continue execution of the system model.
The transaction in this request invokes the MPI-Sim
simulator to evaluate the execution time of the MPI-send
function defined in MPI-Sim. The protocol is the "data-flow"
protocol for data-flow graphs; in this case, the control
follows the data along the arc that is defined by the
matching of the request and the accept interfaces. Note that
even though MPI-Sim is in the runtime domain we have
assigned the send node to the application domain. This
choice was made because the send node is constructed as a
part of the application by the task graph compiler (See
Section 4.1 for a description of the task graph compiler.)
This is the most direct translation of the task graph into a
data-flow graph. MPI-Sim is encapsulated in the POEMS
component model library as a single-node graph. MPI-Sim
is invoked from the send node of the application send node
with call-return semantics. This encapsulation of the
runtime domain MPI-Sim node in the application node
allows the send node to pass control to its successor send
node as soon as the MPI-Sim simulator has completed
execution.

For this example, the representation of the first "send"
node following the k-block node in the task graph for
Sweep3D is given in Fig. 7. As shown, the profile in the
accepts interface of the send component model specifies that
it derives from the Sweep3D application, is a "send" node,
and is to be evaluated using MPI-Sim. The transaction
specifies an entry point of MPI-Sim.

The selector in the first request instance matches the
MPI-Sim simulator and the transaction specifies the entry
point for the MPI-send operation. The protocol is call-return
because MPI-Sim must complete execution and return
control to the application before this send node can transfer

1034 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 11, NOVEMBER 2000

Fig. 6. Specification of compositional objects: An example using the

representation of a ªk-blockº node of the Sweep3D task graph.

Fig. 7. Specification of compositional objects: An example using the

representation of a ªsendº node of the Sweep3D task graph.

control to the next send node. The selector of the second
request instance identifies the next node to which control
should be transferred.

The accepts and requests interfaces of each composi-
tional object or task graph node direct the search of the
POEMS database by the POEMS compiler to identify
appropriate component models to be used to instantiate
components and link them to generate this segment of the
system model. (The current version of the POEMS
Specification Language compiler [16] does not yet interface
to the POEMS database. It accesses component models from
a Unix file system.) This database search provides a link to
the code that implements an instance of the specified
component model. In this case, the code that implements
the k-node component model is the SimpleScalar simulator
and the code that implements the send node is MPI-Sim.
(See Section 4 for a description of SimpleScalar and
MPI-Sim.) The accepts and requests interfaces, the link to
the code implementing the instance of a component
model, and other parameters associated with the compo-
nent model will be stored in a Task Execution Description
(TED) (see Section 3.4) in the POEMS database.

To execute the specified system model, SimpleScalar and
MPI-Sim execute as processes on a host processor.
SimpleScalar runs as the executing program for which
MPI-Sim is modeling communication. SimpleScalar takes as
input the executable file of the k-block node, which is stored
in simulated memory. At the conclusion of executing the
ªk-blockº node, the POEMS environment invokes the
MPI-send module of MPI-Sim. A special built-in interface
procedure that links SimpleScalar and MPI-Sim copies the
data to be transmitted from the simulated memory of
SimpleScalar into the real memory of the host, which
allows MPI-Sim to model the communication operation.

3.4 Task Execution Descriptions (TEDs)

Considerable information is needed to characterize the
behavior and properties of each component and different
instances of each component model will have different
attribute values. For example, there may be two instances of
a component, one that is analytically evaluated and one that
is evaluated by simulation. Analytical modeling may
require parameter values that specify task execution time,
while simulation of a single task requires either an
executable representation of the task or its memory address
trace. As a result, these two instances of the same
component require different modes of integration into a
system model. The information necessary to accomplish
these integration functions must be associated with each
component instance. POEMS will use a Task Execution
Description (TED) to describe the modeled execution of a
task; a TED is associated with each node of a task graph.

In addition, a TED contains the attributes required to
define the method used to model single-task execution. The
methods that are being evaluated for simulating individual
tasks are instruction-driven, execution-driven, and trace-
driven simulation. For example, a TED would define the
input parameters for SimpleScalar that would enable the
creation a particular instantiation of the SimpleScalar
component model.

3.5 Performance Recommender

The POEMS Performance Recommender system facilitates
the selection of computational parameters for widely used
algorithms to achieve specified performance goals. For
example, in the Sweep3D context, the system is used to
obtain the parameters of the algorithm (e.g., grid size,
spacing, scattering order, angles, k-blocking factor, conver-
gence test), system (e.g., I/O switches), and machine (e.g.,
number and configuration of processors). Capturing the
results of system measurement as well as modeling studies
(discussed in Section 5), this facility can provide insight into
how interrelationships among variables and problem
features affect application performance. It functions at
several levels ranging from the capture of analytical and
simulation model results to those of the measured
application.

POEMS is using a kernel (IFESTOS), developed at
Purdue [29], that supports the rapid prototyping of
recommender systems. IFESTOS abstracts the architecture
of a recommender system as a layered system with clearly
defined subsystems for problem formulation, knowledge
acquisition, performance modeling, and knowledge dis-
covery. The designer of the recommender system first
defines a database of application classes (problems) and
computation class instances (methods). The data acquisition
subsystem generates performance data by invoking the
appropriate application (e.g., Sweep3D). The performance
data management subsystem provides facilities for the
selective editing, viewing, and manipulation of the gener-
ated information. Performance analysis is performed by
traditional attribute-value statistical techniques, and
ªminingº this information produces useful rules that can
be used to drive the actual recommender system. This
approach has been demonstrated successfully for problem
domains in numerical quadrature and elliptic partial
differential equations [29]. Currently it is being applied to
the Sweep3D application.

3.6 POEMS Database

The volume and complexity of the data environment for
POEMS make the POEMS database a critical component of
the project. In fact, POEMS as a tool could not be built
without a database as a searchable repository for a wide
spectrum of model and performance data. The POEMS
database will be the repository for:

a. The component model definitions as compositional
objects and component model definitions as in-
stances of the component models.

b. Static task graphs for the applications, generated by
the extended dHPF compiler.

c. The Task Execution Descriptions, which characterize
each component model, as discussed in Section 3.3.4.

d. The knowledge base, which will guide analysts and
designers in the development of total systems.

e. Measurements of performance in several formats
included measurements and predictions of execu-
tion time.

The POEMS Specification Language compiler will be
interfaced to the database as will the Performance Recom-
mender. Fig. 8 is a schematic of the role of the database in
POEMS.

ADVE ET AL.: POEMS: END-TO-END PERFORMANCE DESIGN OF LARGE PARALLEL ADAPTIVE COMPUTATIONAL SYSTEMS 1035

4 THE INITIAL POEMS PERFORMANCE ANALYSIS

TOOLS

Currently, several performance analysis tools are being

integrated in POEMS. These include the following tools,

which are described briefly in this section: an automatic

task graph generator [3], the LogGP [5] and LoPC [18]

analytic models, the MPI-Sim simulator [28], and the

SimpleScalar instruction-level, processor/memory architec-

ture simulator [14]. Each tool contains capabilities for

modeling the application, OS/runtime, and hardware

domains. Together, these tools provide the capability to

analyze, with a fairly high degree of confidence, the

performance of current and future applications and

architectures, for very large and complex system config-

urations. As a prerequisite to developing multiparadigm

models, each of these tools has been used to develop a

single-paradigm, multidomain model of Sweep3D. This has

allowed us to understand the unique role that each

paradigm can play in total system performance analysis.

4.1 Automatic Task Graph Generator

A comprehensive performance modeling environment like

POEMS will be used by system designers in practice only if

model construction and solution can be largely automated.

For an existing application, one critical step towards this

goal is to automatically construct the application represen-

tation described in Section 3.2. Data-parallel compiler

technology from the dHPF compiler project [2] has been

extended to compute the task-graph-based application

representation automatically for High Performance Fortran

(HPF) programs. In normal use, the dHPF compiler

compiles a given HPF program into an explicitly parallel

program in SPMD (Single Program Multiple Data) form, for

message-passing (MPI), shared-memory (e.g., pthreads), or

software distributed shared-memory (TreadMarks [6])

systems. The synthesized task graphs represent this

explicitly parallel program. In the future, the task graph

synthesis will be extended to handle existing message-

passing programs as well.
There are three key innovations in the compiler support

for task graph construction:

. The use of symbolic integer sets and mappings. These are
critical for capturing the set of possible dynamic task
graphs as a concise, static task graph. Although this
is a design feature of the representation itself, the
feature depends directly on the integer set frame-
work technology that is a foundation of the dHPF
compiler [2]. The construction of these sets and
mappings for an STG is described in more detail
in [3].

. Techniques for condensing the static task graph. The
construction of static task graphs in dHPF is a two-
phase process [3]. First, an initial static task graph
with fine-grain tasks is constructed directly from the
dHPF compiler's internal program representation
and analysis information. Second, a pass over the
STG condenses fine-grain computational tasks (e.g.,
single statements) into coarse-grain tasks (e.g., entire
loop iterations or even entire loop nests). The degree
of granularity clearly depends on the goals of the
modeling study, and can be controlled as discussed
below.

1036 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 11, NOVEMBER 2000

Fig. 8. Overview of the POEMS Database.

. Integer set code generation techniques for instantiating a
dynamic task graph for a given input. Although this
step is conceptually performed outside the compiler,
it can be done in a novel, highly efficient, manner for
many programs using dHPF's capability of generat-
ing code to enumerate the elements of an integer set
or mapping. This also is explained further below.

The goal of condensing the task graph is to obtain a
representation that is accurate, yet of a manageable size. For
example, it may be appropriate to assume that all
operations of a process between two communication points
constitute a single task, permitting a coarse-grain modeling
approach. In this case, in order to preserve precision, the
scaling function of the condensed task must be computed as
the symbolic sum of the scaling functions of the component
tasks, each multiplied by the symbolic number of iterations
of the surrounding loops or by the branching probabilities
for surrounding control-flow, as appropriate. Note, how-
ever, that condensing conditional branches can introduce
fairly coarse approximations in the modeling of task
execution times. The compiler, therefore, takes a conserva-
tive approach and does not collapse branches by default.
Instead, it is desirable to allow the modeler to intervene and
specify that portions of the task graph can be collapsed even
further (e.g., by inserting a special directive before control
flow that can be collapsed). Even in the default case,
however, the compiler can increase the granularity of tasks
further in some cases by moving loop-invariant branches
out of enclosing loops, a standard compiler transformation.
For example, this would be possible for a key branch within
the k-block of Sweep3D.

Constructing the DTG for a given program input
requires symbolic interpretation of the parallel structure
and part of the control flow of the program. This
interpretation must enumerate the loop iterations, resolve
all dynamic instances of each branch, and instantiate the
actual tasks, edges, and communication events. For many
regular, nonadaptive codes, the control flow (loop iterations
and branches) can be determined uniquely by the program
input, so that the DTG can be instantiated statically. (Again,
in some cases, a few data-dependent branches may have to
be ignored for approximate modeling, under the control of
the modeler as proposed above.) To instantiate parallel
tasks or edges, the elements of the corresponding integer set
or mapping must be enumerated. The key to doing this is
that, for a given symbolic integer set, the dHPF compiler
can synthesize code to enumerate the elements of that set
[2]. (Any mapping can be converted into an equivalent set
for code generation.) We exploit this capability and generate
a separate procedure for each set, parameterized by the
symbolic program variables that appear in the set; typically
these are process identifiers, program input variables, and
loop index variables. Then this generated code is compiled
separately and linked with the program that performs the
instantiation of the DTG. When instantiating dynamic task
instances for a given static task, the code for that task's
symbolic set is invoked and is provided with the current
values of the symbolic parameters at this point in the
interpretation process. This directly returns the required
index values for the task instances. Edge instances of a static

edge are instantiated in exactly the same manner, from the
code for the integer set mapping of that static edge.

In some irregular and adaptive programs, the control
flow may depend on intermediate computational results of
the program and the DTG would have to be instantiated
dynamically using an actual or simulated program execu-
tion. The DTG for a given input can be either synthesized
and stored offline for further modeling with any model, or
instantiated on the fly during model execution for modeling
techniques such as execution-driven or instruction-driven
simulation. Both these approaches will be key for multi-
paradigm modeling of advanced adaptive codes.

The automatic construction of the static task graph has
been exploited directly in integrating a task-graph-based
model with MPI-Sim for improving the scalability of
simulation, as described in Section 6.1. The automatic
construction of the dynamic task graph makes it possible to
do automatic analytical modeling of program performance,
using deterministic task graph analysis [1].

4.2 LogGP/LoPC

The task graph for a given application elucidates the
principal structure of the code, including the interprocessor
communication events, from which it is relatively easy to
derive the LogGP or LoPC model equations. The approach
is illustrated by deriving the LogGP model of the Sweep3D
application that uses blocking MPI send and receive
primitives for communication. The task graph for the
sweep phase of this application is given in Fig. 4.

The LogGP model of the Sweep3D application is given in
Fig. 9. The hardware domain is modeled by three simple
parameters: L; G, and Wg, which are defined below. The
first six equations, (1a) through (3b), model the runtime
system components used by the Sweep3D application. That
is, these equations model the MPI communication primi-
tives as they are implemented on the SP/2 that was used to
validate the model. Equations (4) through (8) model the
execution time of the application as derived from the
dynamic task graph.

Equations (1a) through (3b) reflect a fairly precise, yet
simple, model of how the MPI-send and MPI-receive
primitives are implemented on the SP/2. Information about
how the primitives are implemented was obtained from the
author of the MPI software. For messages smaller than four
kilobytes, the cost of a send or receive operation is simply
the LogGP processing overhead (o) parameter. The total
communication cost for these messages (3a) is the sum of
the send processing overhead, the message transmission
time (modeled as the network latency (L), plus the message
size times the gap per byte (G) parameter), and the receive
processing overhead.1 A subscript on the processing over-
head parameter denotes the value of this parameter for
messages smaller (os) or larger (ol) than one kilobyte. When
the subscript is omitted, the appropriate value is assumed.
For messages larger than four kilobytes (3b), an additional
handshake is required. The sending processor sends a short
message to the receiving processor, which is acknowledged

ADVE ET AL.: POEMS: END-TO-END PERFORMANCE DESIGN OF LARGE PARALLEL ADAPTIVE COMPUTATIONAL SYSTEMS 1037

1. The communication structure of Sweep3D is such that we can ignore
the LogGP gap (g) parameter, since the time between consecutive message
transmissions is greater than the minimum allowed value of intermessage
transmission time.

by a short message from the receiving processor when the
receive system call has been executed and the buffer space
is available to hold the message. After that, the message
transfer takes place. In this case, the Send cost (1b) or
Receive cost (2b) is the duration of the communication event
on the processor where the corresponding MPI runtime
system call occurs. Further details about the accuracy of
these communication models and how the parameter
values were measured are given in [35].

The equations that model the MPI communication
primitives might need to be modified for future versions
of the MPI library, or if Sweep3D is run on a different
message-passing system or is modified to use nonblocking
MPI primitives. The equations illustrate a general approach
for capturing the impact of such system modifications.

Equations (4) through (8) model the application execu-
tion time, taking advantage of the symmetry in the
Sweep3D task graph (see Fig. 4). For simplicity, the
Sweep3D application model presented here assumes each
processor in the m�n Sweep3D processor grid is mapped to
a different SMP node in the SP/2. In this case, network
latency, L, is the same for all (nearest-neighbor) commu-
nication in Sweep3D. As explained in [35], the equations
that model communication can be modified easily for the
case when 2x2 regions of the processor grid are mapped to
the same SMP node.

Equation (4) models the time required for a single task
to compute the values for a portion of the grid of size
mmi � mk � it � jt. In this equation, Wg is the measured
time to compute one grid point and mmi, mk, it, and jt are
the Sweep3D input parameters that specify the number of
angles and grid points per block per processor.

Equation (5) models the precedence constraints in the
task graph for the sweeps for octants 5 and 6, assuming the
processors are numbered according to their placement in
the two-dimensional grid, with the processor in the upper

left being numbered (1,1). Specifically, the recursive
equation computes the time that processor pi;j begins its
calculations for these sweeps, where i denotes the
horizontal position of the processor in the grid. The first
term in (5) corresponds to the case where the message from
the west is the last to arrive at processor pi;j. In this case, due
to the blocking nature of the MPI primitives, the message
from the north has already been sent but cannot be received
until the message from the West is processed. The second
term in (5) models the case where the message from the
north is the last to arrive. Note that StartP1;1 � 0 and that
the appropriate one of the two terms in (5) is deleted for
each of the other processors at the east or north edges of the
processor grid.

The Sweep3D application makes sweeps across the
processors in the same direction for each octant pair. The
critical path time for the two right downward sweeps is
computed in (6) of Fig. 9. This is the time until the lower-left
corner processor p1;m has finished communicating the
results from its last block of the sweep for octant 6. At this
point, the sweeps for octants 7 and 8 (to the upper right) can
start at processor p1;m and proceed toward pn;1. The
subscripts on the Send and Receive terms in (6) are
included only to indicate the direction of the communica-
tion event, to make it easier to understand why the term is
included in the equation.

Since the sweeps from octants 1 and 2 (in the next
iteration) will not begin until processor pn;1 is finished, the
critical path for the sweeps for octants 7 and 8 is the time
until all processors in the grid complete their calculations
for the sweeps. Due to the symmetry in the Sweep3D
algorithm, captured in the task graph, the time for the
sweeps to the northeast is the same as the total time for the
sweeps for octants 5 and 6, which is computed in (7) of the
figure. Due to the symmetry between the sweeps for octants
1 through 4 and the sweeps for octants 5 through 8, the total

1038 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 11, NOVEMBER 2000

Fig. 9. LogGP model of MPI communication and the Sweep3D application.

execution time of one iteration is computed as in (8) of Fig. 9.
Equation (6) contains one term [�mÿ 1�L], and the (7)
contains two terms [�mÿ 1�L and �nÿ 2�L], that account
for synchronization costs, as explained in [35].

The input parameters to the LogGP model derived above
are the L, o, G, P, and Wg parameters. The first three
parameters were derived by measuring the round-trip
communication times for three different message sizes on
the IBM SP system, and solving equations (3a) and (3b) with
the derived measures (see [35] for details). The Wi;j

parameter value was measured on a 2x2 grid of processors
so that the work done by corner, edge, and interior
processors could be measured. In fact, to obtain the
accuracy of the results in this paper, Wi;j for each per-
processor grid size was measured to account for differences
(up to 20 percent) that arise from cache miss and other
effects. Since the Sweep3D program contains extra calcula-
tions (ªfixupsº) for five of the twelve iterations, Wi;j values
for both of these iteration types were measured. Although
this is more detailed than the creators of LogP/LogGP may
have intended, the increased accuracy is substantial and
needed for the large-scale performance projections in
Section 5. In the future, other POEMS tools will be used
to obtain these input parameters, as explained in Section 6.3.

The LogGP model of the SP/2 MPI communication
primitives is shown to be highly accurate in [35]. Selected
validations and performance projections of the LogGP
model of Sweep3D are presented in Section 5.

4.3 MPI-Sim: Direct Execution-Driven System
Simulation

POEMS includes a modular, direct execution-driven,
parallel program simulator called MPI-Sim that has been
developed at UCLA [10], [28]. MPI-Sim can evaluate the
performance of existing MPI programs as a function of
various hardware and system software characteristics that
include the number of processors, interconnection network
characteristics, and message-passing library implementa-
tions. The simulator also can be used to evaluate the
performance of parallel file systems and I/O systems [8].
Supported capabilities include a number of different disk
caching algorithms, collective I/O techniques, disk cache
replacement algorithms, and I/O device models. The
parallel discrete-event simulator uses a set of conservative
synchronization protocols together with a number of
optimizations to reduce the time to execute simulation
models.

MPI-Sim models the application and the underlying
system. An application is represented by its local code
blocks and their communication requirements. The local
code block model is evaluated by direct execution.
MPI programs execute as a collection of single threaded
processes and, in general, the host machine has fewer
processors than the target machine. (For sequential
simulation, the host machine has only one processor).
This requires that the simulator supports multithreaded
execution of MPI programs. MPI-LITE, a portable library
for multithreaded execution of MPI programs, has been
developed for this purpose.

The MPI communication layer, which is part of the
runtime domain, is simulated by MPI-Sim in detail; buffer

allocation and internal MPI synchronization messages are
taken into account. The simulator does not simulate every
MPI call, rather all collective communication functions are
first translated by the simulator in terms of point-to-point
communication functions and all point-to-point commu-
nication functions are implemented using a set of core
nonblocking MPI functions. Note that the translation of
collective communication functions in the simulator is
identical to how they are implemented on the target
architecture. A preprocessor replaces all MPI calls by
equivalent calls to corresponding routines in the simulator.
The physical communications between processors, which
are part of the hardware domain are modeled by simple
end-to-end latencies, similar to the communication latency
parameter in the LogP model.

For many applications, these runtime domain and
hardware domain communication models are highly
accurate [10], [28]. MPI-Sim has been validated against the
NAS MPI benchmarks and has demonstrated excellent
performance improvement with parallel execution against
these benchmarks [28]. As shown in Section 5, it also is
highly accurate for the Sweep3D application and the
simulation results (which reflect fairly detailed modeling
of the runtime domain) greatly increase confidence in the
scalability projections of the more abstract LogGP model.

4.4 Instruction-Level Simulation

As stated above, the system model provided by MPI-Sim is
based on direct execution of computational code and
simulation of MPI communication. As a result, the
processor/memory architecture of the target system to be
evaluated must be identical to that of the host system.

To provide performance evaluation of applications on
alternative (future) processor and memory subsystem de-
signs, the POEMS component model library includes
processor, memory, and transport component models that
are evaluated using instruction-level, discrete-event simula-
tion. These models are in the process of being composed
with MPI-Sim to predict the performance of programs for
proposed next-generation multiprocessor systems. The
results of the more abstract task graph, LogGP/LoPC, and
MPI-Sim analyses can be used to identify the most
important regions of the design space to be evaluated with
these, more detailed, hardware component models. The
detailed hardware models can be used to validate the more
abstract models, and can provide parameter values for
future processor/memory architectures needed in the more
abstract models.

In order to provide this kind of modeling capability, a
simulator that models instruction-level parallelism is
essential. The ªsim-outorderº component of the SimpleSca-
lar tool set [14] meets this requirement for simulating
complex modern processor/memory architectures. As a
result, it is being integrated in the POEMS environment.
sim-outorder can be used to model state-of-the-art super-
scalar processors, which support out-of-order instruction
issue and execution. The processor attributes of these
hardware processor/memory subsystem component mod-
els include the processor fetch, issue, and decode rates,
number and types of functional units, and defining
characteristics of the branch predictor. Currently, its

ADVE ET AL.: POEMS: END-TO-END PERFORMANCE DESIGN OF LARGE PARALLEL ADAPTIVE COMPUTATIONAL SYSTEMS 1039

integrated memory components include level-one and
level-two instruction and data caches, a translation-looka-
side buffer, and main memory. The simulator is fairly
portable and customizable with reasonable effort.

Currently, the MPI-version of Sweep3D successfully
executes on multiple instantiations of sim-outorder, each
executed by a separate MPI process. This simulation
produces estimates of the parameter value called Wi;j in
the LogGP model, thus enabling the LogGP model to
predict the performance of Sweep3D on alternative
processor-cache architectures. This simulation capability
also demonstrates a proof-of-concept for integrating the
sim-outorder and MPI-Sim modeling tools. The future
integration of MPI-Sim and sim-outorder will support
detailed simulation of both the OS/runtime domain and
the hardware domain.

5 APPLICATION OF POEMS TO PERFORMANCE

ANALYSIS OF SWEEP3D

The goal of the POEMS performance modeling system is to
enable complete end-to-end performance studies of appli-
cations executed on specific system architectures. To
accomplish this, the system must be able to generate
information that can be used to identify and characterize
performance bottlenecks, analyze scalability, determine the
optimal mapping of the application on a given architecture,
and analyze the sensitivity of the application to architectur-
al changes. This section presents a representative sample of
the results obtained in modeling Sweep3D. These results
are for the IBM SP system.

5.1 Model Validations

We first demonstrate the accuracy of the performance
models described above. Both MPI-Sim and LogGP model
Sweep3D accurately for a variety of application parameters
such as the mk and mmi parameters that define the size of a
pipelined block, different total problem sizes, and number
of processors. Figs. 10a and 10b present the measured and
predicted execution time of the program for the 1503 and 503

total problem sizes respectively, as a function of the number
of processors. For these results, the k-blocking factor (mk) is
10 and the angle-blocking factor (mmi) is three. Both the
MPI-Sim and LogGP models show excellent agreement

with the measured values, with discrepancies of at most
seven percent. The next section shows that these two
problem sizes have very different scalability, yet Fig. 10
shows that the LogGP and MPI-Sim estimates are highly
accurate for both problem sizes.

5.2 Scalability Analysis

It is important to application developers to determine how
well an application scales as the number of processors in the
system is increased. On today's systems, the user could
conduct such studies by measuring the runtime of the
application as the number of processors is increased to the
maximum number of processors in the system, e.g., 128 (see
Fig. 11a). The figure clearly shows that the small problem
size (503) cannot efficiently exploit more than 64 processors.
On the other hand, the larger problem size shows excellent
speedup up to 128 processors. However, due to the system
size limitation, no information about the behavior of larger
problem sizes on very large numbers of processors is
available to the user. Modeling tools enable users to look
beyond the available multiprocessor systems. Fig. 11b
shows the projections of LogGP and MPI-Sim to hardware
configurations with as many as 2500 processors. Although
the application for the 1503 problem size shows good
performance for up to 900 processors, it would not perform
well on machines with a greater number of processors.

Fig. 11 also demonstrates the excellent agreement
between the analytical LogGP model and the MPI-Sim
simulation model. Each model was independently vali-
dated for a variety of application configurations on as many
as 128 processors and the good cross-validation between the
models for up to 2,500 processors increases our confidence
in both models.

Fig. 12a demonstrates the projective capability of the
simulation and analytical models. This figure shows the
measured and estimated performance as a function of the
number of processors, for a fixed per-processor grid size of
14�14�255. For this per-processor grid size the total
problem size on 400 processors is approximately 20 million
grid points, which is one problem size of interest to the
application developers. Obviously, measurement is limited
to the size of the physical system (128 processors). The
maximum problem size that can be measured, with the per-
processor grid size of 14�14�255 is 6.4 million cells.

1040 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 11, NOVEMBER 2000

Fig. 10. Validation of LogGP and MPI-Sim. (a) Validation for problem size 150�150�150. (b) Validation for problem size 50�50�50.

MPI-Sim can extend the projections to 1,600 processors
(80 million cells) before running out of memory because
the simulator needs at least as much aggregatememory as
the application it models. (In Section 6.1, we describe
compiler-based techniques that eliminate the memory
bottleneck for simulation of regular programs such as
Sweep3D and, thus, greatly increase the system and
problem sizes that can be simulated.) Finally, LogGP can
take the projections to as much as 28,000 processors (i.e.,
for the given application configuration parameters, a
1.4 billion problem size).

One important issue addressed in the figure is the
validity of the model projections for very large systems. In
particular, the close agreement between measurement and
the MPI-Sim and LogGP models for up to 128 processors
and the close agreement between MPI-Sim and LogGP for
up to 1,600 processors greatly increases our confidence in
the projections of MPI-Sim and LogGP for large problem
sizes of interest to the application developers.

The mutual validation between the two different models
is one key way in which simulation and analytical modeling
complement each other. Furthermore, the two models have
complementary strengths. The key strength of MPI-Sim is
that it can be used to study program performance by users
with little or no modeling expertise and can be used to
study the performance impact of detailed changes in the
design of Sweep3D or in the implementation of the MPI
communication primitives. The key strength of the LogGP
model is that it can project the performance of design
changes before the changes are implemented and for the
largest problem sizes of interest.

5.3 Application Mapping

For applications such as Sweep3D, which allow varying the
degree of pipelining, it is often important to explore not
only how many resources are needed to achieve good
results, but also how best to map the application onto the
machine. Fig. 12b shows how LogGP explores the para-
meter space for the 20 million-cell Sweep3D problem on up
to 20,000 processors. Here, the k- and angle-blocking factors
are varied, which results in various degrees of pipelining in
the algorithm. The graph shows that for a small number of
processors (less than 400) the choice of blocking factors is
not very important. However, as more processors are used

and the grid size per processor decreases, the degree of
pipelining in the k-dimension has a significant impact,
resulting in poor performance for the smallest blocking
factor (mk=1). For this blocking factor, the performance of
the application also is sensitive to the angle-blocking factor.
However, when the k-blocking factor is properly chosen
(mk=10), the impact of the mmi parameter value is
negligible. The results also indicate that the optimal
operating point for this total problem size is perhaps one
or two thousand processors; increasing the number of
processors beyond this number leads to greatly diminished
returns in terms of reducing application execution time.
This projected optimal operating point is a key design
question that was unanswered prior to the POEMS analysis.

5.4 Communication Requirements Analysis

Another issue of interest is the application's performance on
a system with upgraded communication capability. A
related issue is the application's performance on high-
performance tightly-coupled multiprocessor systems versus
its performance on a network of loosely-coupled work-
stations. Both simulation and analytical models can be used
to study these issues by modifying their communication
components to reflect changes in the communication
latency of the system.

As depicted in Fig. 13, MPI-Sim was used in this way to
show the impact of latency on the performance of the
20 million-cell Sweep3D. In this experiment, the latency was
set to n times the latency of the IBM SP (denoted n�SP in
the figure), for a range of values of n. The MPI-Sim
projections shown in Fig. 13a indicate that if the commu-
nication latency is zero, not much improvement is gained.
In addition, these results show that for large numbers of
processors, 400 and over, the application may perform well
on a network of workstations, because even if the latency is
increased to 50 times that of the SP, performance does not
suffer significantly. However, as Fig. 12b demonstrates, the
performance of the 20 million-cell Sweep3D does not
improve when more than 5,000 processors are used. Since
the grid-size per processor diminishes, reducing the
computation time, and latency does not seem to be a factor,
one would expect performance gains to persist. The
detailed communication component in the LogGP model
provides an explanation. As can be seen in Fig. 13b, the

ADVE ET AL.: POEMS: END-TO-END PERFORMANCE DESIGN OF LARGE PARALLEL ADAPTIVE COMPUTATIONAL SYSTEMS 1041

Fig. 11. Projected Sweep3D speedup. (a) Speedup for up to 128 processors. (b) Speedup for up to 2,500 processors.

computation time decreases, but the communication time
remains flat and, more importantly, the synchronization
costs resulting from blocking sends and receives dominate
the total execution time as the number of processors grows
to 20,000. This implies that modifications to the algorithm
are necessary to effectively use large numbers of processors.
In addition, the use of nonblocking communication primi-
tives might be worth investigating. Again these are key
design results produced by the POEMS modeling and
analysis effort.

6 RESEARCH IN PROGRESSÐINTEGRATION OF

MODELING PARADIGMS

One goal of the POEMS methodology is to facilitate the
integration of different modeling paradigms. The use of
compositional objects and the task graph abstraction as a
workload representation together provide the framework
needed for this integration. Compositional objects facilitate
the use of different models for a particular system or
application component. The task graph explicitly separates
the representation of sequential computations (tasks) from
interprocess communication or synchronization. This se-
paration directly enables combinations of modeling para-
digms where different paradigms are used to model various
tasks as well as the parallel communication behavior. Other
combinations (e.g., combining analysis and simulation to
model the execution of a particular sequential task) can be

performed with some additional effort, using task compo-
nent models that are themselves composed of submodels.
This section presents an overview of some of the
multiparadigm modeling approaches that are being de-
signed and evaluated for inclusion in the POEMS
environment.

6.1 Integrating Task Graph and Simulation Models

When simulating communication performance with a
simulator such as MPI-Sim, the computational code of the
application is executed or simulated in detail to determine
its impact on performance. State-of-the-art simulators such
as MPI-Sim use both parallel simulation and direct-
execution simulation to reduce overall simulation time
greatly, but these simulators still consume at least as much
aggregate memory as the original application. This high
memory usage is a major bottleneck limiting the size of
problems that can be simulated today, especially if the
target system has many more processors than the host
system used to run the simulations.

In principle, only two aspects of the computations are
needed to predict communication behavior and overall
performance: 1) the elapsed time for each computational
interval and 2) those intermediate computational results that
affect the computation times and communication behavior.
We refer to the computations required for part 2) as
ªessentialº computations (signifying that their results affect
program performance) and the rest of the computations as
ªnonessential.º Essential computations are exactly those
that affect the control-flow (and, therefore, computation

1042 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 11, NOVEMBER 2000

Fig. 12. Projective capabilities and model projections for Sweep3D,

20 million cell problem. (a) Projective capability of analysis and

simulation (mk = 10, mmi = 3). (b) Effect of pipelineparameters.

Fig. 13. Effect of communications on Sweep3D, 20 million cell problem.
(a) Latency variation (MPI-Sim). (b) Communication costs (LogGP).

times) or the communication behavior of the program.
Assume for now that computation times for the nonessen-
tial computations can be estimated analytically using
compiler-driven performance prediction. Then, if the
essential computations can be isolated, the nonessential
computations can be ignored during the detailed simulation
and the data structures used exclusively by the nonessential
computations can be eliminated. If the memory savings are
substantial and the simplified simulation is accurate, this
technique can make it practical to simulate much larger
systems and data sets than is currently possible even with
parallel direct-execution simulation.

We have integrated the static task graph model with the
MPI-Sim simulator (plus additional compiler analysis) in
order to implement and evaluate the technique described
above [4]. Compiler analysis is essential because identifying
and eliminating the ªnonessentialº computations requires
information about the communication and control-flow in
the application. The static task graph model serves two
purposes. First, it provides an abstract representation for
the compiler analysis, in which the computation intervals
(tasks) are clearly separated from the communication
structure. Second it serves as the interface to MPI-Sim (in
the form of a simplified MPI program that captures the task
graph structure plus the ªessentialº computations).

Briefly, the integration works as follows. The static task
graph directly identifies the computational intervals: These
simply correspond to subgraphs containing no communica-
tion. First, the compiler identifies the values (i.e., the uses of
variables) that affect the control-flow within the computa-
tion intervals and the values that affect the communication
behavior (note that this does not yet include the values
being communicated). The compiler then uses a standard
technique known as program slicing [20] to identify the
subset of the computations that affect these variable values;
these are exactly the essential computations.

Second, the compiler computes a symbolic expression
representing the elapsed time for each nonessential com-
putation interval. These task time estimates are similar to (4)
of the LogGP model, but derived automatically from
program analysis. The Wij parameters can be measured
directly, or estimated by more detailed analysis, or
simulated using SimpleScalar as described in Sections 5.2
or 6.2. The current implementation simply measures these
values by generating an instrumented version of the
original source code for one or more relatively small
problem sizes.

Finally, the compiler transforms the original parallel
code into a simplified MPI program that has exactly the
same parallel structure as the original task graph, but where
the nonessential computations are replaced by function
calls to a special simulator function. MPI-Sim has been
augmented to provide this special simulator function,
which takes an argument specifying a time value and
simply advances the simulation clock for the current
process by that value. The symbolic estimate derived by
the compiler is passed as an argument to the function.

Preliminary results demonstrating the scalability of the
integrated simulator can be seen in Fig. 14. The per-
processor problem size is fixed (6�6�1000) in the figure so

that the total problem size scales linearly with the number
of processors. The original MPI-Sim could not be used to
simulate applications running on more than 400 processors
in this case (i.e., an aggregate 14.4 million problem size),
whereas the integrated task graph simulator model scaled
up to 6,400 processors (i.e., a 230 million problem size). The
primary reason for the improved scalability of the simula-
tion is that the integrated model requires a factor of
1760� less memory than the original simulator! The total
simulation time is also improved by about a factor of 2.
Finally, the integrated model has an average error under
10 percent for this problem, compared with an average
error of 3.6 percent for the original simulator. In fact, for
other cases we have looked at, the two approaches are
comparable in their accuracy [4].

The composition of models described above was devel-
oped manually because substantial research issues were
involved. In practice, the POEMS methodology for compo-
nent model composition and evaluation tool integration
described in Section 3 can be applied to perform this
composition. The dHPF compiler would first generate a
modified static task graph that creates separate tasks for
intervals of essential and nonessential computations. (The
code for each graph node in PSL is encapsulated in a
separate function, mainly for implementation convenience.)
The evaluation tool for the communication operations is of
course the MPI-Sim simulator. The evaluation tool for the
essential task nodes, including essential control-flow nodes,
would be direct execution within the POEMS runtime
system. Last and most important, several different evalua-
tion tools can be used for the nonessential task nodes:
compiler-synthesized symbolic expressions parameterized
with measurements as in our experiments above (in fact, the
POEMS environment would further simplify the
measurement process), purely analytical estimates derived
by the compiler, or the SimpleScalar processor simulator.
Furthermore, different evaluation tools could be used for
different nodes. For example, the SimpleScalar simulations
could be used for a few instances of each node in order to
model cache behavior on a hypothetical system and these
results used as parameter values in the symbolic expres-
sions for modeling other instances of the node.

The specification of this integrated model in PSL is
closely analogous to the example given in Section 3.3. The
component models for the task graph nodes are MPI-Sim

ADVE ET AL.: POEMS: END-TO-END PERFORMANCE DESIGN OF LARGE PARALLEL ADAPTIVE COMPUTATIONAL SYSTEMS 1043

Fig. 14. Aggregate problem and system sizes that can be simulated with

the integrated static task graph + MPI-Sim model; per-processor

problem size is fixed at 6�6�1000.

for communication nodes, direct execution for the essential
computation nodes, and one of the evaluation methods
described above for each of the nonessential computation
nodes. The accepts interfaces for the component models
implemented through MPI-Sim identify the position of the
given computation or communication node in the static task
graph and the function to be modeled or the signature of the
MPI component to be simulated. The requests interfaces
specify the evaluation tools and the successor nodes in the
task graph. The accepts interfaces of the nonessential
computation nodes specify the function being encapsulated,
the position in the static task graph of the given computa-
tion node, and an evaluation mode. The requests interfaces
of the computation nodes specify the evaluation tools, the
next communication node in the task graph, and the
signature of the desired successor communication function.
The PSL compiler would automatically generate a single
executable that invokes the appropriate model components
at runtime. An execution of this program essentially can be
envisioned as synthesizing the dynamic task graph from the
static task graph on the fly and traversing it, alternating
between execution of computation nodes and communica-
tion nodes, where each node is evaluated or executed by its
component model.

6.2 Integration of MPI-Sim and the LogGP Models

As discussed in Section 5, both analytical and simulation
techniques can predict the performance of large-scale
parallel applications as a function of various architectural
characteristics. Simulation can model system performance
at much greater levels of detail than analytical models
and can evaluate application performance for architectur-
al modifications that would change the analytical model
input parameters in unknown ways. As a simple
example, MPI-Sim results were used to gain confidence in
the very large-scale projections of Sweep3D performance
from the LogGP model. On the other hand, because of the
resource and time constraints of simulation, analytical
models can elucidate the principal system performance
parameters and can provide performance projections for
much larger configurations than is possible with simulation
models. Because of these complementary strengths, sig-
nificant benefits can be derived from combining the two
approaches.

One key advantage to further integrating MPI-Sim and
the LogGP models is that performance of large-scale
applications with modified implementations of the MPI
communication primitives can be evaluated. For example,
the MPI runtime software implementation on the SP/2 has
not yet been optimized for communication among the
processors in the same SMP node. For the experiments
reported in Section 5, the Sweep3D processes were mapped
to different nodes in the SP/2, in order to utilize the efficient
MPI communication between nodes. To obtain performance
estimates of Sweep3D for next generation systems, MPI-Sim
component models can be used to simulate the efficient
communication that is expected to be available in future
versions of the MPI runtime library. The measured com-
munication costs from these simulations can then be used in
the LogGP model, appropriately updated to reflect nonuni-
form intranode/internode communication costs [35], to

predict application scalability when Sweep3D uses intra-
node as well as internode communication in the SP/2.

The Sweep3D application that uses MPI communication
primitives is accurately modeled by the LogGP and MPI-
Sim models, which assume no significant queuing delays at
the network interfaces or in the interconnection network
switches. Other applications, including the shared-memory
version of Sweep3D, may require estimates of queuing
delays in the network, or the network interfaces, in order to
achieve accurate performance models. In many previous
studies, analytical models of contention in interconnection
networks have proven to be both very efficient to evaluate
and highly accurate. Thus, a detailed analytical component
model for the interconnection network might be composed
with 1) a more abstract model of the application running
time (as in the LoPC model [18]) and/or 2) an MPI-Sim
component model of the MPI runtime system communica-
tion primitives.

6.3 Integration of SimpleScalar with MPI-Sim and
LogGP

Although both MPI-Sim and LogGP have flexible commu-
nication components, the processor model in both systems
is simple and relies on measurement of the local code blocks
on an existing processor and memory system. To allow the
POEMS modeling capabilities to be expanded to include
assessment of the impact of next generation processors and
memory systems, detailed component models based on
SimpleScalar are under development. These models interact
with the MPI-Sim and LogGP component models to project
the impact of processor and memory system architecture
changes on the execution time of large-scale Sweep3D
simulations (on thousands of processor nodes).

The modeling of specific processors by SimpleScalar still
needs to be validated. For example, the POEMS SimpleSca-
lar model of the Power604e is not exact because of certain
aspects of the 604e; e.g., the modeled ISA is not identical to
that of the 604e. A key question is whether the approximate
model of the ISA is sufficiently accurate for applications
such as Sweep3D. Several validation methods are under
consideration:

1. execute narrow-spectrum benchmarks on a 604e and
on SimpleScalar configured as a 604e to validate the
memory hierarchy design parameters,

2. use on-chip performance counters to validate the
microarchitecture modeling, and

3. compare measured Sweep3D task times on the SP/2
with task execution times attained by running
multiple SimpleScalar instances configured as
604es under MPI.

One example of combined simulation and analysis, is to
use the LogGP model to obtain application scalability
projections for next-generation processor and cache archi-
tectures, by using estimates of task execution times for those
architectures that are derived from SimpleScalar simula-
tions. For example, in the Sweep3D application, a
SimpleScalar component model can produce the Wi;j values
for a fixed per-processor grid size on a 2�2 processor grid
and then the LogGP component model can be run using the
estimates for various per-processor grid sizes to project the

1044 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 11, NOVEMBER 2000

performance scalability of the application. This is one of the
near-future goals of the POEMS multiparadigm modeling
efforts. As another example, instead of simulating or
directly executing the MPI communication primitives, a
LogGP component model of the MPI communication costs
might be composed with a SimpleScalar component model
of the node architecture.

7 RELATED WORK

The conceptual framework for POEMS is a synthesis from
models of naming and communication [11], [12], Computer-
Aided Design (CAD), software frameworks, parallel com-
putation [24], object-oriented analysis [33], data mediation
[37], and intelligent agents. In this section, however, we
focus on research projects that share our primary goal of
end-to-end performance evaluation for parallel systems. A
more extensive, but still far from comprehensive, survey of
related work and a list of references can be found on the
POEMS project Web page at http://www.cs.utexas.edu/
users/poems.

The most closely related projects to POEMS are probably
the Maisie/Parsec parallel discrete-event simulation frame-
work and its use in parallel program simulation [7], [9], [27],
[28], SimOS [32], RSIM [25,26], PACE [21], and the earlier
work in program simulators, direct-execution simulators,
and parallel discrete-event simulation. In addition, an early
system that shared many of the goals of the POEMS
modeling environment, but did not incorporate recent
results from object-oriented analysis, data mediation, and
intelligent agents, nor the range of modern analytic and
simulation modeling tools being incorporated in POEMS,
was the SARA system [17]. SimOS simulates the computer
hardware of both uniprocessor and multiprocessor compu-
ter systems in enough detail to run an entire operating
system, thus, providing a simulation environment that can
investigate realistic workloads. Different modes of opera-
tion provide a trade-off between the speed and detail of a
simulation. Thus, SimOS supports multidomain and multi-
resolution modeling, but unlike POEMS, it primarily uses a
single evaluation paradigm, namely, simulation. RSIM
supports detailed instruction-level and direct-execution
simulation of parallel program performance for shared
memory multiprocessors with ILP processors. PACE
(Performance Analysis and Characterisation Environment)
is designed to predict and analyze the performance of
parallel systems defined by a user, while hiding the
underlying performance characterization models and their
evaluation processes from the user.

None of the above projects supports the general
integration of multiple paradigms for model evaluation, a
key goal of POEMS. The conceptual extensions used to
achieve this in POEMS are a formal specification language
for composition of component models into a full system
model, a unified application representation that supports
multiple modeling paradigms, and automatic synthesis of
this workload representation using a parallelizing compiler.
The alternative modeling paradigms support validation and
allow different levels of analyses of existing and future
application programs within a common framework.

Finally, there are many effective commercial products for
simulation modeling of computer and communication
systems. The March 1994 IEEE Communications Magazine
presents a survey of such products.

8 CONCLUSIONS

The POEMS project is creating a problem-solving environ-
ment for end-to-end performance models of complex
parallel and distributed systems and applying this environ-
ment for performance prediction of application software
executed on current and future generations of such systems.
This paper has described the key components of the POEMS
framework: a generalized task graph model for describing
parallel computations, automatic generation of the task
graph by a parallelizing compiler, a specification language
for mapping the computation on component models from
the operating system and hardware domain, compositional
modeling of multiparadigm, multiscale, multidomain mod-
els, integration of a Performance Recommender for select-
ing the computational parameters for a given target
performance, and a wide set of modeling tools ranging
from analytical models to parallel discrete-event simulation
tools.

The paper illustrates the POEMS modeling methodology
and approach by using a number of the POEMS tools for
performance prediction of the Sweep3D application kernel
selected by Los Alamos National Laboratory for evaluation
of ASCI architectures. The paper validates the performance
predicted by the analytical and simulation models against
the measured application performance. The Sweep3D
kernel used for this study is an example of a regular
CPU-bound application. Reusable versions of the analy-
tical and simulation models, parameterized for three-
dimensional wavefront applications, will form the initial
component model library for POEMS. Future development
of POEMS methods and tools will be largely driven by
MOL [30], which is a modular program that implements the
Method of Lines for solving partial differential equations. It
is designed to be a "simple" program (less than 1,000 lines of
code) which has all the features of a "sophisticated"
dynamic code. Features that can be varied easily include
1) work load needed to maintain quality of service,
2) number of processors needed, 3) communication pat-
terns, 4) communication bandwidth needed, and 5) internal
data structures, etc.

In addition to continuing efforts on the preceding topics,
several interesting research directions are being pursued in
the project. First, the POEMS modeling framework and
tools will be extended to directly support the evaluation of
parallel programs expressed using the task graph notation.
Second, in the study reported in this paper, there was
considerable synergy among the development of the
analytical and simulation models, enabling validations to
occur more rapidly than if each model had been developed
in isolation. As the next step, the project is enhancing the
multiparadigm modeling capability in POEMS, in which
the analytical models will be used by the execution-driven
simulator, e.g., to estimate communication delays and/or
task execution times, and simulation models will be
invoked automatically to derive analytical model input

ADVE ET AL.: POEMS: END-TO-END PERFORMANCE DESIGN OF LARGE PARALLEL ADAPTIVE COMPUTATIONAL SYSTEMS 1045

parameters. Several initial examples of such integrated

modeling approaches were described in Section 7. Innova-

tions in parallel discrete-event simulation technology to

reduce the execution time for the integrated models will

continue to be investigated, with and without compiler

support. The integration of compiler support with analy-

tical and parallel simulation models will enable (to our

knowledge) the first fully-automatic, end-to-end perfor-

mance prediction capability for large-scale parallel applica-

tions and systems.

ACKNOWLEDGMENTS

A number of people from the member institutions

represented by the POEMS team contributed to the work.

In particular, the authors acknowledge Adolfy Hoisie, Olaf

Lubeck, Yong Luo, and Harvey Wasserman of Los Alamos

National Laboratory for suggesting the Sweep3D applica-

tion, providing significant assistance in understanding the

application and the performance issues that are of im-

portance to the application developers, and providing key

feedback on our research results. The authors also would

like to thank Thomas Phan and Steven Docy for their help

with the use of MPI-Sim to predict the Sweep3D perfor-

mance on the SP/2, the Office of Academic Computing at

UCLA, and Paul Hoffman for his help with the IBM SP/2

on which many of these experiments were executed. Thanks

also to Lawrence Livermore Laboratory for providing

extensive computer time on the IBM SP/2.
This work was supported by DARPA/ITO under

Contract N66001-97-C-8533, ªEnd-to-End Performance

Modeling of Large Heterogeneous Adaptive Parallel/Dis-

tributed Computer/Communication Systems,º 10/01/97±

09/30/00 and by an NSF grant titled ªDesign of Parallel

Algorithms, Language, and Simulation Tools,º Award

ASC9157610, 08/15/91±7/31/98. Thanks to Frederica

Darema for her support of this research.
A preliminary version of this paper appeared in the

Proceedings of the First International Workshop on Software

and Performance (WOSP '98), October 1998.

REFERENCES

[1] V.S. Adve, ªAnalyzing the Behavior and Performance of Parallel
Programs,º Technical Report 1,201, Univ. of Wisconsin-Madison,
UW CS, Oct. 1993.

[2] V.S. Adve and J. Mellor-Crummey, ªUsing Integer Sets for Data-
Parallel Program Analysis and Optimization,º Proc. SIGPLAN '98
Conf. Programming Language Design and Implementation, June 1998.

[3] V.S. Adve and R. Sakellariou, ªApplication Representations for
MultiParadigm Performance Modeling,º Int'l J. High Performance
Computing Applications, vol. 14, no. 4, 2000.

[4] V.S. Adve, R. Bagrodia, E. Deelman, T. Phan, and R. Sakellariou,
ªCompiler-Supported Simulation of Highly Scalable Parallel
Applications,º High Performance Computing and Networking
SC '99, Nov. 1999.

[5] A. Alexandrov, M. Ionescu, K.E. Schauser, and C. Scheiman,
ªLogGP: Incorporating Long Messages into the LogP Model,º
Proc. Seventh Ann. ACM Symp. Parallel Algorithms and Architectures
(SPAA '95), July 1995.

[6] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony,
W. Lu, and W. Zwaenepoel, ªTreadMarks: Shared Memory
Computing on Networks of Workstations,º Computer, vol. 29,
no. 2, pp. 18±28, Feb. 1996.

[7] R. Bagrodia and W. Liao, ªMaisie: A Language for Design of
Efficient Discrete-event Simulations,º IEEE Trans. Software Eng.,
vol. 20, no. 4, Apr. 1994.

[8] R. Bagrodia, S. Docy, and A. Kahn, ªParallel Simulation of Parallel
File Systems and I/O Programs,º Proc. Supercomputing '97, 1997.

[9] R. Bagrodia, R. Meyer, M. Takai, Y. Chen, X. Zeng, J. Martin, B.
Park, and H. Song, ªParsec: A Parallel Simulation Environment for
Complex Systems,º Computer, vol. 31, no. 10, pp. 77±85, Oct. 1998.

[10] R. Bagrodia, E. Deelman, S. Docy, and T. Phan, ªPerformance
Prediction of Large Parallel Applications Using Parallel Simula-
tions,º Proc. Seventh ACM SIGPLAN Symp. Principles and Practices
of Parallel Programming (PPoPP `99), May 1999.

[11] B. Bayerdorffer, ªAssociative Broadcast and the Communication
Semantics of Naming in Concurrent Systems,º doctoral disserta-
tion, Dept. of Computer Sciences, Univ. of Texas at Austin, Dec.
1993.

[12] B. Bayerdorffer, ªDistributed Programming with Associative
Broadcast,º Proc. 28th Int'l Conf. System Sciences, pp. 525±534,
Jan. 1995.

[13] G. Booch, J. Rumbaugh, and I. Jacobson, Unified Modeling Language
User Guide. Englewood Cliffs, N.J.: Addison-Wesley, 1997.

[14] D. Burger and T.M. Austin, ªThe SimpleScalar Tool Set, Version
2.0,º Technical Report 1,342, Univ. of Wisconsin-Madison, UW CS,
June 1997.

[15] D. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E.
Santos, R. Subramonian, and T. VonEiken, ªLogP: Towards a
Realistic Model of Parallel Computation,º Proc. Fourth ACM
SIGPLAN Symp. Principles and Practices of Parallel Programming
(PPoPP '93), pp. 1±12, May 1993.

[16] A. Dube, ªA Language for Compositional Development of
Performance Models and its Translation,º masters thesis, Dept.
of Computer Science, Univ. of Texas at Austin, Aug. 1998.

[17] G. Estrin, R. Fenchel, R. Razouk, and M.K. Vernon, ªSARA:
Modeling, Analysis, and Simulation Support for Design of
Concurrent Systems,º IEEE Trans. Software Eng., vol. 12, no. 2,
pp. 293±311, Feb. 1986.

[18] M.I. Frank, A. Agarwal, and M.K. Vernon, ªLoPC: Modeling
Contention in Parallel Algorithms,º Proc. Sixth ACM SIGPLAN
Symp. Principles and Practices of Parallel Programming (PPoPP '97),
pp. 62±73, June 1997.

[19] A. Hoisie, O.M. Lubeck, and H.J. Wasserman, ªPerformance and
Scalability Analysis of Teraflop-Scale Parallel Architectures Using
Multidimensional Wavefront Applications,º Proc. Frontiers `99,
1999.

[20] S. Horwitz, T. Reps, and D. Binkley, ªInterprocedural Slicing
Using Dependence Graphs,º ACM Trans. Programming Languages
and Systems, vol. 12, no. 1, pp. 26±60, Jan. 1990.

[21] D.J. Kerbyson, J.S. Harper, A. Craig, and G.R. Nudd, ªPACE: A
Toolset to Investigate and Predict Performance in Parallel
Systems,º European Parallel Tools Meeting (ONERA), Oct. 1996.

[22] K.R. Koch, R.S. Baker, and R.E. Alcouffe, ªSolution of the First-
Order Form of the 3-D Discrete Ordinates Equation on a
Massively Parallel Processor,º Trans. Amer. Nuclear Soc., vol. 65,
no. 198, 1992.

[23] L. Lamport, ªTime, Clocks and the Ordering of Events in a
Distributed System,º Comm. ACM, vol. 21, no. 7, pp. 558±565, July
1978.

[24] P. Newton and J.C. Browne, ªThe CODE 2.0 Graphical Parallel
Programming Language,º Proc. ACM Int'l Conf. Supercomputing,
pp. 167±177, July 1992.

[25] V.S. Pai, P. Ranganathan, and S.V. Adve, ªRSIM Reference
Manual Version 1.0,º Technical Report 9,705, Dept. of Electrical
and Computer Eng., Rice Univ., Aug. 1997.

[26] V.S. Pai, P. Ranganathan, and S.V. Adve, ªThe Impact of
Instruction Level Parallelism on Multiprocessor Performance
and Simulation Methodology,º Proc. Third Int'l Conf. High
Performance Computer Architecture, pp. 72±83, Mar. 1997.

[27] S. Prakash and R. Bagrodia, ªParallel Simulation of Data Parallel
Programs,º Proc. Eighth Workshop Languages and Compilers for
Parallel Computing, Aug. 1995.

[28] S. Prakash and R. Bagrodia, ªUsing Parallel Simulation to
Evaluate MPI Programs,º Proc. Winter Simulation Conf., Dec. 1998.

[29] N. Ramakrishnan, ªRecommender Systems for Problem Solving
Environments,º doctoral dissertation, Dept. of Computer Sciences,
Purdue Univ., 1997.

[30] J. Rice, Numerical Methods, Software and Analysis, second ed.,
pp. 524±527. New York: Academic Press, 1993.

1046 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 11, NOVEMBER 2000

[31] J. Rumbaugh, et al., Object-Oriented Modeling and Design. Engle-
wood Cliffs, N.J.: Prentice-Hall, 1991.

[32] M. Rosenblum, S.A. Herrod, E. Witchel, and A. Gupta, ªComplete
Computer System Simulation: The SimOS Approach,º IEEE
Parallel and Distributed Technology, pp. 34±43, Winter 1995.

[33] S. Shlaer and S. Mellor, Object Lifecycles: Modeling the World in
States. New York: Yourdon Press, 1992.

[34] X.H. Sun, D. He, K.W. Cameron, and Y. Luo, ªA Factorial
Performance Evaluation for Hierarchical Memory Systems,º Proc.
Int'l Parallel Processing Symp. (IPPS '99), Apr. 1999.

[35] D. Sundaram-Stukel and M.K. Vernon, ªPredictive Analysis of a
Wavefront Application Using LogGP,º Proc. Seventh ACM
SIGPLAN Symp. Principles and Practices of Parallel Programming
(PPoPP '99), May 1999.

[36] M.K. Vernon, E.D. Lazowska, and J. Zahorjan, ªAn Accurate and
Efficient Performance Analysis Technique for Multiprocessor
Snooping Cache-Consistency Protocols,º Proc. 15th Ann. Int'l
Symp. Computer Architecture, pp. 308±315, May 1988.

[37] G. Wiederhold, ªMediation in Information Systems; in Research
Directions in Software Engineering,º ACM Computing Surveys,
vol. 27, no. 2, pp. 265±267, June 1995.

Vikram S. Adve received the B. Tech. degree in
electrical engineering from the Indian Institute of
Technology, Bombay, in 1987 and the MS and
PhD degrees in computer science from the
University of Wisconsin-Madison in 1989 and
1993, respectively. He is an assistant professor
of computer science at the University of Illinois
at Urbana-Champaign, where he has been since
August 1999. His primary area of research is in
compilers for parallel and distributed systems,

but his research interests include compilers, computer architecture,
performance modeling and evaluation, and the interactions between
these disciplines. Dr. Adve was a research scientist at the Center for
Research on Parallel Computation (CRPC) at Rice University from 1993
to 1999. Dr. Adve was one of the leaders of the dHPF compiler project at
Rice University, which developed new and powerful parallel program
optimization techniques that are crucial for data-parallel languages to
match the performance of handwritten parallel programs. He also
developed compiler techniques that enable the simulation of message-
passing programs or systems that are orders of magnitude larger than
the largest that could be simulated previously. Dr. Adve's research is
being supported by DARPA, DOE, and NSF. He is a member of the
IEEE.

Rajive Bagrodia obtained a Bachelor of Tech-
nology degree in electrical engineering from the
Indian Institute of Technology, Bombay, in 1981.
He obtained his MA and PhD degrees in
computer science from the University of Texas
at Austin, in 1983 and 1987, respectively. He is a
professor of computer science in the School of
Engineering and Applied Science at UCLA.
Professor Bagrodia's research interests include
nomadic computing, parallel simulation, and

parallel languages and compilers. He has published more than 100
research papers on the preceding topics. The research has been funded
by a variety of government and industrial sponsors including the
National Science Foundation, Office of Naval Research, DARPA, Rome
Laboratory, and Rockwell International. He is an associate editor of the
ACM Transactions on Modeling and Computer Systems (TOMACS). He
was selected as a 1991 Presidential Young Investigator by the National
Science Foundation and also received the TRW Outstanding Teacher
award. He is a senior member of the IEEE.

James C. Browne earned his PhD degree in
chemical physics at the University of Texas in
1960. Dr. Browne is professor of computer
science and physics and holds the Regents
Chair number two in computer sciences at the
University of Texas at Austin. He taught in the
physics department at the University of Texas
from 1960 through 1964. He was, from 1965
through 1968, professor of computer science at
Queens University in Belfast and directed the

computer laboratory. Browne rejoined the University of Texas in 1968 as
professor of physics and computer science. He served as department
chair for computer science in 1968-69, 1971-75, and 1984-87. He is a
member of the IEEE and SIAM. He is a Fellow of the Association for
Computing Machinery, of the British Computer Society, of the American
Physical Society and of the American Association for the Advancement
of Science.

Ewa Deelman obtained her PhD degree from
Rensselaer Polytechnic Institute in 1997. Her
thesis work concentrated on parallel discrete
event simulation of spatially explicit problems
involving new load balancing techniques. Also, in
order to achieve good performance, new syn-
chronization techniques and rollback mechan-
isms were formulated. She is a senior
development engineer in the Computer Science
Department at University of California at Los

Angeles. Dr. Deelman is performing research in the area of performance
prediction of message-passing applications on high-performance ma-
chines. Dr. Deelman's research interests also include parallel simulation
and parallel programming, languages, compilers and tools, as well as
application performance prediction. She is a member of the IEEE.

Aditya Dube received his bachelor's degree in
electrical engineering from the Illinois Institute of
Technology (BSEE, 1996) and his master's
degree in electrical engineering from the Uni-
versity of Texas at Austin (MSEE, 1998). He
currently works in the networking division at
Microsoft. From 1997 to 1998, he worked in the
parallel programming research group at the
University of Texas. His research interests
included HW/SW Co-design and Parallel Pro-

gramming. Since 1998, he has been working at Microsoft where his
current interests are broadband devices and home networking.

Elias N. Houstis received his BS degree in
mathematics from University of Athens-Greece
and PhD degree in mathematics from Purdue
University. He is a professor of computer
science and director of the computational
science engineering program at Purdue Univer-
sity. He is on the editorial board of Neural,
Parallel and Scientific Computational, Computa-
tional Engineering Science, and HPC Users
web-based journals and a member of the IFIP
WG 2.5 Working Group in Numerical Software.

His current research interests are in the areas of problem solving
environments (PSEs), parallel and global computing, performance
evaluation and modeling, knowledge discovery and data mining,
computational finance, numerical analysis, and telelearning.

ADVE ET AL.: POEMS: END-TO-END PERFORMANCE DESIGN OF LARGE PARALLEL ADAPTIVE COMPUTATIONAL SYSTEMS 1047

John R. Rice received his PhD degree from Cal
Tech and his BS degree and MS degree from
Oklahoma State University, all in math. He is the
W. Brooks Fortune Distinguished Professor of
Computer Sciences at Purdue University. He
has authored more than 20 books on approx-
imation theory, computer science, and scientific
computing. He founded the ACM Transactions
on Mathematical Software and was its editor-in-
chief for 18 years. He is a member of the

National Academy of Engineering, a Fellow of ACM and the AAAS, and
a member of the IEEE, IMACS, and SIAM. In 1998 he was named as a
Great Teacher of Purdue University.

Rizos Sakellariou was awarded a PhD degree
from the University of Manchester in 1997 for a
thesis on symbolic analysis techniques with
applications to parallel loop partitioning and
scheduling. He has been a lecturer in computer
science at the University of Manchester since
January 2000. Prior to his current appointment,
Dr. Sakellariou was a postdoctoral research
associate with the University of Manchester
(1996-1998) and Rice University (1998-1999).

He has also held visiting positions with the University of Cyprus and the
University of Illinois at Urbana-Champaign. His research interests fall
within the wide area of parallel and distributed computing and optimizing
compilers. He is a member of the IEEE.

David J. Sundaram-Stukel received the BS
degree in astronomy and mathematics and the
MS degree in computer science from the
University of Wisconsin, Madison in 1992 and
1998, respectively. He is currently an associate
researcher at University of Wisconsin, Madison,
Wisconsin. His research interests include the
analysis of communications within parallel com-
puter systems and the design and analysis of
systems to stream data over the Internet.

Patricia J. Teller received the BA degree,
magna cum laude, the MS, and the PhD degrees
in computer science in 1979, 1981, and 1991,
respectively, from New York University. She is
an assistant professor in the Department of
Computer Science at The University of Texas at
El Paso (UTEP), where she has been since
January 1997. Before joining the UTEP faculty,
Dr. Teller was an assistant professor at New
Mexico State University's Computer Science

Department (1992-1997), a visiting faculty member at Intel Corporation
(Summer 1996), and a visiting researcher at IBM T.J. Watson Research
Center (1989-1991). Her research interests include performance
analysis, workload characterization, parallel/distributed computer archi-
tectures and systems, and runtime software-fault detection. This
research has been funded by DARPA, Los Alamos National Laboratory,
NASA, NSF, Sandia National Laboratories, and the US Army Research
Office. In addition, with her colleagues, Drs. Andrew Bernat, Ann Gates,
and Sergio Cabrera, Dr. Teller is developing the Affinity Research Group
model for enabling and encouraging student success and advancement
in computing; this effort is funded by the NSF CISE MII program. Teller
has published five journal and more than 25 conference articles. She
has served as a program committee member numerous times and has
been tutorial, poster, student volunteer, and poster chairs for four major
conferences. In addition, she has served as an NSF and DOE reviewer,
an NSF review panel member, and a reviewer for many different journals
and conferences. Dr. Teller is a member of IEEE and ACM, Phi Beta
Kappa, and an honorary member of the Golden Key National Honor
Society.

Mary K. Vernon received the BS degree with
departmental honors in chemistry in 1975, and
the PhD degree in computer science in 1983,
from the University of California at Los Angeles.
In August 1983 she joined the Computer Science
Department at the University of Wisconsin-
Madison, where she is currently a professor of
computer science and industrial engineering.
Her research interests include performance
analysis techniques for evaluating computer
system design tradeoffs, parallel/distributed ar-

chitectures and systems, and scalable streaming media servers.
Professor Vernon received an NSF Presidential Young Investigator
Award in 1985, an NSF Faculty Award for Women in Science and
Engineering in 1991, the ACM Fellow award in 1996, and a University of
Wisconsin Vilas Associate Award in 2000. She is currently Chair of the
ACM SIGMETRICS and a co-PI/Executive Committee member of the
National Computational Science Alliance (NCSA). In the past, she has
served as associate editor of the IEEE Transactions on Software
Engineering and the IEEE Transactions on Parallel and Distributed
Systems, on the board of directors of the Computing Research
Association, and on several NSF advisory committees including the
CISE Directorate Advisory Committee and the 1993 NSF Blue Ribbon
Panel on High Performance Computing. She is a member of the IEEE
Computer Society, the ACM, and IFIP WG 7.3 on Information
Processing System Modeling, Measurement, and Evaluation.

1048 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 11, NOVEMBER 2000

