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Abstract

The growing field of ‘Developmental Origin of Health and Disease’ (DOHaD) generally reflects environmental influences
from mother to child. The importance of maternal lifestyle, diet and other environmental exposures before and during
gestation period is well recognized. However, few epidemiological designs explore potential influences from the paternal
environment on offspring health. This is surprising given that numerous animal models have provided evidence that the
paternal environment plays a role in a non-genetic inheritance of pre-conceptional exposures through the male germ line.
Recent findings in humans suggest that the epigenome of sperm cells can indeed be affected by paternal exposures. Defects
in epigenetic sperm mechanisms may result in persistent modifications, affecting male fertility or offspring health status.
We addressed this issue at the LATSIS Symposium ‘Transgenerational Epigenetic Inheritance: Impact for Biology and
Society’, in Zürich, 28–30 August 2017, and here provide important arguments why environmental and lifestyle-related
exposures in young men should be studied. The Paternal Origins of Health and Disease (POHaD) paradigm was introduced to
stress the need for more research on the role of the father in the transmission of acquired environmental messages from
his environment to his offspring. A better understanding of pre-conceptional origins of disease through the paternal expo-
some will be informative to the field of transgenerational epigenetics and will ultimately help instruct and guide public
health policies in the future.
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Introduction

Parents contribute in many ways to development and health of
their children. A mother’s lifestyle is well recognized to have a
positive or negative impact on her offspring’s health. However,
the paternal contribution of early exposures is often overlooked
in human studies. In recent years, a substantial number of ani-
mal studies have reported that fat-induced obesity, as well as
several pre-conceptional environmental exposures (e.g. to cer-
tain food items, bisphenol A, heavy metals, stress, etc.), affect
developing male germ cells. Acquired epimutations at this pre-
conceptional stage of development may influence offspring’s

future health [1]. Although not completely understood, compar-
ative epigenetic mechanisms have been suggested in humans;
discussed by others and us [2–7]. However, to date, empirical
evidence on paternally transmitted effects in humans is still
limited [8].

We here discuss two lifestyle exposures with a major public
health burden: obesity and exposures to environmental pollu-
tants, such as endocrine disruptors (EDCs) and other toxins
from lifestyle habits, including smoking, alcohol intake and in-
door pollution. Although excessive body fat is primarily due to a
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combination of unhealthy dietary patterns and a sedentary life-
style, exposure to a mix of as yet less well understood environ-
mental factors, including endocrine-disrupting chemicals [9],
may also affect metabolic homeostasis in the human body.
These factors together contribute to what is currently termed
the ‘obesogenic’ environment [10], which is omnipresent in a
typical Western-lifestyle environment and part of the paternal
exposome [8]. On the basis of animal data and a limited number
of studies in humans, we recently introduced Paternal Origins
of Health and Disease (or POHaD) as an extension of the DOHaD
paradigm. We here explain why there is a need to study pater-
nal influences on offspring and to inform young men who are
planning to have a child. We provide a possible biological expla-
nation and future research avenues. This will ultimately be ben-
eficial to human health, especially in the context of the growing
obesity burden and increasing environmental exposures to
EDCs in the general population worldwide.

Why Focus on Obese Fathers-to-Be?
Obesity in Men

Adult overweight and obesity are major public health issues.
Worldwide, reported prevalence has been increasing steadily in
many populations [11] (http://www.who.int/mediacentre/fact
sheets/fs311/en/). While associations between obesity in
women and offspring health are currently being extensively
documented, paternal obesity is seldom included in epidemio-
logical designs to investigate influences from parental lifestyles.
Given the high frequency of obesity in adult men, this line of re-
search should not be ignored. For instance, most recent national
data of the US population show that overweight or obesity
(BMI� 25) is 10% higher in men than in women (72.1% in men
versus 61.2% in women) [11]. It is known that high BMI in men
has deleterious effects on fertility parameters [12–14]. However,
long-term effects, such as in subsequent generations, are
unclear. We earlier showed a link between paternal obesity and
offspring DNA methylation differences in humans [15, 16].
Furthermore, DNA methylation alterations in sperm have been
associated with male obesity [17]. Yet, most evidence for an epi-
genetic link in the transmission of environmental conditions
through the paternal germ line originates from animal data.

Obesity and Nutrition in Animal Models

A large number of experiments in animals showed that epige-
netic marks can persist in a next generation, pre-disposing off-
spring with a different epigenetic pattern and altered phenotype
which may often persist for many generations. In 2010, Ng et al.
reported that high-fat diet consumption in male rats pro-
grammed b-cell dysfunction in F1 female offspring; combined
with an early onset of impaired insulin secretion and glucose
tolerance worsening over time [18]. DNA methylation changes
were measured at a key pancreatic islet gene, Il13ra2. Ng et al.
added that the transcriptome of retroperitoneal white adipose
tissue of offspring rat was also concomitantly affected [19].
However, no analyses were performed on sperm. Alhashem
et al. demonstrated in a rat experiment that obesity, induced by
a high-fat diet, has deleterious effects on semen. It diminishes
total sperm count and the number of motile spermatozoa, while
increasing morphological abnormalities. Parameters reflecting
the oxidative status were also negatively impacted [20]. Other
rodent studies showed that paternal obesity or malnutrition not
only decreased sperm quality, it also affected early stages of

development, with a decrease in embryo numbers and quality
[21]. Aberrant offspring outcomes included an increased risk for
impaired insulin sensitivity and adiposity [22]. Underlying mo-
lecular mechanisms in the male germ line are most likely the
reason for these observations. Obesity or high-fat diet in rodents
has been linked with changes in the sperm epigenome at multi-
ple levels (microRNA and/or DNA methylation) [22–24]. De
Castro Barbosa et al. showed that a diet-induced epigenetic re-
sponse was paralleled by transgenerational inheritance of meta-
bolic dysfunction throughout two generations [23]. Interestingly,
also paternal vitamin levels may influence sperm and offspring
health. If male rats were administered a folate deficient diet be-
fore mating, a decrease in global DNA methylation in the liver of
the offspring was detected [25].

Physical Exercise Interventions in Animal Models

Further indications for the importance of a role of the sperm epi-
genome as an intermediate player between paternal health and
offspring phenotypes originate from exercise intervention stud-
ies. McPherson et al. showed that an exercise-only intervention in
obese male mice reduced the susceptibility to metabolic syn-
drome in offspring. The abundance of X-linked sperm microRNA
was normalized after exercising [22]. Similarly, Palmer et al.
showed that moderate exercising in obese mice reduced Reactive
Oxygen Species (ROS) and DNA damage, and improved sperm
motility and morphology [26]. Sperm quality and oxidative stress
parameters were restored in rodents that were engaged in daily
swimming, while simultaneously being fed a high-fat diet [20].

Some studies tried to quantify the effect of forced swimming
on rodent sperm quality [27–29]. In brief, they found that forced
exercising decreased normal morphology in spermatozoa [29],
negatively affected spermatid production [27] and impaired fer-
tilization capacity [28]. The forced exercising in these rodents is
comparable to a high-intensity workout in humans.

Translating Animal Data on Physical Exercising
to Humans

The animal models described above offer epidemiologists tools to
help understand cellular processes in humans. At the same time,
these animal data are useful to prevent that certain ‘Western’ life-
style conditions—and resulting epigenetic marks in sperm—
would be handed down to offspring. A remarkable observation
from animal experiments is the improvement measured in sperm
and offspring health after physical interventions. Furthermore,
animal data show that extreme exercising or related stress pro-
hibit the potential for amelioration. Hence, it is worth to explore if
and how exercise intervention programs in humans influence
sperm and offspring characteristics, including the epigenome.

In humans, along with dietary patterns, physical activity
plays a major role in weight control [30]. Globally, 23% of adults
are not active enough [11]. The Youth Fitness Survey as being
part of NHANES in 2012 confirmed that obesity and physically in-
activity are closely interconnected. Moreover, this relation al-
ready starts in adolescence. Only 29.5% of normal-weight and
overweight boys (aged 12–15 years old) met the daily recom-
mended activity guidelines, meaning a moderate-to-vigorous ac-
tivity for at least 60 min per day. Only 18% of the obese boys met
this criterium [31]. Besides the negative health effects of obesity
or a sedentary lifestyle, it is also well known that physical activity
has positive effects on sperm quality in young men. However, the
human body—and microenvironment of semen—responds dif-
ferentially according to the sport’s intensity (moderate versus
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high) [32], chronicity (continuous versus intermittent) [33], type of
sport (e.g. running versus cycling) [34, 35] or oxygen supply [36–38]
(e.g. mountaineering). Interestingly, the positive effects of exer-
cise interventions are often more pronounced in obese men,
compared with those in normal-weight men [39].

To the best of our knowledge, only one intervention study ex-
plored epigenetic effects of exercising in humans. Denham et al.
reported epigenetic changes in human sperm cells after a 3-
month period of a physical interventional programme [40]. They
found that changes in DNA methylation at CpG sites in genes as-
sociated with a wide range of diseases, such as schizophrenia,
Parkinson’s disease, cervical cancer and leukaemia [40].

Translating Animal Data on Nutrition or
Obesity to Humans

Unfortunately, while animal models show that diet and sperm qual-
ity are related, there is limited evidence in humans that paternal di-
etary factors influence male fertility or offspring health. Evidence in
humans is even harder to find if searching for mechanistic pro-
cesses, such as epimutations. Consumption of high-energy diets
(HEDs) has been related to impaired sperm concentration, motility
and morphology [41]. More specifically, a higher intake of saturated
fat has been associated with lower sperm concentration and total
sperm count [42], and a negative correlation was detected between
dietary trans fatty acid intake and sperm concentration [43]. Rafiee
et al. showed that vitamin C administration improves sperm con-
centration and motility [39]. A recent systematic review confirmed
that nutritional supplements (including vitamin C, E, CoQ10 and
alpha-tocopherol) can indeed improve semen parameters [44].
Restoration of cellular oxidative stress is accepted as the underlying
biological mechanism (briefly explained below), but potential down-
stream epigenetic changes in the germ line that may be inherited to
other generations have not been explored yet. To the best of our
knowledge, one research group explored the epigenetic effects of a
vitamin intervention in humans. Tunc et al. showed that if infertile
men received a 3-month supplementation of folate and anti-oxi-
dants sperm quality was improved and global sperm DNA methyla-
tion was increased [45]. Further research is needed to qualify and
quantify the effect of obesity, nutrition or physical activity on sperm
epigenetics and potential phenotypic effects in future offspring. If
harmful consequences could be normalized through specific dietary
supplements in young fathers-to-be, this would make research in
this field even more important.

Although animal models may help to contribute unravelling
the mechanisms of trans- or intergenerational epigenetic inher-
itance of lifestyle-related exposures, the multitude of exposures
and the differences in genetic background—causing different
responses to environmental traits—make it impossible to inves-
tigate these processes in a single animal model. Furthermore,
extrapolation of results from an animal model to humans
remains an artificial attempt to mimic the complex human
responses and needs to be considered with caution [46].
Studying humans is challenging, because of ethical reasons, but
there is the advantage that unexpected and new findings can be
generated from observational studies. Of note, studies on do-
mestic animals may also be beneficial in exploring epigenetic
effects from ‘their’ (human-induced) obesogenic environment.

Oxidative Stress as a Mediator between Lifestyle and
Epimutations in Sperm

One possible mechanistic view that could explain how obesity
or related factors could influence the sperm epigenome involves

unbalanced ROS. As mentioned above, the testicular microenvi-
ronment, such as the abundance of oxidative stress or ROS, can
theoretically alter sperm characteristics. However, an interme-
diate role of the epigenome remains speculative within this dy-
namic or responsive molecular network. We earlier discussed
the potential role of paternal diet and obesity in this process,
and how in addition to DNA damage through direct attack of
free radicals on DNA molecules, ROS signalling may trigger epi-
genetic responses [6]. In brief, obesity has been linked to ROS
overproduction in the testes [47]. These toxic molecules cause
direct damage to cell structures, including DNA. Low concentra-
tions of ROS are a normal byproduct of cellular metabolism and
are necessary in signal transduction and protection against
pathogens [48]. ROS also play a role in sperm capacitation and
acrosome reaction when spermatozoa and oocyts join [49, 50].
Production of ROS in sperm occurs mainly in mitochondria as a
byproduct of the electron transfer chain. If unbalanced, exces-
sive ROS can overrule its protective function and induce dam-
age to mitochondrial DNA, which has an impact on energy
balance of spermatozoa, sperm motility and capacity for fertili-
zation [50]. Next to its damaging effects on DNA integrity, the
spermatozoa membranes—rich in polyunsaturated fatty
acids—are also potential targets [49]. Animal data showed that
impaired spermatogenesis linked to a HED is attributed to un-
balanced ROS generation [51]. Rodents fed with HED had lower
expression of ROS-detoxifying enzymes. This contributed to a
decrease in testicular ROS-defence and a decline in sperm qual-
ity [52]. Similarly in humans, an association was found between
a high-fat paternal diet, ROS and sperm DNA damage [53, 54].
Oxidative stress or ROS overproduction has been shown to me-
diate epigenetic changes in several cell types [55]. Therefore, it
is important to study both phenomena (epigenetic and oxida-
tive stress/ROS status) in sperm of men in specific lifestyle
conditions.

Why Study Exposure to Environmental Toxins
in Future Fathers?

Humans are exposed to environmental chemicals on a daily ba-
sis, such as EDCs found in personal care products [56], plastics
or food packaging [57] and the surrounding environment [58].
EDCs are known to disrupt the endocrine and metabolic homeo-
stasis in the body, but other potential consequences include de-
creased reproductive function [57, 59, 60], neurodevelopmental
delays in children [61] and increased risk of diabetes [62], or
other chronic disorders via transgenerational inheritance of
these exposures [63]. A worrisome observation is the fact that
exposure to EDCs has increased >10-fold over the past ten years
[64]. Taking into account findings from Skinner’s research team,
showing that environmental chemicals can have long-term
transgenerational effects in animal models [65], the ubiquitous
presence of chemicals may well tip the epigenetic balance and
program an individual for developing a chronic condition later
in life.

In order to understand how environmentally induced effects
can last for several generations, research at the level of human
germ cells is necessary. Few studies have been performed on
the impact of these contaminants on the sperm epigenome in
humans. In a cross-sectional study in healthy volunteers living
in North Carolina, we showed that the sperm epigenome may
be responsible for transmission of environmental chemicals/
factors (organophosphates, from exposures to flame-retardants)
from father to child [66]. DNA methylation at imprinted genes
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that were not supposed to be paternally methylated were meth-
ylated if men were exposed to specific environmental chemi-
cals. Interestingly, the more metabolites of these OP chemicals
were measured in their urine, the higher the risk for producing a
sperm sample that was hypermethylated at these imprinting
regions. This suggests that a ‘cocktail’ of chemicals from the
environment—which is realistic in our current daily environ-
ment—increases the risk of aberrant methylation in male germ
cells. Interestingly, exposures to EDCs have also been shown to
alter fatty acid composition and decrease anti-oxidant enzyme
level in the testis [67], inducing oxidative stress [68] and ulti-
mately affecting spermatogenesis [69]. Occupational exposures
to bisphenol A was also shown to impact global sperm DNA
methylation in humans [70].

Lifestyle habits such as smoking and alcohol intake can also
be classified among environmental toxins. Chronic consump-
tion of alcoholic beverages has been associated with sperm epi-
genetic aberrancies, such as DNA methylation at the IGF2 and
H19 DMRs [71]. Smoking habits have been correlated with
changes in miRNA expression in spermatozoa [72].
Unfortunately, sample sizes were small in these studies.
Noteworthy, the ‘Avon Longitudinal Study of Parents and
Children’ (ALSPAC) provided evidence that sons of fathers who
started smoking before puberty are at high risk of becoming
obese [73]. Taken into account potential effects in children from
smoking fathers it is worthwhile to proceed this line of research.

Conclusions

The environment of the father before conception not only pre-
disposes him to obesity and related chronic disorders, but it can
also affect his sperm quality, epigenetic profiles in spermato-
zoa, and increase the risk that his children will be obese or de-
velop other chronic diseases [2].

At the LATSIS symposium we presented a number of epide-
miological studies showing altered DNA methylation profiles in
offspring at several differentially imprinting regions in children
born from obese fathers [15, 16]. Some of these imprinted genes
were also differentially methylated in sperm DNA of obese men
(prospective fathers) [17]. Additional reports in healthy volun-
teers showed epigenetic aberrancies in sperm by increasing ex-
posure to processed food and environmental toxins [74].
Although these findings in humans should be replicated in
other populations, several experiments in animal models con-
vincingly demonstrate that the sperm epigenome functions as a
vector to transfer pre-conceptional environment messages
from paternal environment to offspring.

Obesity and exposures to EDCs are serious global health
challenges. The increases in magnitude of obesity rates and
exposures to environmental toxins have paralleled reports of
rising frequencies of poor sperm quality, male infertility and
several adverse health conditions. Next to these relatively im-
mediate effects, the possibility that epigenetic marks can be
transmitted to offspring opens a new field: that of POHaD [8].
An intermediate factor between obesity or related conditions
and epigenetic signatures in sperm is oxidative stress. For in-
stance, increased ROS can unbalance the epigenetic state.
Hence, understanding interactions between the environment,
ROS, and the epigenome in sperm is critical to acquire a com-
prehensive view on typical ‘Western’ diseases, today and in the
future.

We believe that public health would doubly benefit from stud-
ies in men on protective effects from dietary supplementation
and moderate exercising before conception. Besides advantages

for the individual’s general and reproductive health, health of fu-
ture offspring may also gain from this research. Health promo-
tion and disease prevention is more challenging than curing
diseases. However, without research in humans, we will continue
to try and translate results from animal models to human beings,
which may at best lead to speculation on the molecular processes
in the human body.

As discussed by Rothstein et al. [75], evaluating the implica-
tions of personal lifestyles on epigenetics and offspring health
becomes a social and ethical issue, even more so than research
on the genetic origin of diseases. For instance, an unhealthy
lifestyle could be used as evidence of lack of personal responsi-
bility. The new and growing field of transgenerational epige-
netics will thus generate the need for explicit attention to
concerns about environmental justice in environmental regula-
tions and health policies [75]. We here agree with the opinion of
Rothstein et al. that additional scientific research (in humans) is
needed before protective environmental policies can be imple-
mented. Nevertheless, while our knowledge regarding the etiol-
ogy of ‘transgenerational phenotypes or diseases’ is growing, it
is advisable to inform and protect our most vulnerable popula-
tions, such as men with occupational exposures to EDCs, men
with an unhealthy lifestyle, or those who are suffering from the
consequences of subfertility.

In conclusion, understanding the mechanisms of action of
EDCs or obesity-related exposures through germ cells will offer
a unique opportunity to modulate risk for diseases in offspring
via targeted recommendations of food supplements and a bet-
ter lifestyle, or by introducing health policy recommendations
requesting the industry to reduce or replace the use of certain
chemicals. The current DOHaD concepts are already being used
to guide public health policies that support mothers and child-
ren’s health. It has been well established that advising future
mothers not to drink alcohol, not to smoke and to eat healthy,
has important benefits for their offspring. Unfortunately, there
is currently a striking lack of awareness in the general popula-
tion regarding the father’s contribution to offspring health. We
foresee a change in the historical concept of the mothers’ only
contribution, to recognize and bolster the father’s role in suc-
cess of having healthy children.
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