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POINCARÉ-BENDEXSON THEORY
FOR LEAVES OF CODIMENSION ONE

BY

JOHN CANTWELL1 AND LAWRENCE CONLON2

Abstract. The level of a local minimal set of a C2 codimension-one foliation of a
compact manifold is a nonnegative integer defined inductively, level zero corre-
sponding to the minimal sets in the usual sense. Each leaf of a local minimal set at
level k is at level k. The authors develop a theory of local minimal sets, level, and
how leaves at level k asymptotically approach leaves at lower level. This last
generalizes the classical Poincaré-Bendixson theorem and provides information
relating growth, topological type, and level, e.g. if L is a totally proper leaf at level
k then L has exactly polynomial growth of degree k and topological type k — 1.

Introduction. Various authors have studied the extent to which the Poincaré-
Bendixson theory of C2-flows on closed surfaces [Sc] does or does not extend to
C2-foliations of codimension one on closed «-manifolds (e.g., cf. [P2], [P3], [P5],
[Sal], [Sa2], [C-C3], [M-P]). We present here a systematic treatment of the limit set
of an arbitrary leaf in such foliations, producing new results of the above type and,
we hope, providing a helpful overall perspective on previous results. We wish to
acknowledge the fundamental dependence of this paper on ideas of A. J. Schwartz
[Sc], R. Sacksteder [Sa2], J. F. Plante [PI], [P4], and G. Hector (thesis). We wish
also to acknowledge that the results presented here are known independently by G.
Hector and G. Duminy and that extensive conversations with them have helped us
all to reach a uniform terminology and points of view that are not totally
dissimilar.

Conventions. Throughout this paper, M will be a closed, orientable «-manifold
and 'S will be a transversely orientable C2-foliation of M by leaves of dimension
« — 1.

The limit set of a leaf will be analyzed in terms of the local minimal sets that it
contains (also called relative minimal sets [Di]). A local minimal set is a minimal set
of 9^1 U, where U is some open, ^-saturated set. The level of a local minimal set
will be a nonnegative integer, defined inductively (cf. §1(D)), level zero correspond-
ing to the minimal sets of 'S in the usual sense. Each leaf of a local minimal set at
level k is itself said to be at level k. Leaves that lie in no local minimal set have
limit sets containing leaves at each finite level; hence they are said to be at infinite
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182 JOHN CANTWELL AND LAWRENCE CONLON

level. Such leaves can exist [He], [C-C3], [C-C5], even in C "-foliations, and they
exhibit rather wild behavior. Smooth-leaved C°-foliations can be constructed that
contain a whole infinite hierarchy of infinite levels, but C2-foliations admit at most
one such level.

Of particular interest in this theory are the proper leaves of *%~. Every proper leaf
is a local minimal set. If its limit set consists only of proper leaves, the proper leaf
will be said to be totally proper. Such leaves play a basic role in the theory of leaves
with nonexponential growth and themselves display growth properties and topo-
logical properties rigidly associated to their level. These properties follow easily
from the Poincaré-Bendixson theory of totally proper leaves (§6) in which the way
that such leaves "spiral in" on leaves at lower levels is explicitly described.

The condition that S be of class at least C2 is essential to most of this paper.
Examples show that a Poincaré-Bendixson theory for C'-foliations will be consid-
erably more complicated (e.g., [C-Cl, (4.3)], [De], [Sch, Appendix]). The sources of
this dependence on C2-differentiablity are the technical results on pseudogroups
collected in §2.

Statements of results. We collect here the principal theorems (wi.O) of each of the
sections m = 3, 4, 5, 6, 7. Definitions of the technical terms used will be found in
II.

The first result is a fundamental existence theorem for local minimal sets. It
seems to be contained in Hector's thesis, but, as of this writing, a proof is not to be
found in the available literature.

(3.0) Theorem (Hector). Let U G M be an open, connected, 'S-saturated set and
let L g U be a leaf of 'S. Then L n U contains a minimal set of S\ U.

Let Mk denote the union of all leaves at levels at most k. Let Ck denote the union
of all totally proper leaves at levels at most k.

(4.0) Theorem. Each local minimal set lies at some finite level k. For each integer
k > 0, Mk and Ck are compact sets. Finally, if L is an arbitrary leaf of & and k > 0
is an arbitrary integer, then L n Mk is a finite (nonempty) union of local minimal
sets; hence L n Ck is a finite (possibly empty) union of leaves.

If there are any leaves in M — Uk>0 Mk, they are said to be at infinite level. Part
(a) of the following theorem justifies this terminology. The symbol S(L) stands for
the substructure of L (§1), which, in this case, is the union of all leaves of L that are
at finite level.

(5.0) Theorem. Let S be of class C, 2 < r < oo, and let L be a leaf at infinite
level. Let Z = L - S(L). Then

(a) for each integer k > 0, S(L) contains at least one leaf at level k, and either all
of the leaves of S(L) or only finitely many of them are totally proper;

(b) the set S(L) is dense in L, but it contains no leaf that is dense in L;
(c) the set Z is an uncountable union of leaves, each of which is dense in L;
(d) no leaf of Z has a proper side;
(e) the holonomy of each leaf of Z is C-tangent to the identity.
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POINCARÉ-BENDIXSON THEORY 183

Remark. If L is at infinite level and if L0 is a leaf asymptotic to L, then L0 is
also at infinite level (4.0) and L0 = S(L0) u Z0 as in (5.0), with L c Z0. By (5.0),
part (c), L is asymptotic to L0, so L0 = L, S(L0) = S(L), and Z0 = Z. In
particular, this justifies our earlier remark that there can only be one infinite level.

The results in §6 give a generalization, for totally proper leaves, of the familiar
Poincaré-Bendixson phenomenon of a flow line (on a surface) winding in on a
periodic orbit. It would be clumsy to formulate this here, but we do formulate the
following striking consequence (announced by the authors in [C-CO] and also
obtained more recently by N. Tsuchiya [Ts]).

(6.0) Theorem. 77ie totally proper leaves of S are precisely the nowhere dense
leaves with growth dominated by a polynomial. If the totally proper leaf L is at level
k, then it has exactly polynomial growth of degree k and L is a manifold of type
K — l.

For the definitions of "exactly polynomial growth" and of "manifolds of type
k — 1", see §1.

In [C-C4, §§1 and 2], the results of the present paper were reviewed and in §3 of
the same reference certain corollaries were drawn that can be assembled into the
following theorem. Here, of course, to say that L has totally proper substructure
means that S(L) is a union of totally proper leaves.

(7.0) Theorem. If L is a leaf with nonexponential growth, then L has totally proper
substructure. If, in addition L is at finite level, then either

(a) L is a totally proper leaf; or
(b) the set U — L — S(L) is an open, local minimal set, S\U has trivial holonomy,

the leaves of S\U are mutually diffeomorphic manifolds of finite type, and these leaves
have the same growth as L.

In §7, we will draw some corollaries to (7.0) that were not noted in [C-C4].

1. Review of technical concepts.
(A) Biregular covers. Fix a smooth, one-dimensional foliation £ transverse to 'S.

Fix a transverse orientation for S, inducing thereby an orientation on each leaf of
£. If x and_y lie in a common leaf R of £ and x <y in the orientation of R, then
denote the closed subarc from x to>> by [x, y]. Of course, R might be a closed leaf,
in which case also y < x and R = [x, y] (J [y, x]. Similarly, we will consider the
subarcs (x, y), (x,y], and [x, y). If subarcs are parametrized by real numbers, this
parametrization will be chosen to respect orientation.

Let D"~x c R""1 denote the closed unit disk and let / = [-1, 1]. An ('S, £)
coordinate chart (W, <p) on M is an imbedding cp : D"~x X I —» M, W = Im(cp),
such that q>\(D"~x X {/}) is an imbedding into a leaf of 'S, V / G I, and
cp|({x} X /) is an imbedding into a leaf of £, V x G D"~x. We fix a finite atlas
{(W¡, xp¡))T-i of (S, £) coordinate charts on M such that {int(Wj))'j_x is an open
cover of M.
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184 JOHN CANTWELL AND LAWRENCE CONLON

Definition. The atlas {(W¡, tp,))f_, is called a biregular cover of M provided
that, whenever Wi n Hj ^ 0, then W¡ u Wj; G int(W), where (W, tp) is an (S, £)
coordinate chart on M.

It is elementary that biregular covers exist.
The holonomy pseudogroup T9 of S is defined on the disjoint union of all leaves

of £, the domain and range of each y G T9 being a finite union of (not necessarily
open) subarcs. Each y G T9 will be understood to be defined using only "fences" of
the form f(t, s) where, for each fixed t, f, = f(t, ■) takes its image in a leaf of £,
and, for each fixed s,fs = f(-, s) takes its image in a leaf of 'S.

Given a biregular cover {(W¡, (pi))'j=x, a subpseudogroup T c T9 finitely gener-
ated and containing all of the information in T$, is defined as follows. Let
/?, = cp,({0} x /), 1 < i < m, and let R be the disjoint union of these subarcs. If
rV¡: n Wj: ¥= 0, there are holonomy transition functions y,-, : Ry -> Rj¡ where R¡j G
R¡ and Rjt G Rj are the maximal possible range and domain respectively. Of course,
y„ : Rj¡ -^ Ry is the inverse of y„. The pseudogroup T is the pseudogroup on R
generated by these transition functions.

(B) Growth. Fix a biregular cover {(W¡, cp,))7L, of M. Given a leaf L of S, fix a
plaque P0 = cp,(/5n_1 X {/„}) c L. There corresponds a growth function gL : Z+
->Z + for L defined by letting gL(m) be the number of plaques P+ that can be
reached by chains of plaques P0, Px, . . . , Pr = /%,, where r < m and P¡ n P¡-X ¥=
0, 1 < /' < r. It will be convenient to consider gL as a function into R+. Evidently
gL is nondecreasing.

Definition. Let/, « : Z+ —> R+ be nondecreasing. If there are positive constants
A, B, C such that/(i) < Ah(Bt), V t > C, then « is said to dominate/. If/and n
dominate each other, they are said to have the same growth type. The growth type
off is denoted gr(0-

Mutual dominance is an equivalence relation and gr(/) is the equivalence class
of/. It is a standard consequence of the compactness of M that gr(gL) depends
only on the leaf L, not on the choices of biregular cover and of base plaque P0.

Definition. The growth type of the leaf L is gr(L) = gr(gL). In particular, L has
exactly polynomial growth of degree k if gr( gL) contains the polynomial f(m) =
mk. The leaf L has exponential growth if gr(gL) contains the function/(/w) = em.

It is common to define polynomial growth of degree k to mean that mk
dominates gL, hence the word "exactly" in the above definition. It is also common
to define exponential growth to mean that gL dominates em. But compactness of M
implies that em dominates gL, so the following (standard) definition of exponential
growth coincides with the one given above.

Definition. The leaf L has exponential growth if lim infm_,00(l/«i)log(g¿(/«)) ¥=
0. Otherwise, L has nonexponential growth.

(C) Limit sets and ends. Let L be a leaf and let {Ka)a^A denote the family of all
compact subsets of L. Let Wa = L - Ka. As usual, Wa denotes closure in M.

Definition. The limit set of L is the set lim(L) = f) af=A Wa.
It is elementary that lim(L) is compact and ^-saturated. If L is noncompact,

then lim(L) is nonempty. If L' c lim(L) is a leaf, we say that L is asymptotic to L'
(or, approaches L').
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POINCARÉ-BENDIXSON THEORY 185

If L is noncompact, it is possible to choose systems {Ua)aeA such that each Ua
is an (unbounded) component of Wa and such that each finite intersection
t/ai n • • • n Í7 is nonempty (and unbounded). Then {Ua)a£A is said to define
an end e of L and to be the open neighborhood system of e in L.

Definition. The e-limit set of L is

e-lim(L)=  H   Ua.
aSA

Evidently e-lim(L) is a nonempty, compact, ^-saturated subset of lim(L). If
L' G e-lim(L) is a leaf, we say that e is asymptotic to L' (or, approaches L').

Definition. An end e of L is proper if L c(: e-lim(L). The end e is totally proper
if t?-lim(L) is a union of proper leaves.

We will denote by &(L) the set of ends of L. A sequence {xm} in L is said to
converge to e G & (L) if each neighborhood Ua G L of e contains all but finitely
many terms of the sequence. Similarly, a sequence {em) in &(L) converges to
e G &(L) if each neighborhood Ua G L of e is also a neighborhood of all but
finitely many terms of the sequence. All of this is defined without reference to the
foliation and provides a compact, metrizable topology on L u & (L) in which S (L)
is a compact, totally disconnected subspace and the open subset L has its intrinsic
manifold topology (for details, see [A-S]; for some intuitive examples, see [C-C2]
and [C-C3]).

As in [C-C3], we define, for each ordinal y > 0, the yth derived set &(y)(L). Here
S(0)(L) = &(L), S(y+1)(L) is the set of cluster points in &M(L), and, if y is a limit
ordinal, &M(L) = D /5<Y &ß)(L). Either there is a countable ordinal y such that
&M(L) is a finite, nonempty set, or &(a)(L) is the Cantor set, where fi denotes the
first uncountable ordinal.

Definition. If ëM(L) is a finite, nonempty set, L has (topological) type y. If
S(S2)(L) is a Cantor set, L has type fi. If L is compact, it is said to have type -1.

Definition. An end e G & (L) is said to be of type y < fi if e is an isolated point
in SM(L). If e G S(a)(L), then e has type fi.

(D) Local minimal sets and levels. Let U G M he an open, ^-saturated set. A
minimal set of the foliation S\U is said to be a local minimal set of 'S. For
smooth-leaved C"-foliations, such minimal sets need not exist, but (3.0) guarantees
their existence for C2-foliations.

It is convenient to formulate the following more intrinsic definition.
Definition. Let X G M he a nonempty, ^-saturated set. If X — X is compact

and if each leaf of X is dense in X, then X will be called a local minimal set of S.
Remark. If X is as above and if U denotes the open, iF-saturated set M - (X —

X), then JÍC U is a minimal set of S\U. Conversely, if U is an arbitrary, open,
^-saturated set and if X G U is a minimal set of S\ U, then X satisfies the above
definition.

There are three types of local minimal sets:
(a) every proper leaf is such a set;
(b) a connected, open, ^-saturated subset U G M, in which each leaf of S\ U is

dense in U, is a local minimal set of locally dense type;
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186 JOHN CANTWELL AND LAWRENCE CONLON

(c) a local minimal set X of neither type (a) nor (b) is said to be of exceptional
type.

In type (c), X is nowhere dense and meets each transverse, open arc in a set
homeomorphic to an open subset of the Cantor set.

Evidently, a local minimal set X either fails to meet a given compact, S-
saturated set Y, or X G Y. Consequently, two local minimal sets either coincide or
are disjoint.

Definition. A minimal set of S, and each of its leaves, is said to be at level 0. A
local minimal set X, and each of its leaves, is at level k > 0 if X — X consists
entirely of leaves at levels at most k — 1, at least one of which is at level k — I.

Definition. An end e of a leaf L is at level k > 0 if e-lim(L) is a union of leaves
at levels at most k, at least one of which is at level k.

Example. Foliate T3 by dense, planar leaves in standard fashion. Along a closed
transversal to this foliation, perform the standard modification that inserts a Reeb
component. The family of locally dense leaves constitutes a local minimal set of U
of locally dense type at level 1. Each of these leaves has a countable set of isolated
ends, each asymptotic only to the toral leaf; hence these ends are totally proper at
level 0. There is also an end e of such a leaf L c U asymptotic to all leaves in U,
and this end is at level 1.

We will see (§6) that totally proper ends at level k are of type k.
Definition. A leaf belonging to no local minimal set is said to be at infinite

level.
Definition. If L is a leaf of S, the substructure S(L) is the union of all leaves of

L at levels strictly less than the level of L.
(E) A convention. Throughout this paper, we will only use the symbol c when

equality is excluded, and the symbol G when equality is allowed.

2. Pseudogroups of C2-diffeomorphisms. Let R G R be a one-dimensional
submanifold, not necessarily connected and possibly having dR ¥= 0. Let T be a
pseudogroup on R generated by a finite family T0 of local, orientation preserving
C2-diffeomorphisms. As in [PI], we do not require that the elements of the
pseudogroup all have open domains, but it seems reasonable to exclude highly
pathological domains by allowing only sets that are finite unions of intervals,
whether open, closed, or half-open.

(A) A theorem of Sacks teder. Let C c int(Ä) be a T-in variant Cantor set such
that the interior of the domain of each element of T0 has compact intersection with
C. The proof of Theorem 1 of [Sa2] establishes the following.

(2.1) Theorem. Let q G C be an endpoint of a gap of C and suppose that the
T-orbit T(q) clusters at q. Then there is a compact, connected neighborhood U of q in
R and a sequence {gm} C T such that

(l)U Gdom(gm),\/m;
(2) limm^00 gm(q) = q;

(3) HmOT^00 g'm(t) = 0 uniformly for t G U.
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(2.2) Corollary. If q, U, and {gm) are as in (2.1) and if V G U is a compact
neighborhood of q, there is an integer N > 0 such that, for each m > N, gm maps V
into itself and has a unique fixed point xm G V. Indeed, xm G C and gm is a 2-sided
contraction at x„.

This corollary is an easy consequence of (2.1) and the contraction lemma [B, p.
43].

Here is another consequence of (2.1).

(2.3) Corollary. Let T, C, and q G C be as in (2.1). Let {qn) c R be a sequence
converging to q. Then, for n sufficiently large, q is an element of the closure of the
orbit T(qn).

Proof. Otherwise, the closure of T(qn) has a closest point p„ to q, pn =£ q, for
each «. We can assume that {pn) converges strictly monotonically to q. For «
sufficiently large, there are compact neighborhoods Vn and Vn+X of q such that
Vn+X c VnG U,Vnn T(Pn) = p„, and Vn+X n T(pn+X) = pn + x. We can assume m
large enough that gm(V„) G Vn, gm(V„+x) C Vn+X, and that gm has a unique fixed
point in Vn. But our conditions imply that gm(pn) = p„ and gm(pn+l) = p„+„ and
thatpn andpn+, are distinct points of Vn, a contradiction.    □

Remark. In applying (2.1) and its corollaries to foliations, we will regularly
encounter the following situation. There will be a nonproper leaf L with a proper
side, and a compact, transverse arc R properly crossing L in a point q. The
endpoints of R can be chosen to miss L; hence R n L = C is a Cantor set. There
is a pseudogroup T on R generated by the holonomy along the leaves. Clearly, q
will be an endpoint of a gap, T(q) will cluster at q, and C is f-invariant. The
problem is that f may not be generated by a finite subset {ylt..., yr) such that
C n int(dom(y,)) is compact, 1 < / < r. This difficulty is dealt with as follows.
Choose a biregular cover {(W¡, <p,)}'=1 such that <pi(Dn~x X {±1}) does not meet
any leaf of L, 1 < / < r. As in §1(A), define the holonomy pseudogroup T on the
disjoint union R = U ¿=, R¡, finitely generated by the transition functions y« : Ry
-» Rj¡, 1 < i,j < r. Without loss of generality, assume Rx = R. Then C = L n R is
a holonomy-invariant Cantor set, and C n int(R¡j) is compact, 1 < i,j < r. One
then applies (2.1) and its corollaries to R, C, q, and T.

(B) Permuter pseudogroups. Let % be a collection of compact subintervals of R
with disjoint interiors. Also, assume that R is compact.

Definition. Let g G T. We will say that g is a permuter of f if dom(g) is
compact and if, for each J G f, either int(7) n dom(g) = 0 or J G dom(g) and
g(J) G %.

Definition. If T admits a finite, symmetric generating set ro consisting of
permuters of ¡J-, we will say that T is a finitely generated permuter pseudogroup of

Fix the hypothesis that T is a finitely generated permuter pseudogroup of f.
Suppose g G F, has the form g = hm ° hm_x ° ••• °«, where each «,. e ro and it
is understood that each «, is restricted to some suitable part of its domain. Write
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8p = hp° \-\° ■ ■ ■ ° hx, 1 < p < m. Thus, g = gm. If J G j- and if J G
dom(g), write Jp = gp(J), 1 < p < m.

Definition. The element g G T is a simple chain based at J if / = dom( g) and if
J, /,,... , /m are distinct elements of %. If /,,... , 7m are distinct and 7 = /m,
then g is a simple loop based at J. Finally, if « is a simple chain based at J and g is
a simple loop based at h(J), we call «~'g« a basic loop based at J.

Fix [x,y] = J G % and let G be the set of g GT such that J = dom(g) and
g(J) = J. Then G is a group of orientation preserving C2-diffeomorphisms of J
onto itself. Let G0 G G denote the set of basic loops based at J. It is elementary
that G0 is a symmetric generating set for G. It is possible that G0 is infinite. In the
case in which G0 is finite, the following is trivial, but we prove it in general.

(2.4) Theorem. Let b G (x,y) = int(/). 77ie« there is a point a G (x, b) such that
a < f(b), for all f G G0.

For the proof of (2.4), we need some elementary lemmas that will also be useful
in (C). Fix A > 0 and B > 0 such that h'(t) > A and \h"(t)\ < B, for each « G T0
and all t G dom(h). The finiteness of T0 and compactness of dom(h) make this
possible. Set 0 = B/A.

(2.5) Lemma. // g = gm = hm ° «m_, ° • • • ° «„ all h, G T0, and dom(g) = J
G fy, and if z, w G J, then

g'(z) < g'(w)expl0 ^  1^11
\  p=o      I

where \J \ denotes the length of Jp and J0 = J.

Proof. Let z0 = z, w0 = w, zp = gp(z), wp = gp(w), 1 < p < m - 1. By the chain
rule

g'(z) = h'm(zm_j)    h'm_x(zm_2) h\(z0)

g'(w)      h'm(wm_x)    h'm_x(wm_2) h'x(w0)'

Using the mean value theorem, write

h'p+](zp) _ hp + i(zp) - hp+x(wp)
A;+iK) K+X(wp)

.   ,   h;+x%)(zp-wp)
=  1 + -T,-7-^- =1 + 0

where |, lies between zp and wp, 0 < p < m — 1. Since hp+x is orientation preserv-
ing, 1 + 8p > 0. Also, \8p\ < 9\zp - wp\. Therefore

,,   , m-\ m-\ m-1 /     m-\ \

^pr - n (i + sf) < n o + |6,d < n «P(i«,i) < exp u 2 \jA n
g(^)        p = 0 p = 0 p-0 \    p-0 )

Let c = 30\$\, where \%\ denotes the total length of U/G^/ C R.

(2.6) Lemma. If g is a simple chain or a basic loop based at J and if z,w G J, then
g'(z) < g'(w)ec.
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Proof. By (2.5), g'(z) < g'(w) exp(0 HpZ¿\Jp\)- Since an element I G% can
appear at most three times in the list J0, Jx, . . . ,Jm_x, it follows that lî,pZo\Jp\ <
m n

(2.7) Corollary. If g is a basic loop based at some J G \ and if z G J, then
e~c < g'(z) <ec.

Proof. Since g(J) = J, the mean value theorem provides a point w G J such
that g'(w) = 1. Also, one can interchange the roles of z and w in (2.6).    □

We can now give the proof of (2.4). Choose a G (x, b) so close to x that
(b - x)/(a — x) > ec. Suppose there is some/ G G0 such that a > f(b). We must
deduce a contradiction. Let g = / ' e G0; hence assume g(a) > b. By the mean
value theorem, there is z between x and g(a) such that

g'(z) = (g(a) - g(x))/ (a - x) = (g(a) - x)/ (a - x).

By (2.7), we obtain the contradiction

a — x a — x

(C) A generalized Kopell lemma. The lemma referred to is [K, Lemma la], long
recognized to be significant in the theory of C2-foliations. We continue to assume
that T is a finitely generated permuter pseudogroup of $-. As in (B), we fix
[x,y] = J G j- and consider the group G gT.

Suppose j-t G $-, 7+ G $-,, and that a simple chain «„ G T has J = dom(«+),
J+ = im(«„). With this data we define a subset Gt c G. Let g G T be a basic loop
based at J\, g = hm ° hm_x ° • • • ° «, as usual, and suppose that gp(/») G $-,,
0 < p < m. Then «~'g«* G G and G„ is to be the set of all such elements.

(2.8) Theorem. If x <a < b <y, and if $t as above has |JJ sufficiently small,
then a < g(b), for each g G G+.

Before proving (2.8), we justify the claim that it generalizes the Kopell lemma.
Let R = [0, 1] and let /, g : R -* R he C2 imbeddings with /(0) = g(0) = 0. Sup-
pose/and g commute and that/ is a contraction of [0, 1] to 0. The Koppell lemma
asserts that either g fixes no point of (0, 1] or g fixes all points. In order to obtain
this as a consequence of (2.8), let z0 G (0, 1] be fixed by g, let zk = fk(z0), k G Z + ,
and remark that g fixes each zk. If % = {Jk = [zk+x, zk] : k > 0), then ro = {/ g)
generates a permuter pseudogroup of \. Remark that gk = g\Jk is a simple loop at
Jk and that/' : Jk -* Jk + q is a simple chain at Jk. Let b G (zx, z0) and suppose that
g0(b) ¥= b. Without loss of generality, suppose g0(b) < b and take a = g0(b),
J = J0, in (2.8). Let N > 0 he an integer and let $-, = {Jk: k > N). We can make
|^J as small as desired by taking N large enough. Take Jm = JN, hm = fN : J0-+
JN, and apply (2.8) to get

a < h,x{f"gN+qf")ht(b) = f-N-"gN+qfN+"{b)

for all q > 0. By commutativity, this reduces to the contradiction a < g0(b) = a.
This shows that g0 fixes each point of J0; hence also each point of (0, z0] =
U^o^. Since/r(0, 1] G (0, z0], for r sufficiently large, it follows that g fixes each
point of (0, 1].
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We turn to the proof of (2.8).

(2.9) Lemma. // r < 1 < s, then, for |£J sufficiently small, and for all g G
«„ ° G„ ° h~j, it is true that r < g' < s uniformly on /,.

Proof. Set c„ = 3f?|^ J. Then, for |£ J sufficiently small, we have ec* <
min{i, 1/r}. But, applying (2.5) as in the proof of (2.7), we also obtain e~°* < g' <
ec% uniformly on /„, for each g G «„ ° G„ ° h~x.   □

Choose s > 1 such that j - 1 < e~c(b - a)/(a - x). For £«, as in (2.9), g'(t) <
s, for all t G Jt and for all g G h, ° G, ° «"'. Suppose there is / G Gt with
a >f(b). Set g = A, o/-' o Ä-i, a# = /^(a), ¿,# = A#(¿), So that g(a.) > ¿v We
will show that there is a point t G J„ such that g'(t) > s, a contradiction.

Indeed, set x„ = «*(x) and obtain

(*(«•) - a*)/ (a* - x J > (6„ - a,)/ (a, - x.)

= «;(|)(6 - a)/«;(f)(« - x)

> e"c(Z> - a)/(a - x) >s - 1.

Here, the mean value theorem provides £ e (a, b) G J, and J G (x, a) c ./, and
the second last inequality is given by (2.6). Thus, (g(at) — xt)/(am — xm) > s, so
the mean value theorem provides t G (xt, am) c J'„ such that g'(t) > s.

Remark that we did not use the full strength of (2.9). But the fact that g' is
uniformly as close to 1 as desired, V g G «, ° G„ ° htx, as |$-J —> 0, seems interest-
ing and potentially useful.

3. The structure of open, saturated sets. In this section we sketch and adapt to our
purposes some important results and viewpoints due to G. Hector (thesis) and P.
Dippolito [Di], culminating in a proof of (3.0).

Let {(W-, <p,)}7Li be a biregular cover of M. For suitable small e, 8 > 0 we can
assume that the interiors of the sets W¡(8, e) = (?,(/)""' X [8 — 1, 1 — e]) also
cover M.

Let U G M he an open, ^-saturated set. Renumber the sets {Wj) so that
W¡ G U if and only if q < i < m, some q < m. Thus, if 1 < /' < q, the connected
components of W¡ n U are sets of one of the following three kinds:

if^^-'x^l]),
Wr=Vi{Dn~x X[-1,¿>,)),

where A: may run over a finite or infinite indexing set. We define 617 to be the
union of all plaques of any of the following forms:

p* = <,>,.(/>-' x {a,}),  />,-= ?,.(/>"-' X {%}),

p,jk = *>,.(/>-' x {a,.,}),   prk = «p,.(/r-' X {b,¿}),

where 1 < / < q. Thus, 8(J is the union of the "boundary leaves" of U, but it need
not be the set theoretic boundary of U.
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It is useful to form a manifold Û with boundary by cutting the manifold M apart
along the leaves of 8U and keeping only the components meeting U. More
formally, let t : U —» M he the imbedding, pull back a Riemannian metric from M
to U via i, and let U he the completion of U in this metric. Let î : U —* M he the
canonical extension of t to an immersion such that ¿(917) = St7. By the transverse
orientability of S, î maps each component of dU diffeomorphically onto a leaf of
517, but two distinct boundary components may be identified.

One obtains foliations S and £ on U by pulling back S and £ via 2. A locally
finite atlas of (S, £) coordinate charts on U is defined by adjoining to { W¡)q<i<m
all of the sets

W+ - *(/>-« Xi^, 1]) - W* u t,+,

Wr= <?,.(/>"-■ X[-l, Ô.]) = Wj U Pf,

Wuk = <p{Dn-x X[aitk, bIJc]) = Wuk u Pjjk U Pjk,

1 < ; < q, imbedding these in 17 by t1, and suitably reparametrizing the various
(well-defined) restrictions of î-1 ° <p(.

We will suppress further reference to t and î   .
The following is a trivial observation.

(3.1) Lemma. If U is connected and if each leaf of £ is a compact arc, then U can
be identified (via a suitable diffeomorphism) with L+ X I where L+ is a leaf of S and
a component of dU and each {x) X I is a leaf of £. In this case, dU has two mutually
diffeomorphic components, namely L+ = the union of all P,+ and P¡¿ and L~= the
union of all Pj and P¡~k.

Definition. In the situation of (3.1), U will be called a foliated product.
The following is a very useful property of foliated products. Verification is

straightforward and will be left to the reader.

(3.2) Lemma. If U is a foliated product, then every element of the holonomy
pseudogroup of S defined by a path along some leaf of U u 8U extends to an element
defined simultaneously by paths along every leaf of U \J 8U. Furthermore, if Lx and
L2 are the leaves (possibly identical) of 8U and if L0 c Í7 is a leaf of S, then
lim(L[) = lim(L2) G lim(L0).

Except for a compact subset, every U looks like a bunch of foliated products.
This statement is made completely precise in [Di, Theorem 1], but here we will be
content with the following.

(3.3) Proposition. Let L be a component of dU. Then there is a compact,
connected, (n — I)-dimensional submanifold A G L such that the components
Bx, . . . , B' of L — int(y4) are each unbounded, Bj c\ A is a component of dA,
1 < j < r, and the ^-saturation of Bj is (diffeomorphic to) Bj X I where each
(x) X I is a leaf of £,1 < y < r. Furthermore, at most finitely many components of
U fail to be foliated products.
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Proof. If L is compact, choose A = L, so that the assertions hold vacuously. If
U lies on the positive side of L, choose A so that it contains each plaque in L of the
form P¡+. If U lies on the negative side of L, then one chooses A to cover each
plaque in L of the form P¡~. There is no problem making sure that A is connected,
that each Bj n A is connected, and that L — A has no bounded component.
Furthermore, there can only be finitely many components L of oU containing a
plaque of the form Pj*~, and, if L is not one of these, we take A = 0. Then each BJ
is only met by plaques of the form P¡¿ (respectively, Pjk). The conclusions are
immediate.    □

We consider a leaf L of S with a proper side. For definiteness, assume that the
positive side of L is proper and fix a compact subarc J = [x, y] of a leaf of £ such
that J n L = {x). Let J+ = (x,y]. Let T be the pseudogroup on J+ defined by
the holonomy along L.

Definition. The pseudogroup T is unbounded if, for each t G J+, T(t) clusters
at x. Equivalently, for each t G J+ there is g G T such that g(t) ¥= t [PI, Lemma
5.1].

A result of Sacksteder and Schwartz [S-S, Theorem 1], or at least its proof, shows
that, if some leaf L' of S approaches L from the positive side, then J can be chosen
so that T is unbounded. A recent result of Dippolito [Di, Theorem 3] sharpens this
considerably.

(3.4) Theorem (Dippolito). If, for every choice of J, T is not unbounded, then for
each fixed point tofT sufficiently near x, there is an imbedding ¥t : L X [0, 1] —» M
such that

(1) *,(z, 0) = z, V z G L;
(2) */{z} X [0, 1]) is contained in a leaf of £, V z G L;
(3) *,(L X {1}) is the leaf of S through t.

Proof. Let 17 be the ^-saturation of the interior of J. Then L c dU and we let
A, Bx, . . ., Br be as in (3.3). We can assume that J n L is a point of A. Let
L, G U be the leaf through the T-fixed point /. If / is sufficiently near 0, then the
fact that A is connected and that trx(A) is finitely generated implies, in a standard
way, that a subset of L, projects along the leaves of £ diffeomorphically onto A.
The inverse of this projection is an imbedding p : A —* Lt. Each BJ C\ A is
connected and each path in BJ starting on BJ n A lifts uniquely to L, with initial
point on p(BJ n A) (by the structure of foliated products), loops lifting to loops
(since t is T-fixed). Thus, p extends to an open imbedding p : L —» L,. It is
elementary to check that p(L) is also a closed subset of Lt, so p maps L
diffeomorphically onto Lr The desired conclusion follows easily.    □

The next two lemmas correspond to Proposition 1 and Proposition 2 respectively
in [Di].

(3.5) Lemma. Let Ux D c72 D • • • D UjAD • • • be a nest of open, connected,
S-saturated sets such that (~) Uj has empty interior. Then, for j sufficiently large, Uj is
a foliated product.
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Proof. Let X = fl Uj. For suitable small e, 5 > 0, the modified ('S, £) atlas
with images W¡(8, e), I < i < m, is such that no plaque of the form
<p¡(D"~x X {8 - 1}) or <&(/>""' X {1 - e}) meets X. Thus, without loss of general-
ity, we assume that no cp,(Z)"~ ' X { ± 1}) meets X. It follows that, for suitably large
j, none of these plaques meets U¡. The desired conclusion is immediate.    □

(3.6) Lemma. If U is an open, connected, 'S-saturated set, then dU has only a finite
number of components.

Proof. Let L he a component of 317. If (7 is a foliated product, we are done.
Otherwise, L contains at least one plaque of the form P¡+ or P¡~. Since there are
only finitely many such plaques, 3 U can contain only finitely many components L.
D

For the proof of (3.0), we will need the following result.

(3.7) Lemma. Let U G M be an open, connected, nonempty S-saturated set and let
L be a leaf of S\U. Then there is a finite system Kx, . . . , IC, of compact, disjoint
subarcs of leaves of £, each K¡ C 17, such that every leaf of L D U meets the interior
of at least one K¡.

Before proving (3.7), we will show how it implies (3.0). Let K = U f_ i K¡ and let
T be the holonomy pseudogroup on K defined by S. Then in K is a compact,
nonempty, T-invariant set and, by Zorn's lemma, there exists a minimal, nonempty,
compact, T-invariant subset C G L C\ K. Let X denote the ^-saturation of C. We
claim that X is closed in 17. Indeed, X G L n U and, if L0 is a leaf of S\U
approached by a sequence of points of X, then, since L0 meets some arc K¡ in a
point x0 interior to K¡, x0 is approached in K¡ by a sequence of points of C It
follows that x0 G C; hence that L0 G X. Since C is minimal, it also follows that X
is a minimal set of S\ U.

We commence the proof of (3.7). The assertion is evident for the case in which
U = M, so we assume 8U =£ 0. Let Lx, . . . , Lq denote the leaves of dU, finite in
number by (3.6). Let L, = A¡ u Bx \J • • • u B^ denote the decomposition ob-
tained in (3.3), 1 < i < q. It is possible that r(i) = 0, which is to say that L¡ = A¡, a
compact leaf.

Each minimal set of S in L either lies entirely in 17 or entirely in M — U. Since
0t^ U ¥= M, either each such minimal set is exceptional or it is a compact leaf. By
[La], there are at most finitely many exceptional minimal sets of S in M and it is
well known that L can only contain finitely many compact leaves (use [Ha, 3.2]).
Thus, there are at most finitely many minimal sets Xx, . . . , Xs of S contained in
¿il U, s > 0. If s > 0, we choose Kx, . . . , Ks g U, compact subarcs of leaves of
£ such that each leaf of X} meets int(Kj), 1 < j < s.

Claim. Every leaf of L n U G U either meets the interior of some K, 1 < j < s,
or approaches in U a compact leaf Li G dU, or enters the £-saturation of some Bj.

Proof. Let L' be a leaf of L n 17 and let X G L be a minimal set approached
by L'. If A" c 17, then L' meets the interior of some K¡, 1 < i < s. Suppose
X G M — U.lf X contains a leaf of Ô17 which, as a leaf of 3c7, is approached by ¿7
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in Û, we are done. Otherwise, take a leaf J of £ meeting X and a point x G X n J.
There is a sequence {xk)k>x G L' n J converging to x, say from the right. Thus
[x, x,] meets 517 infinitely often and there are arcs [ck, dk] c J, each a leaf of £,
with Xfc G (ck, dk). For k sufficiently large, [ck, dk] = [c, d] must be a leaf of £ in
the £-saturation of some B{.    □

Select a finite system Is+,,..., Ip c t/ of compact, disjoint subarcs of £ such
that, for each Bf, a leaf of £ in the £-saturation of B{ occurs in the list, and such
that, if L¡ G dU is a compact leaf, then some Ik has one end on L, and the other
end in Í7. If we can find a compact subinterval Kk c Ik D Í7, s + 1 < k < p, such
that every leaf of L meeting Ik H U actually meets the interior of Kk, then (3.7) will
follow from the above claim.

Let Ik = [c, d], and suppose c G L, G dU (if d G L¡, we argue in a parallel way).
If the holonomy subpseudogroup T¡ on [c, d], induced by loops on L¡ based at c, is
not unbounded near c, then (3.4) guarantees the existence of a G (c, d) such that
L n (c, a] = 0. In this case, we can take a as the lower endpoint of Kk. The
following, therefore, will be enough to establish the existence of Kk; hence it will
complete the proof of (3.7).

(3.8) Lemma. Let L¡, [c, d], and T, be as above. If T¡ is unbounded near c, then
there is [a, b] c (c, d) such that every leaf of S that meets (c, b] also meets (a, b).

For the proof of (3.8), we need the following. It is here that differentiability of
class C2 is used.

(3.9) Lemma. There is [a, b] c (c, d), as near to c as desired, and a generating set
Tt c r,.|[c, b], such that, for each f G r„, [c, b] = dom(f) and a <f(b) < b.

Proof of (3.8) using (3.9). Choose b near enough to c that T, is unbounded on
(c, b]. Thus, there is some/ G Tt such that a <f(b) < b, so the only way (3.8) can
fail is that there exists z G (c, a] such that z0 = sup(r,(z) n (c, b]) < a. For each
g G Tt, g(z0) < g(b) < b and so g(z0) < z0. By unboundedness, some g G r,
satisfies g(z0) < z0. But z0 < a < g(b), so g(z0) < z0 < g(b); hence g'x is defined at
z0 and z0 < g'x(z0) < b. This contradicts the definition of z0.    □

Proof of (3.9). We need only consider the case in which L, is noncompact.
Otherwise, ttx(LJ) is finitely generated and one easily obtains a finite set r„ as in
(3.9). Thus, the decomposition L, = A¡ \j Bx (J ■ • • U Bjii) has /*(/') > 1. Fix a
biregular cover {(cpk, Wk))"j=x. By suitably enlarging A¡, if necessary, arrange that,
for each k, Wk will meet the interior of a leaf J of £ in the £-saturation of some B{
if and only if J c Wk. Fix B = BJj and in each Wk choose Rk = <pk({x) X /),
arrange that these arcs be disjoint, and let R denote their union. Let $• denote the
set of intervals J g R where J is a leaf of £ in the £-saturation of B. If
Wk n Wh t^ 0, there is a holonomy transition function gkh with domain a compact
subinterval of Rk and image a compact subinterval of Rh.

Consider those intervals /£} lying in dom(g^) such that gkh(J) £ $-• There
are at most finitely many such intervals Jx, . . . ,Jr because, by the compactness of
35, there are at most finitely many plaques in  Wk u Wh that meet 35. The
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components of dom(gkh) — U /-i int(7,) are compact intervals, finite in number.
The restrictions of gkh to these intervals are permuters of $-. Since there are only
finitely many gkh, we proceed as above with all of them and obtain a finite set of
permuters of f. Let f denote the pseudogroup (of class C2) on R generated by
these permuters.

The above paragraph has set the stage for an application of (2.4). Fix J = [x,y]
G f and, for definiteness, consider the case x G B. Let G be the group of
C2-diffeomorphisms of J onto itself defined (as in §2(B)) by f, and observe that G
contains every holonomy transformation of J onto itself produced by loops on B
based at x. Let G0 be the symmetric generating set of G as in (2.4). Given
b' G (x, y), we can use (2.4) to find a' G (x, b') as close to x as desired, satisfying
a' < f(b') for all / G G0.

By Van Kampen's theorem, *((£f, c) is generated by the image of -nx(A¡) (J
tT\(Bx) u • • • U "ïïx(BJ(,)) suitably mapped into n1(Lj, c). Arguing as above for each
B{ and using the fact that irx(Aj) is finitely generated, we readily choose [a, b] G
(c, d) and r„ as specified in (3.9).

The proof of (3.0) is complete.

4. The structure of the set of local minimal sets. Let Ck G Mk, k > 0, be the sets
defined as in the Statements of Results. It will be convenient to set C_x = M_x = 0.
Our main aim in this section is to prove (4.0).

We emphasize the convention of §1(E).
In the following two lemmas, L denotes an arbitrary leaf of S.

(4.1) Lemma. Let Y G L be a compact, S-saturated subset. Let U be the
component of M — Y containing L, and let Lx, . . . , Lr be the leaves of 8U. Then
Y = L, U • • •  uLr.

Proof. If Y = 0, then 5/7=0 and there is nothing to prove. The fact that 517 is
a finite union of leaves is from (3.6). Evidently Lx\j ■ ■ ■ \j Lr G Y. Let L0 G Y he
a leaf of S. Since L is asymptotic to L0, a transverse arc to L0 is met by L in a set
of points that contains a sequence {xm}m>1 converging to x0 G L0. Either x0 G
517, or the arc from xm to x0 must cross leaves of 517. Since there are only finitely
many such leaves, it follows that L0 G L„ some i. Thus, Y G Lx \j ■ ■ ■ \j Lr and
equality holds.    □

(4.2) Lemma. If Xx g X2g ■ ■ ■ G X¡ G ■ ■ ■ G L is an infinite nest of compact
S-saturated subsets, then X^ = U jL i X¡ is dense in L.

Proof. If X^ =£ L, let 17 be the component of M — Xt containing L. Let
Lx, . . . , Lr he the leaves of 517. By (4.1) A% = L, u • • • U Lr. We know that some
L¡ fZ Xt, since otherwise there would be a sufficiently large integer k such that
X+ = Lx (j ■ ■ ■ U Lr G Xk, a contradiction. Assume Lx fZ Xm. If some Lt is
asymptotic to Lx, then L, fZ Xm. Thus, without loss of generality, we assume that Lx
is not properly contained in any L¡. Let y G L, and let J be a compact subarc of a
leaf of £ such that y G int(7). Let xk G Xk C\ J such that limA_>00(xt) = y.
Without loss of generality, assume that xk £ 517, for all k. Since L n J clusters at
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xk, for each k, so does 5/7 n 7. It follows that some leaf L, is asymptotic to Lx. By
the above, if i ¥= 1, Lx is also asymptotic to L, and, in any case, L, is asymptotic to
itself. Since L, is a leaf of 517, it has a proper side. Thus, (2.3) and the remark
following that proposition imply that, for some k, the leaf through xk is asymptotic
to the leaf Lx through y. That is, L¡ G Xk c A^, a contradiction. Consequently,
Xt = L as desired.    □

We can now establish the first assertion of (4.0). We abbreviate " local minimal
set" by LMS.

(4.3) Theorem. Each LMS of S is at some finite level.

Proof. Let A1 be a LMS. Let L be a leaf in X. Choose a minimal set
Xx G X= L. If Xx = L, then X - AT, is at level 0. If Xx c L, let ¿7 denote the
component of M — Xx containing L. Then X G U. If L n U = X, then X is at
level 1. Otherwise, by (3.0), there is a minimal set Y c L n Í7 of S\U, and
X2 = Xx u y is compact. Necessarily, Y is a LMS at level at most 1. Proceeding in
this way, we produce a nest Xx c X2 G ■ ■ ■ G Xk G L of compact, 'í-saturated
sets such that X¡ — X¡_x is a LMS at finite level, 2 < í < k. If Xk = L, then
X = Xk — Xk _, and we are done. If no such integer k is ever reached, we obtain
an infinite nest Xx c X2 c ■ • ■ C L. By (4.2), A"„ = U°L, X, is dense in L. But
A-, C L — X and, by the definition of LMS, L — X is compact. This is a con-
tradiction.    □

We will prove the remaining assertions of (4.0) by induction on k. It will be
convenient to commence the induction with the vacuously true case k = -I.

Suppose that Mk (respectively, Ck) is compact, some k > -1. Let U = M — Mk
(respectively, U = M — Ck), an open, VJ-saturated set, generally not connected.
Let { y,}°l, be a sequence of distinct LMS at level k + 1 (respectively, distinct,
totally proper leaves at level k + 1). Then Y¡ G U and Y¡ — Y¡ G Mk (respectively,
Ck), V i > 1. Suppose that xi G Y¡ and that lim,_>.00(x,) = x G M. Let L be the leaf
of S through x. We must show L G Mk + X (respectively, L G Ck+X).

If L G Mk (respectively, L G Ck), we are done. Thus, we assume L G U. Let U0
denote the component of U containing L. By (3.0), let Y G L n t70 be a minimal
set of ff| U0.

(4.4) Lemma. The 5e/ Y reduces to a single proper leaf.

Proof. Let y G Y. Without loss of generality, assume that a transverse arc
[y, z) c Í70 and pointsy¡ G Y. are such that {yi)°°mX G \y, z) and lim^^.) = y. If
Y = U0, then every Y, = U0, contradicting the assumption that these LMS are
distinct. If Y is of exceptional type, (2.2) and the remark following the proof of
(2.3) allow us to have selected y so that the leaf through y has an element of 2-sided
contracting holonomy. Again, for i large, this leads to the contradiction Y¡ = Yi+X
= ■ ■ ■  = Y. It remains that Y reduces to a proper leaf.    □

(4.5) Proposition. The set Y coincides with the leaf L, hence L G Mk + X (respec-
tively, L G Ck+X).
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Proof. Otherwise, L is asymptotic to the leaf L' = Y, so we let y G L' and [y, z)
be such that L n \y, z) clusters aty. Since each point of L C\\y, z) is the limit of a
sequence of points {z, G Y¡ n [y, z))7-\> an^ since we can assume that each
Y¡ i= Y, we obtain a sequence {y¡ G Y, n [y, z)}°l, of closest points to y, y =
lim-_00(iyj.). Let L, he the leaf through y,. By (3.4), there is an imbedding cp, : L' X
[0, 1] -^ M, all large values of j, such that cp/L' X {0}) = L' and cp/L' X {1}) =
Lj, and each cp,({w} X [0, 1]), w G L', is a subarc of a leaf of £. But L is a leaf such
that L n [y, z) clusters aty; hence it would have to intersect leaves L,, a contradic-
tion.    □

This completes the inductive proof of the following.

(4.6) Theorem. For each k > 0, Mk and Ck are compact sets.

(4.7) Theorem. If k > 0 and if L is a leaf of S, then L C\ Mk is a finite union of
LMS.

Proof. If a LMS meets L, it is contained in L, so L n Mk is a union of LMS.
Let the inductive hypothesis be that, for any leaf L of 'S, L n Mk_x is a finite

union of LMS, k > 0. Then this holds vacuously for k = 0.
Assume the hypothesis for all k < j. Let L he a leaf of S and consider L n M,.

If L n Mj = L, then L c M, and K=L-Ln M±_x is a LMS at level/. Thus,
by the inductive hypothesis, L n Mj = L = fu(Lfl Mj_j) is a finite union of
LMS.

If L fi Mj. 7e L, let 17 be the component of M - (L n A/,) containing L. Let
Lx, . . . , Lr be the leaves of 517 and remark that L, n A/, = L,, 1 </</•; hence L,
is a finite union of LMS as above. By (4.1), L n Mj, = L, u • • ■ U ¿r.    □

It is an immediate corollary of (4.7) that L c\ Ck is a finite union of leaves. The
proof of (4.0) is complete.

It is not true, in general, that every leaf of S pertains to a LMS. The alternative
is described in the following easy corollary to (4.0) and will be analyzed in detail in
§5.

(4.8) Corollary. A leaf L of S belongs to a LMS if and only if L is a finite union
of LMS. In the alternative case, L contains LMS at arbitrarily high levels.

Proof. Since every LMS is at finite level, L pertains to a LMS if and only if
L = L n Mk for k sufficiently large. Such an equality holds if and only if L is a
finite union of LMS. Suppose that L does not pertain to a LMS and set Xk = L n
Mk, k > 0. Let Uk denote the component of M — Xk containing L. By (3.0),
L n Uk contains a LMS, necessarily at level k + 1. That is, we obtain an infinite
(proper) nest X0 c A", c • • • G Xk G • • • G L, so L contains LMS at arbitrarily
high levels.    □

The following will also be useful.

(4.9) Corollary. Let L be a totally proper leaf. Then every leaf of lim(L) has an
element of contracting holonomy on whatever side is approached by L.
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Proof. Let L' be a leaf of lim(L) at level k. Let J denote a compact, transverse
arc [y, z], properly crossing L', such that Jc\Lc\Ck = JC\L'= {x). This uses
the fact that L n Ck contains only finitely many leaves (4.7). Indeed, L itself is a
finite union of leaves by (4.7), so there must be a leaf L" of L such that either
L" n (x, z] or L" n \y, x) is a sequence {ym) converging monotonically to x in J.
By (3.4), some loop at x on L' defines an element of holonomy g such that
g(ym) ¥=ym for some m. Then g or g"1 is the desired contraction.

5. Leaves at infinite level. Recall that a leaf L is said to be at infinite level if it lies
in no LMS. In this case, the substructure S(L) is a union of leaves at arbitrarily
high levels (4.8). This yields the first part of assertion (a) in (5.0). The remaining
assertions of that theorem will now be proven in a series of lemmas.

(5.1) Lemma. If L is at infinite level, then S(L) is dense in L, but it contains no leaf
that is dense in L.

Proof. Let Sk(L) = L n Mk, a compact, iF-saturated set (4.0). Since L lies in no
Mk, S0(L) c SX(L) G ■ ■ ■ G L, so_ur_o Sk(L) = S(L) is dense in L by (4-2)>
but, of course, no Sk(L) is dense in L.    □

Remark. Obviously, if L is at infinite level, then no LMS in L can be of locally
dense type. All must be either proper leaves or exceptional.

(5.2) Lemma. If S(L) contains totally proper leaves at arbitrarily high levels, then
every leaf of S(L) is totally proper.

Proof. Let Y denote the union of the totally proper leaves in S(L). Applying
(4.0) and (4.2) as in the proof of (5.1), we see that Y is dense in L. If L contains a
LMS of exceptional type, let L0 be a leaf in this LMS having an element g of
2-sided contracting holonomy (cf. (2.2) and the remark following (2.3)). Since
L0 G L = Y, some totally proper leaf meets the domain of g, hence is asymptotic
to L0. This contradiction implies that Y = S(L).    □

Let Uk denote the component of M - Sk(L) containing L. Thus, Uk is an open,
connected, ^-saturated set for each k > 0.

(5.3) Lemma. If L is at infinite level, then there is an integer N > 0 such that Uk is
a foliated product for every k > N.

Proof. By (3.5), we need only show that D k>0 Uk has empty interior. If, on the
contrary, 17 is a nonempty component of int((~l Í7*), then L (J: U, by (5.1). Let
Lx, . . . , Lr he the leaves of 5/7. We will prove that these leaves all lie in some
Sk(L). Tt will follow that 17 is a component of M — Sk(L) and, since U G Uk, we
will have 17 = Uk, contradicting the fact that L <£ /7.

Suppose, on the contrary, that at least one L¡ is not a leaf of any Sk(L). It is easy
to see that L G S(L) = L. If Lj is proper, then L, G Mk, for some k, and so
Lj G L n Mk = Sk(L). Thus, Ly is not proper. Since it has a proper side, L, is an
exceptional leaf. Choose x G Lj and xk G Sk(L) such that lim^^x^) = x along
an arc through x in a leaf of £. By (2.3) and the subsequent remark, there is a value
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of k such that the leaf of S through xk is asymptotic to £». But Sk(L) = L n Mk is
compact, so again L, G Sk(L) contrary to our assumption.    □

(5.4) Lemma. If L is at infinite level, then each leaf of Z = L — S(L) is dense in L
and no leaf of Z has a proper side.

Proof. Let N > 0 he as in (5.3). Let k > N, so Uk is a foliated product. Clearly,
Z c Uk. Let L, be a leaf of Z. By (4.1), 8(Uk) is dense in Sk(L); hence (3.2)
implies that Lm is asymptotic to every leaf of Sk(L) — 8(Uk). In fact, /_„ is
asymptotic to every leaf of Sk(L). To see this, fix y G L„ and let J be the leaf of £
in UN passing through y. Let 7, be the component of J n Í7, containing y, i > N.
Since D ¡>N U¡ has empty interior (see the proof of (5.3)), the nest {Jj)i>N forms a
fundamental neighborhood system of y in 7. Thus, there is i > k such that
Sk(L) G S¡(L) - 8(U¡). Since L„ is asymptotic to every leaf of S¡(L) - 8(U¡), it is
asymptotic to every leaf of Sk(L). Since k > N is arbitrary, L„ is asymptotic to
every leaf of S(L); hence L„ = S(L) = L. Also, L+ approaches every leaf of 8(Uk),
all k > N, and it follows that L„ approaches itself from both sides.    □

(5.5) Lemma. If L is at infinite level and S has smoothness class C, 2 < r < oo,
then the holonomy of each leaf of Z is C-tangent to the identity.

Proof. Let Lt he a leaf of Z and let 7 and y G int(7) n L» be as in the proof of
(5.4). For k > N, choose xk G J n Sk(L) nearest toy (hence, xk G 8(Uk)). Then
lrmk^x(xk) = y and every xk is a fixed point for the holonomy of Lm at y. By
iterated application of the mean value theorem, each holonomy element of Lt is
seen to be C-tangent to the identity.    □

Remark. Examples show that a leaf at infinite level need not have trivial
germinal holonomy.

(5.6) Lemma. If L is at infinite level, then Z = L — S(L) is an uncountable union
of leaves.

Proof. Fix a leaf 7 of £ in UN. Each leaf of Z meets the interior of J in
countably many points. We will show that Z n 7 is uncountable. Let y G 7 n Z
and let Jk denote the leaf of £ in Uk containing y, k > N. Let y' G J n Z lie on
the same leaf of S as y, y' ¥^y. Then, for kx sufficiently large, y' & Jk . There is a
holonomy transformation « in the foliated product UN such that y' G h(Jk ). Since
dom(«) = 7, the iterates of « move Jk to a countably infinite set of intervals. Thus,
Uk meets 7 (and, indeed, each leaf of £ in UN) in countably many distinct
intervals. By the same method, applied inductively, we find integers {km)m>x such
that Ukm+i G Uk and /7^+ meets each of the countably many intervals of 7 n 17^
in countably many intervals.

Consider the set 5 of all sequences {Im)m>i where each Im is a component of
Í7^ n 7 and Ix D I2 D • • • D Im D • • • . Since C\m>x U^ has empty interior, it
follows that D m>x Im is a single point of Z n 7. This sets up a one-one correspon-
dence between í and Z n 7. By the above, it is evident that Í is an uncountable
set.   □

All assertions in (5.0) have been established.
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6. The Poincaré-Bendixson theory of totally proper leaves. So far we have been
concerned with the structure of lim(L) where L is an arbitrary leaf of 'S. Much
stronger results are available when L has nonexponential growth (7.0), the totally
proper leaves in lim(L) playing a particularly important role.

In the present section, which we consider to be the real core of the paper, we will
analyze the way in which totally proper leaves "spiral in" on leaves at lower levels.
This generalizes the Poincaré-Bendixson theory of nowhere dense leaves in exfoli-
ations of T2 [Sc] and will yield, in particular, a proof of (6.0).

Shortly, we will define the "spiraling" mentioned above, but first we indicate
examples which may make the definition more understandable.

In Figure la, we depict a part B¡ of a (closed) neighborhood B (in a 2-dimen-
sional leaf) of a planar end at level 0 (cf. §1) that spirals on a toral leaf and, in
Figure lb, the entire neighborhood B = (J B¡ is indicated. (An end e of an
orientable surface N is called planar if it has a neighborhood B in N such that
int(5) is homeomorphic to an open subset of R2. Otherwise, e is nonplanar.) The
behavior in Figure 1, of course, is exemplified in the Reeb foliation.

Ni+ j j, Ni

Figure 1

Similarly, in Figure 2a, a part Bi of a neighborhood B of a nonplanar end at level 0
that spirals in on a 2-holed toral leaf is shown, and B itself is pictured in Figure 2b.

Figure 2
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Finally, in Figure 3 we show a neighborhood B = (J 5, of a planar end at level 1
which spirals in on a leaf L0 at level 1. In Figure 3c, the leaf L0 is also pictured.
Note that the two ends of L0 spiral in on toral leaves and that the ends of B at level
0 also spiral in on these tori.

Definition. Let (x0, x] be a subarc of a leaf of £, and let L0 be the leaf of 'S
through x0. If (x0, x] n L0 = 0 we say that x projects (in the negative direction) to
L0 and we write p(x) = x0 G L0.

Let L and L0 be leaves of S and let B c L be a complete connected, noncom-
pact submanifold of dimension « — 1. Suppose that A0 = 35 is a compact, con-
nected manifold. Finally, suppose that each point of 5 projects to L0 as above and
remark thatp : 5 —» L0 is locally a diffeomorphism. The following generalizes ideas
in [Sc], [So], and [Ni].

Definition. We will say that 5 spirals on L0 (on the positive side) if the
following conditions are satisfied.

(a) 5 = U°L05, where each 5, is a complete connected, (« — l)-dimensional
submanifold, 35, = N¡ u A,+ 1 is a union of two compact components, and int(5,)
n int(5,) = 0if/^y;

(b) there is a compact, connected, (« — 2)-dimensional submanifold N c L0
(called the juncture of the spiral) such thatp|A, maps N¡ diffeomorphically onto N,
0 < / < oo;

(c) for eachy G L0 and each i > 0,p~x(y) n (5, — Ni+X) is a single pointy,;
(d) for eachy G L0, the sequencep~x(y) = {y¡}i>0 converges monotonically toy

™[y,y0].
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Similarly, projection in the positive direction and spirals on the negative side of
L0 are defined.

Remark that int(5,) » L0 — N, i > 0. In particular, N does not separate L0. Also
remark that {B(k) = \J ¡>k B¡)k>0 is a fundamental neighborhood system of an
end e G & (L).

Definition. The end e G & (L) as above is said to be periodic of period L0.
We can now state the basic result of this section. We will postpone its proof, first

deriving (6.0) as a consequence.

(6.1) Theorem. Let L be a leaf with a totally proper end e at level k. Then e is
periodic of period L0, where L0 is totally proper at level k.

In particular, if L is totally proper, so are all of its ends, and we will use (6.1) to
decompose L into a compact piece and finitely many spirals. With this, (6.0) will be
an elementary consequence.

(6.2) Lemma. Let L be a totally proper leaf of S. Let {em) c & (L) be a sequence
converging to e G & (L), and suppose that e is at level k. Then, for m sufficiently
large, em is at level strictly less than k.

Proof. Otherwise, we can choose all e„ to be at the same level > k. Since L is a
finite union of leaves (4.7), we can assume that all em are asymptotic to a common
leaf L' g lim(L) at level at least k. Without loss of generality, let each em he
asymptotic to L' on the positive side (where we do not rule out, a priori, that em
might be asymptotic to L' on both sides), fix x G L' and a transverse arc (x, z] not
meeting L n Ck. By (4.9), there is a loop a on L' at x defining an element / of
contracting holonomy, and we can assume dom(/) = (x, z]. In L, choose an
expanding nest of compact sets Kx c K2 c • • • , L = U Km, and a fundamental
system Ux D t72 D • • • of open neighborhoods of e such that each Um is a
component of L — Km and both Z7m and Um — Um + X are neighborhoods of em.
Since 17m is a component of L — Km, where Km is compact, we can find vmlx in
(x, z] such that, for every y G (x, vm], o lifts to a path ö on the leaf through y and
à n Km+X = 0. Since L' c em-lim(Z.) c(/7m - Um+X), chooseym G (x, vm] n (Um
- Um+X). Then the sets {f(ym))i>0 and {f(yr)}i>0 are disjoint if m ¥= r. Let

pm > 0 be such that xm = f'Pm(ym) G [f(z), z]. If xm = xr, then we claim m = r.
Indeed, choosep > max{pm,pr} and observe that f ~Pm(ym) = f~Pr(yr), so m = r.
Thus there is w G [f(z), z] at which {xm}m>1 clusters. The leaf L" through w
belongs to lim(L) and accumulates on L'; hence L" must be totally proper at
level > k + 1. If we can show L" c e-lim(L), we will have the desired contradic-
tion. For a fixed but arbitrary positive integer m, choose N > 0 so large that
fN(z) G (x, vm]. Since also yr G (x, vm] n Um for r > m, we see that fN(xr) =
fN-">(yj) is a point of Um. That is, fN(xj) G [fN+x(z),fN(z)] n Um, all r > m, so
Um accumulates at fN(w) G L". Since m is arbitrary, L" c e-lim(L).    □

(6.3) Proposition. // L is a totally proper leaf at level k, then L = A u 51
U • • • U5r, where A is a compact, connected (n — I)-dimensional manifold with
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boundary components Nx, . . . , Nr and
(a) A n BJ = NJ, 1 <y <r;
(b) 5' n BJ = 0, i +Ji
(c) eac« 57 spirals on a totally proper leaf Lj at level at most k — 1 ;
(d) for at least one value of j, Lj is at level k — 1.

Proof. By (6.2), L has at most finitely many ends ex, . . ., e^X) at level k — 1.
Since lim(L) is the union of all e-lim(L), e G S (L), L does have at least one end at
level k — 1. By (6.1), each e, has a closed neighborhood B' g L spiraling on a
totally proper leaf at level k — 1. We can arrange that 5' n 5y = 0, i #/. Let
N' = 35', a compact, connected, (« — 2)-dimensional manifold. It is elementary
that one can produce a compact, connected, (« — l)-dimensional submanifold
A G L - Ujiî* int(5') such that U^, N' GdA. Enlarging A, if necessary, one
also arranges that L - int(A) has no compact components. Since 3,4 has only
finitely many components, there are at most finitely many components BJ, r(l) <j
< s, of L — int(A) other than the components 5', 1 < i < r(l). Each &(BJ),

j > r(l), contains at most a finite number of ends at level k — 2 (again by (6.2))
and we apply (6.1) to each of these, enlarging A and increasing s, if necessary, to
obtain

L = A u 5' u • • •  U5r(1) u 5'(1)+1 u ■ • • u5r(2) u • • •  UBS
where, for r(l) <j < r(2), BJ spirals on a totally proper leaf at level k — 2. Here we
allow r(l) = r(2) in case there are no ends at level k — 2 in &(BJ),j > r(l). Finite
repetition of this process produces a decomposition of L as desired.    □

We begin the proof of (6.0). By [C-C3, Proposition 3], a nowhere dense leaf with
growth dominated by a polynomial will have to be totally proper. (By [C-C3,
Theorem 4], it will also be a manifold of finite type.) Thus, we must show that
every totally proper leaf at level k has exactly polynomial growth of degree k and
also has type k — 1.

First we consider the question of type. A totally proper leaf at level 0 is compact;
hence it has type -1. Inductively, suppose that totally proper leaves at level q < k
have type q — 1 and let L be a totally proper leaf at level k + 1. Write L = A u
51 u ■ • • U Br as in (6.3). Since 5' spirals on a leaf at level q < k, the fact that
this leaf has type q — 1 readily shows that the endset &(B') has type q < k
(indeed, S(<?)(5') is a singleton). Since &(L) is the disjoint union of the open-closed
subsets S (5'), 1 < i < r, and since q = k for at least one 5', it follows that L is a
manifold of type k.

Next we consider the growth. Again, it is obvious that totally proper leaves at
level 0 have exactly polynomial growth of degree 0. Inductively, suppose that
totally proper leaves at level q < k have exactly polynomial growth of degree q and
let L be a totally proper leaf at level k + 1. Write L = A u 51 u ■ • • U Br as in
(6.3). One defines the growth type of each 5' exactly as for the whole leaf L. If 5'
has exactly polynomial growth of degree a,, 1 < i < r, then L has exactly poly-
nomial growth of degree a = max {a,}. Because of the inductive hypothesis, it will
be sufficient to show that, if 5' = 5 = U ->0 Bj spirals on a leaf L0 and if L0 has
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exactly polynomial growth of degree q, then 5 has exactly polynomial growth of
degree q + 1.

Let N G L0 be the juncture and let N(e) = N X [-e, e] be a normal neighbor-
hood of N in L0. Let Nj(e) he a normal neighborhood of Nj in B,j > 1, projecting
diffeomorphically onto N(e), and let N0(e) = N0 X [0, e] be the normal half-neigh-
borhood in 5. Evidently, we can produce an imbedding cp0 : A(e) X / —* M,
W0 = Im(<jD0), such that W0 n L0 = N(e) and W0 n 5 = UJ>0 Nj(e). Construct
an (S, £) coordinate atlas on M (see §3) such that W0 is a union of charts and
such that the remaining charts {(Wt, <p,)}7=i satisfy W¡ n Nj = 0 = W¡ n N,
j > 0. Number these so that W¡ n L0¥= 0 exactly for 1 < / < j. We can assume
that Wj meets each 5,-, j > 0, for 1 < i < s. Although (W0, cp0) is not an (S, £)
chart, it serves as one relative to 5 and L0 with "plaques" A,(e) and N(e).

As in [PI, §4], the growth types of L0, B, and 5, can be measured in terms of the
plaques of W¡, 0 < i < s. Let P0 = W0 p\ L0= N(e). Let g0(l) he the number of
distinct plaques on L0 that can be reached by chains of plaques Pq, Px, . . . , Pr,
r < I, where P¡ n P¡+x ¥= 0, 0 < i < r - I. The growth type of g0 coincides with
that of the leaf L0.

Similarly, let PQJ = Nj(e),j > 0. Let g(l) denote the number of plaques meeting
5 that can be reached by chains 500, Px, . . . , Pr, r < /, and let A.(/) denote the
analogous function for 5, and chains P0J, Px, . . ., Pr. As we see by projection,
« (/) is independent of j, so we will denote this function by «(/).

Since N is compact and does not disconnect L0, L0 — N has the same growth
type as L0. Letting Pt = p(N0(e)) = N X [0, e], define gt(l) for L0 — N via chains
/%, Px, . . ., Pr, r < I. Again, by projection, it is evident that g*(l) = «(/).

Let «0 be the smallest integer such that there is a chain P00, Px, . . ., Pn _,, />„,
for 50. The same integer «0 plays the analogous role for each 5-, j > 0. By the
division algorithm, write / = X«0 + r and note that g(l) = «(/) + «(/ — «0) +
«(/ - 2«0) + ■ - - + h(r).

Since we assume that L0 has exactly polynomial growth of degree q, we see that
« = g, has the growth type of a polynomial of degree q. By the above formula for
g,g(l) < «(/) + «(/ - 1) + • • - +«(1) < /«(/) and

g(2/) > h(2l) + h(2l - n0)+ ■ ■ ■ +h(2l - (A - 1)«0)
> «(/) + h(l) + ■ ■ ■ +«(/)       (X terms)
= (l/«0)(/ - r)h(l) > (l/«o)(/ - n0)h(l).

That is, g has the growth type of a polynomial of degree q + I, and this is also the
growth type of 5. The proof of (6.0) is complete.    □

We turn to the proof of (6.1).
First, remark that if 5 is a complete, connected, noncompact, (n — 1)-

dimensional submanifold of a leaf L and if 35 is compact, then lim(5) can be
defined exactly as for a leaf and it is a nonempty, compact, ^-saturated set.

(6.4) Lemma. Let L be a leaf with a totally proper end e at level k. Then e has a
(closed) neighborhood B G L such that lim(5) = e-lim(L) and such that B is not a
neighborhood of any other end at level k.
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Proof. If, for every closed neighborhood 5 of e, lim(5) ^ f-lim(L), we can
choose a fundamental system of closed neighborhoods L D Bx D 52 D • • • of e
and leaves L, G lim(5,) — (e-lim(L)). We do not claim L, ¥= Lj for i =£j. In 5,,
choose {x¡j)f=x converging to x, G L¡. We can assume that {x,} converges to
x G M and use the diagonal process to choose {y, = x,^}"!, also converging to
x. In L u &(L),y¡ -» e and so x G e-lim(L). In particular, x £ L„ i > 1. Let L' be
the leaf of S through x, necessarily at level k' < k. Choose (x, z] to meet no leaf at
level < k'. Having possibly reversed the transverse orientation of S and/or passed
to a subsequence of {Lj), we can assume that, for arbitrary b G (x, z], L, n (x, b]
¥= 0 for i sufficiently large. Choose [c, b] c (x, z] such that every leaf of S that
meets (x, b] also meets (c, b). This can be done using (3.8), the holonomy along L'
being unbounded by (3.4) and the fact that L' c e-lim(L). Then, for / sufficiently
large, one can choose z, G L, n [c, b]. By passing to a subsequence, we obtain
w = lim(z,) G [c, b]. Choosing {z,-,}"!, c 5, converging to z, in M, and again using
the diagonal process, we see that the leaf L" through w lies in e-lim(L) and is at
level k" > k'. A finite iteration of this procedure will produce a leaf of e-lim(L) at
level greater than k, a contradiction.

Thus, we find 5 such that lim(5) = e-lim(L). Suppose 5 is a neighborhood of
infinitely many ends at level k. By (4.0), lim(5) is a finite union of totally proper
leaves and, by the same arguments as in the proof of (4.9), each leaf of lim(5) has
an element of contracting holonomy on whatever side is approached by 5. Thus,
the argument in the proof of (6.2) applies and shows that 5 must be a neighbor-
hood of an end at level greater than k, contradicting the fact that lim(5) = e-
lim(L). Thus, we can choose 5 small enough to exclude all ends at level k other
than e.    □

Fixing 5 as in (6.4), we will find BGB, also a closed neighborhood of e, and a
leaf L0 at level k such that 5 spirals on L0. This will complete the proof of (6.1).

Let U he the component of M — (e-lim(L)) containing L. There is a leaf
L0 G 5/7 G e-lim(L) that is (totally proper) at level k. We suppose that 5 ap-
proaches L0 on the positive side and select x G L0 and a transverse arc (x, z] c Í7.
Since lim(5) = e-lim(L), we see that 5 n (x, z] = {ym}^_! is a sequence con-
verging monotonically to x. We can assume thatyOT £ 35, for all m > 1.

Decompose L0 = A (j 51 u • ■ ■ U Br so as to satisfy (3.3) relative to U, x G
int(A). In the following, it may be necessary to rechoose A larger. This may
multiply the number of "arms" 5', but each of these will be in one or another of
the original arms.

Let G0 be a finite set of loops at x generating irx(A, x), G, a set of loops in 5'
based at x, G 35', 1 < * < r, generating w,(5', xj), fix paths t, in A from x to x„
and regard G = G0 u txxGxtx (J • • ■ \jrjxGrrr as a set of generators for w,(.L0, x).

(6.5) Lemma. // A is chosen sufficiently large, there is an integer K > 0 such that,
for each a G G, the holonomy transformation h0 and/or h~x, defined by a, maps the
set {ym)m>K 'ni0 dself. Furthermore, there is some o G G, e = ± 1, and an integer
p > 0 such that «„e(ym) = ym+p for ail m > K. In particular, this «„' is an element of
contracting holonomy.
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Proof. Let W G U be an open (not necessarily 'JF-saturated) set such that, for
each w G W, p(w) G L0 is defined and the arc (p(w), w] lies in W. Furthermore, if
[a, ß] is any leaf of the £-saturation of 5' in U, 1 < i < r, require that (a, ß) G
W. Let X = W n 35 and remark that p(A") is a relatively compact subset of L0.
Thus, without loss of generality, assume thatp(A') c int(A). It is then possible to
choose W satisfying all of the above so that W n 35 = 0. For a suitable integer
K > 0, every a G G lifts to a path on L n W starting at ym, V m > K, and such
lifts actually lie in 5 n W since W n 35 = 0. This is a consequence of the
finiteness of G0 and of the product structure of the £-saturation of 5', 1 </'</•.
For m > K and for each a G G, there is a„(/w) G Z such that ha(ym) = ya (m). If
a^(K) = AT, for all o G G, then in standard fashion we find a subset L' of 5
projecting diffeomorphically onto L0. But then L' = L and L cannot approach L0.
Thus, we can find a G G and e = ± 1 such that h¿(yK) = yK+p for some p > 0. It
follows that «„e(ym) = ym+p, for every m > K.    □

Remark. If, for some a G G, ha(yK) = yK, then ha(ym) = ym, for all m > K.

(6.6) Lemma. 77ie decomposition L0 = A \j Bx u ■ ■ • U Br and the associated
generating set G can be chosen so that, if a G G — G0, then ha(ym) = ym, for all
m > K.

Proof. As in the proof of (3.9), the holonomy pseudogroup of 'S, defined
relative to a suitable biregular cover, defines a finitely generated, transitive per-
muter pseudogroup of the system ^, of intervals defined by the £-saturation of 5',
1 < / < r. In the generalized Kopell lemma (2.8), take 7 = 7, to be the £-leaf at x,
and take b = b¡ = hr(yK), a = a, = hT(yK+,) (defined if K is chosen large enough).
An obvious application of (2.8) then allows us to choose A larger so that, for each /,
the holonomy group on 7, defined by 77,(5', xj) is generated by elements y (basic
loops at 7,) such that a, < y(bj). But this implies that y(bj) = b¡, hence that
K(yK) =yK,VoG G„ V i.   a

We fix the decomposition of L0 as in (6.6). Let a be the smallest positive integer
such that ha(yK) = yK+x> IOT some 1°°P o in A based at x. Define r/ : mx(A, x)—*Z
by ha(ym) = ym+r,(ay\, for m large. This is a surjective homomorphism; hence it
defines a surjection tj : HX(A) —* Z and tj can be regarded as a nondivisible class in
HX(A). Let / : A -+ Sx be a classifying map for 17. That is, if 9 G HX(SX) is the
fundamental class, then r/ = f*(0).

Let 1 : dA "^ A be the inclusion. A connected cycle c on dA is homologous to an
integral linear combination of loops in some G,; hence, by (6.6), i)(c) = 0. That is,
'*(Tl) = 0 and this implies that f\dA is inessential. Therefore, / is homotopic to a
smooth map g : A —> Sx having a regular value p0 £ g(3^1). Let N = g~x(Po), a
compact, orientable, (n — 2)-dimensional submanifold of A with 3A = N n dA =
0. This manifold represents the Poincaré dual •)+ G Hn_2(A, 3v4) of r\. Since i]m is
nondivisible, A is homologous to a connected manifold, so we can assume that A is
connected.

In the choice of G0 c G generating <nx(A, x) we select t, ax, . . ., am so that the
intersection number of r with A is 1 and that of each a' with A is 0, we conclude
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from the above that «T is a contraction with «T(y,) = yJ+\ and that h(a¡)(yj) = yy, for
large enough /. Fix such j0 > K. Define 5- c 5 to be the set of points that can be
reached from yj +JX by the lifts of paths on L0 starting at x and issuing from the
same side of A as does t, but with interiors not meeting A. Evidently, for each

j > 0, Bj has exactly two boundary components, Ay and A,+ 1, each mapped
diffeomorphically onto A by p, and p : 5, — 35, —> L0 — A is also a diffeomor-
phism. Since {y,} converges monotonically to x in [x, z], it follows that 5 = 50 u
5, u • • • spirals on L0. As such, it is a neighborhood of at least one totally proper
end at level k. Since 5 is a neighborhood of only one such end, namely e, it follows
that 5 is also a neighborhood of e. (It also follows that A = 1, but we do not need
that fact.)

We have finally established (6.1).    □

7. Leaves with nonexponential growth. We give here some corollaries to the basic
structure theorem (7.0) for nonexponential leaves. As remarked in the introduction,
(7.0) itself has already been proven in [C-C4] by use of the other results of this
paper.

First we remark on the various possibilities allowed in (7.0). In case (a), (6.0)
asserts that the leaf must be exactly polynomial and that it must be a manifold of
finite type. In [C-Cl], it was shown that "almost all" orientable surfaces of finite
type actually occur as totally proper leaves in suitable, C°°-foliated 3-manifolds. In
case (b), examples [C-C4] show that L need not have exactly polynomial growth.
Indeed, there is a continuum of growth types possible, each dominating all
polynomial types. Furthermore, we can show that the "fractional growth" examples
in [C-C4] can be made C2 if they are required to dominate the cubic type, so this
provides a continuum of distinct growth types in case (b), all dominated by
polynomials. If a nonexponential leaf is at infinite level, it cannot have growth
dominated by a polynomial [C-C3, Proposition 2], and examples show that continu-
ously many growth types, all occurring in the same foliation, are available [He]. It
is also possible for a leaf at infinite level to have exponential growth [He] and for
an exponential leaf at finite level to have totally proper substructure and to satisfy
(b) of (7.0) [C-C4].

(7.1) Corollary. If L is a leaf of S with neither exponential nor exactly
polynomial growth, then the holonomy of L is either germinally trivial or it is
C-tangent to the identity (where S is of class C', 2 < r < oo).

This is an immediate consequence of (5.0), (6.0), and (7.0).

(7.2) Corollary. // L is a leaf of 'S having growth dominated by the polynomial
xk, then the leaves of L all have growth dominated by this same polynomial.

Proof. If L is totally proper, this is clear. Since L cannot be at infinite level, as
remarked above, either L is totally proper or we have L = U U S(L) as in (b) of
(7.0). The leaves in Í7 have the same growth as L. If L' is a leaf of S(L) at highest
level, then L' c 5/7 (4.1) and, by [C-C3, Lemma 4], k strictly exceeds the degree of
growth of L'. Thus, k exceeds the degree of growth of every leaf in S(L).    □

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



208 JOHN CANTWELL AND LAWRENCE CONLON

(7.3) Corollary. Let L be a leaf of S having a proper side and suppose that L is
approached by a leaf L' with nonexponential growth. Then L is totally proper, it has
an element of contracting holonomy on whatever side is approached by L', and
tí     (Lj',    K.)   ̂ =   U.

Proof. The fact that L is totally proper is contained in (7.0) and (5.0). The
remaining assertions are proven exactly as in [PI, Theorem 5.4], using (3.8).    □

This result generalizes [C-C3, Theorem 2], giving a positive answer to the
conjecture on p. 99 of that reference. It also generalizes a compact leaf theorem of
Plante [PI, Theorem 8.1] that is closely related to the Reeb-Thurston stability
theorem [Th], [R-S]. This suggests possible extensions of the stability theorem to
leaves with a proper side (cf. [Di, Theorem 4]; but the proof, if not the assertion, is
incorrect). The best such extensions will probably be to totally proper leaves. Here,
using our present theory, we formulate an initial result in this direction.

(7.4) Corollary. Suppose that the leaves of S all have nonexponential growth and
that L is a proper leaf (necessarily totally proper) with HX(L; R) = 0. Then L has an
open, S-saturated neighborhood U that is fibered over Sx by S\U.

Proof. By (7.3), L cannot be approached on either side by any leaf. By (3.4), L
has an S -satura ted neighborhood V » L X (-1,1) with L X {0} = L and L X {t)
a leaf of S\ V for a (necessarily closed) set of values / clustering at 0 from both
sides. If there is a gap V0 = L X (t0, tx) in which no L X {/} is a leaf of 'S, but
L X {t0) and L X {tx} are leaves of S, then L X {t0) satisfies the same hypotheses
as L, so (7.3) and (3.4) again apply to contradict the assumption on V0. Thus, the
union W of all proper leaves homeomorphic to L is an open set, smoothly fibered
by ^1W over some Hausdorff 1-manifold without boundary.

Let U be the component of W containing L. The above fibration restricts to a
fibering p : U—* B, where 5 is a connected, Hausdorff 1-manifold without
boundary. Thus 5 = R or 5 s S1. If we can produce a smooth, closed transversal
a G U, thenp immerses a in 5, so 5 — Sx.

If 5/7 = 0, then U = M and again B ^ Sx, so we are done. Otherwise, let
L' G SU. If the holonomy of L' is not unbounded on a side bordering U, then (3.4)
implies that L' c 17. Thus, on a side bordering U, L' is approached by a leaf of
S\ U. In standard fashion, this allows us to construct a smooth, closed transversal
o G U, as desired.    □
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