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PACS 47.57.E- – Suspensions
PACS 47.54.-r – Pattern selection; pattern formation
PACS 47.80.Jk – Flow visualization and imaging

Abstract – Suspensions of small anisotropic particles, “rheoscopic fluids”, are used for flow
visualisation. By illuminating the fluid with light of three different colours, it is possible to
determine Poincaré indices for vector fields formed by the longest axis of the particles. Because
this vector field is non-oriented, half-integer Poincaré indices are possible, and are observed
experimentally. An exact solution for the direction vector appears to preclude the existence
of topological singularities. However, we show that upon averaging over the random initial
orientations of particles, singularities with half-integer Poincaré index appear. We describe their
normal forms.

Copyright c© EPLA, 2010

Introduction. – Figure 1(a) is a photograph of
the surface of a randomly stirred fluid. The fluid is a
suspension of elongated microscopic reflective particles,
illuminated by red, green and blue lights (R, G, B) coming
from three different directions (fig. 1(b)). Two circles
indicate points with the property that, on traversing a
small clockwise circuit around this point, we encounter
the primary colours without repetition (in one case
R-G-B, in the other R-B-G). At first sight the existence
of such points seems unremarkable, but we argue below
that it is indicative of a singularity in the direction
field of the particles which appears to be forbidden. Our
letter explains why such singularities are nevertheless
observed, and classifies their normal forms. The results
are relevant to more general contexts in which small
anisotropic particles (such as microorganisms, wood fibres
in paper manufacture, or polymers in dilute solution) are
suspended in a turbulent fluid.
The fluid used to produce fig. 1(a) was a commer-

cially available rheoscopic fluid, which is used for flow
visualisation [1]. In our experiment it was used with-
out dilution, but the volume fraction of the reflective
particles was very small (less than 1%). It is desirable to
understand what aspects of the fluid motion are revealed
by the rheoscopic fluid (various aspects are discussed
in [2–6]). In order to pose the questions in the simplest
setting, we consider incompressible flow in two dimensions,
before finally considering the three-dimensional case. The

2π/3 2π/3

2π/3

(a) (b)

Fig. 1: (a) Textures obtained by illuminating the surface of
randomly stirred rheoscopic fluid with diffuse red, green, and
blue light sources, as illustrated in (b). Circles in (a) indicate
the positions of singularities.

reflective elements are assumed to be rod-like axisym-
metric particles which are very short compared to the
characteristic length scale of the velocity field of the flow,
v(r, t).
In the following we show that fig. 1(a) demonstrates

the existence of singularities in the direction field which
have half-integer Poincaré indices. (The Poincaré index
is a topological invariant. For a vector field in the plane,
the Poincaré index of a closed curve is the number of
2π clockwise rotations of the vector field as the curve
is traversed, also clockwise. Curves with a non-zero
Poincaré index encircle a singularity of the field.) There
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Fig. 2: (a) Direction field around a vortex with Poincaré index 1
and the corresponding colour cycling through R→G→B→
R→G→B. (b), (c) The same for a core singularity with index
1
2
and for a delta singularity with index − 1

2
, respectively.

are two reasons why the appearance of such singularities
is unexpected. Intuitively, one expects that the long axis
of the particles will align with streamlines of the flow.
Streamlines around a vortex or about a saddle point
have Poincaré index of ±1. However, singularities of this
type would result in the particles reflecting each colour
twice upon making a circuit (see fig. 2(a)), which is not
consistent with fig. 1(a). A more persuasive argument
is that the exact solution (given below) of the equation
of motion for the axis of the particles shows that the
Poincaré index of this vector field is invariant, which
seems to preclude the emergence of patterns such that
shown in fig. 1(a). However, to compute the intensity of
reflected light one must average over the random initial
particle orientations. We show that this gives rise to an
order-parameter field which does exhibit singularities.
We remark that use of colours to enhance rheoscopic
visualisations was previously demonstrated in [7], but the
technique was not used to reveal singularities.
The axial direction field of the rod-like particles is

non-orientable (that is, the sign of the vector is irrelevant).
This allows other types of singularity, such as those shown
in figs. 2(b) and (c), which have a half-integer Poincaré
index, and which are consistent with the particles reflec-
ting each colour only once upon traversing a closed curve.
These singularities have not previously been considered
in fluid dynamical problems, although they are seen in
fingerprints (where they are known as the core and delta,
respectively [8]).

Equation of motion and its solution. – The equa-
tion of motion for an ellipsoid of revolution in a flow at low
Reynolds number was obtained by Jeffery [9], and Brether-
ton [10] showed that the same equation applies to a general
axisymmetric body. In the limit of rod-like particles, a
unit vector n(t) in the direction of the axis of a particle
satisfies

ṅ=An− (n ·An)n, (1)

where A(r(t), t) is the velocity-gradient tensor at its
centre, r(t), with elements Aij = ∂vi/∂rj . The particle
position is advected by the flow, ṙ= v(r, t).
An exact solution of the equation of motion (1) is

obtained from a matrix M(t) which is obtained by inte-
grating the linear differential equation

Ṁ=A(r(t), t)M, (2)

where r(t) is the trajectory of the centre of the rod. This
matrix is the monodromy matrix describing the evolution
of the infinitesimal separation δr(t) of neighbouring points
in the flow: we have δr(t) =M(t, t0)δr(t0), where δr(t0)
is the initial infinitesimal separation at time t0. The initial
condition for eq. (2) at time t0 is M(t, t0) = I, where I is
the identity matrix. If n0 is the initial direction of the rod
at time t0, the direction at time t is given by

n(t) = d(t)/|d(t)|, d(t) =M(t, t0)n0. (3)

This solution was first given by Szeri [4]. We are interested
in the vector field of the rod orientations at position r and
time t. The matrixM then depends upon position as well
as time. We write M(r, t, t0) for the monodromy matrix
of a trajectory which reaches r at time t, starting from r0
at time t0. It follows from (3) that the vector field of rod
orientations is

n(r, t) =M(r, t, t0)n0(r0)
/|M(r, t, t0)n0(r0)|. (4)

The monodromy matrixM(r, t, t0) is a smooth function
of the final position of the trajectory, r. The solution (4)
can therefore only be discontinuous if the initial direction
field is discontinuous, or if the denominator |Mn0| is
equal to zero, which is not possible because det(M) = 1.
If the initial direction vector field n0(r) is non-singular,
we therefore conclude that the direction field n(r, t)
remains non-singular for all times. Because the vector field
generated by (4) is smooth, the Poincaré index of this field
is zero for any closed curve.
In an earlier paper [11] we discussed the textures formed

by rod-like particles in a complex flow for a specified
initial direction field n0(r). Here we deal with the more
complex case where we must average over the random
initial orientation. We show below that this leads to
singularities of the orientation field.

An order parameter for rheoscopic fluids. –
Initially, at time t0, the rod-like particles in a rheoscopic
fluid are randomly oriented, due to the effects of Brownian
motion. We must therefore consider the distribution of
rod directions generated by the solution (4) at each
point in the flow. This can be described by a probability
density P (θ) for the rod orientation angle θ (satisfying
P (θ+π) = P (θ), because the rods are non-oriented). This
probability density depends upon both position and time.
Specifying the angle distribution at each point in space
and time would provide too much information to be a
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useful description. It is therefore desirable to map this
distribution P (θ, r, t) to an order parameter vector ζ(r, t).
The direction of this non-oriented vector should represent
the predominant direction of the rods, and its magnitude
should indicate the degree of ordering (with |ζ|= 1 when
the rods are all in the same direction, and |ζ|= 0 when
their angular distribution is isotropic).
The initial direction vector n0 in (2) is a random vector,

uniformly distributed about the unit circle. The vector
d(t) =M(t, t0)n0 is therefore distributed about an ellipse.
If the unit circle is represented as x ·x= 1, the ellipse upon
which d lies is represented by the equation

x ·Kx= 1, K= (MMT)−1. (5)

This ellipse has its longest axis aligned along a direction θ̄,
which is in the direction of the eigenvector corresponding
to the largest eigenvalue of MMT. Its aspect ratio ν is
the square root of the ratio of the eigenvalues of MMT

(we choose to consider ν � 1). It is natural to define the
magnitude of the order parameter to be a function of ν
which interpolates between zero (when ν = 1) and unity
(as ν→∞). In a later paper we shall argue that the most
natural definition for the order parameter is

ζ = [(ν− 1)/(ν+1)]n(θ̄), (6)

where n(θ) is a non-oriented unit vector with angle θ. The
same order parameter could be used for nematic liquid
crystals (described in [12]), but we have not seen it used
in the liquid crystal literature.

Relation between order parameter and light
scattering. – The colour which is reflected by the
rheoscopic fluid in the experiment (fig. 1) may be related
to the order parameter. The details of this relation depend
on the ratio of the length of the rod-like particles in
the rheoscopic fluid to the wavelength of light, and upon
their surface roughness. For illustration we discuss the
simplest case, where the rods are short compared to the
wavelength of light. In this limit the scattered intensity
from a rod is proportional to the square of the projected
cross-section, so that a rod at angle θ scatters light from
a source which is perpendicular to the direction φ with an
intensity proportional to cos2(θ−φ). The combined effect
of scattering from the three light sources results in additive
colour mixing: at any given point the reflected colour C is
a weighted combination of red, green and blue (R, G, B)
of the form

C = I(0)R+ I(2π/3)G+ I(4π/3)B, (7)

where I(φ) is

I(φ) =

∫ 2π
0

dθ P (θ) cos2(φ− θ). (8)

c
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Fig. 3: (a) Order-parameter field for a random flow;
(b) demonstrates additive colour mixing from three primary
light sources according to eq. (9). The circle marks the posi-
tion of a delta singularity; (c) and (d): the same, but for a core
singularity.

We found the following expression for the reflected colour
in terms of the parameters (θ̄, ν) of the order parameter:

C =
1

4(ν+1)

{
4R[ν cos2 θ̄+sin2 θ̄]

+G[2(1− ν) cos2 θ̄− 2√3(ν− 1)
× sin θ̄ cos θ̄+3ν+1]
+B[2(1−ν) cos2 θ̄+2√3(ν−1)
× sin θ̄ cos θ̄+3ν+1]

}
. (9)

Figures 3(a) and (c) show the order parameter obtained
from (4) and (6) for small rods moving in a random
flow field (we used the same model as in [11]), starting
from a uniform distribution of angles. There are patterns
which resemble the delta (fig. 3(a)) and core (fig. 3(c))
singularities illustrated in figs. 2(c) and (b). Figures 3(b)
and (d) show the light reflected from three coloured
sources, computed using eq. (9). (The additive colour
mixing for this figure was performed using MatLab.)
They exhibit singularities with a Poincaré index of ± 12 ,
consistent with the experimental result shown in fig. 1(a).
In the remainder of this letter we discuss how these
structures can be understood, and the possibility that
additional types of singularities might appear if the flow
is three-dimensional.

Singularities of the order parameter. – If zeros
of the vector order parameter field exist, the Poincaré
index of a curve may be non-zero even though the order
parameter depends smoothly upon position. A singularity
where the order parameter is equal to zero occurs where
the ellipse upon which the vector d(t) =M(t, t0)n0 lies
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Fig. 4: (Colour on-line) (a) The order parameter field ζ(R) for
the singularity of eq. (12), with a positive sign multiplying Y .
It is a core singularity. (b) The order parameter field when the
negative sign is chosen. This is a delta singularity.

degenerates to a circle. Thus zeros of the order parameter
occur when M is a rotation matrix.
First we consider whether such singularities are generic.

Because the two-dimensional flow is area-preserving,
the 2× 2 matrix M satisfies det(M) = 1. This matrix can
be written in a form determined by three parameters
λ, κ, χ:

M=D(λ, λ−1)S(κ)O(χ). (10)

D, S and O are diagonal, shear, and rotation matrices:

D(λ1, λ2) =

(
λ1 0
0 λ2

)
, S(κ) =

(
1 κ
0 1

)
,

O(χ) =

(
cosχ sinχ
− sinχ cosχ

)
. (11)

The singularity occurs when λ= 1 and κ= 0 in (10) (with
no condition upon χ), which is realised upon varying two
parameters. The singularities therefore occur at isolated
points in the plane.
Having identified the condition defining the singular

point, we now consider the form of the order parameter
field in its vicinity. To leading order, generically the para-
meters λ and κ depend linearly on position in the vicinity
of a singular point r0 = (x0, y0) at which the monodromy
matrix becomes a pure rotation. In the vicinity of this
point there exists a coordinate system R= (X,Y ) such
that M is in the normal form

M(R) =D(1+ 12X, 1− 12X)S(±Y )O(χ)+O(R2). (12)

The local coordinate system is related to r by a linear
transformation: r− r0 =TR, where T is a 2× 2 matrix
and the sign in (12) is chosen so that T is a non-inverting
transformation (det(T)> 0). The vector order parameter
for the normal form is plotted in fig. 4 for both choices
of the sign in (12): the two patterns resemble the core
and delta singularities of fingerprints (as described in [8]).
It is instructive to analyse the behaviour of the order
parameter in the vicinity of these singularities. Retaining

only the leading-order terms in X and Y from (12), we
find

MMT =

(
1+X ±Y
±Y 1−X

)
+O(R2), (13)

where R=
√
X2+Y 2. The eigenvalues of MMT are

λ± = 1±R+O(R2), so that ν =
√
λ+/λ− =R+O(R2).

Writing (X,Y ) = (R cosΘ, R sinΘ) and (cosΦ, sinΦ)T for
the eigenvector of MMT corresponding to λ+, we find
Φ=± 12Θ, so that

ζ(R,Θ)=Rn(± 12Θ)+O(R2). (14)

Equation (14) describes the generic singularities of the
order parameter of a suspension of anisotropic parti-
cles. These smoothly varying singular forms should be
contrasted with singularities of the order parameter of
liquid crystals. Liquid crystals also have singularities
with half-integer Poincaré indices, which are termed
disclinations. These, however, are not described by
continuous functions and they are non-universal. (They
depend upon the ratios of the coefficients in the Frank-
Oseen functional [12], and this functional is based upon
approximations which break down where the direction
gradient diverges.)

Three-dimensional flows. – Thus far, we have
considered two-dimensional flows. In the experiment
illustrated in fig. 1(a), the depth of the rheoscopic fluid
was a few millimetres, and comparable to the scale size of
structures in the texture shown in fig. 1(a), which shows
a region which is a few centimetres across. We therefore
consider what additional structures might arise when
the flow is three-dimensional, where the direction vector
n(r, t) covers a sphere rather than a circle (it remains
non-oriented). The optical depth was very small, so that
light was reflected from a thin layer of fluid just below
the surface. It is only the direction of the projection of
n(r, t) in the plane of the fluid surface which determines
the colour of the scattered light. This projected vector
field, np(r, t), can have simple zeros if there are positions
where the rods point out of the surface of the liquid.
The projected vector field np(r, t) then has a simple
zero, with Poincaré index +1. We conclude that if the
flow is three-dimensional, double rotations of the primary
colours (as in fig. 2(a)) may be observed, as well as single
rotations (figs. 2(b) and (c)). However, no examples were
observed in our experiment.

Conclusions. – An experiment on rheoscopic fluid
reveals singularities of the direction field with Poincaré
indices ± 12 . We define an order parameter for this field,
and show that its zeros have normal forms which are
analogous to core and delta singularities of fingerprints.
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