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Abstract Using our earlier results on polynomiality properties of plethystic

logarithms of generating series of certain type, we show that Schiffmann’s for-

mulas for various counts of Higgs bundles over finite fields can be reduced to

much simpler formulas conjectured by Mozgovoy. In particular, our result

implies the conjecture of Hausel and Rodriguez-Villegas on the Poincaré

polynomials of twisted character varieties and the conjecture of Hausel and

Thaddeus on independence of E-polynomials on the degree.

1 Introduction

Schiffmann [17] computed the number of absolutely indecomposable vector

bundles of rank r and degree d over a compete curve C of genus g over Fq .

Suppose the eigenvalues of the Frobenius acting on the first cohomology of C

are α1, . . . , α2g with αi+g = qα−1
i for i = 1, . . . , g. This means that for all

k ≥ 1 we have

#C(Fqk ) = 1 + qk −

2g∑

i=1

αk
i .
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302 A. Mellit

Schiffmann’s result says that the number of absolutely indecomposable

vector bundles of rank r and degree d on C is given by a Laurent polynomial

independent of C

Ag,r,d(q, α1, . . . , αg) ∈ Z[q, α±1
1 , . . . , α±1

g ],

symmetric in αi and invariant under αi → qα−1
i .

Suppose (r, d) = 1. Schiffmann showed that the number of stable Higgs

bundles of rank r and degree d is given by q1+(g−1)r2
Ag,r,d . Let C be a curve

over C. The moduli space of stable Higgs bundles Mg,r,d(C) is a quasi-

projective variety, and by a theorem of Katz [9] its E-polynomial defined as

Eg,r,d(x, y) =
∑

i, j,k

(−1)k x i y j dim Gri
F GrW

i+ j H k
c (Mg,r,d(C), C)

is given by (xy)1+(g−1)r2
Ag,r,d(xy, x, . . . , x). It is known [7] that this moduli

space has pure cohomology. In particular, the Poincaré polynomial

Pq,r,d(q) =
∑

i

(−1)i q
i
2 dim H i

c (Mg,r,d(C))

is the following specialization:

Pq,r,d(q) = Eg,r,d(q
1
2 , q

1
2 ) = q1+(g−1)r2

Ag,r,d(q, q
1
2 , . . . , q

1
2 ).

Since twisted character varieties are diffeomorphic to the moduli spaces of

stable Higgs bundles (see [9]), their Poincaré polynomials coincide.

The formula of Schiffmann was difficult to work with. In particular, it was

not clear that his formula is equivalent to a much simpler formula conjectured

earlier by Hausel and Rodriguez-Villegas for Poincaré polynomials [9], and

then extended by Mozgovoy for the polynomials Ag,r,d [15].

Here we study Schiffmann’s formula from the combinatorial point of view

and establish these conjectures. Our main result is:

Theorem 1.1 Let g ≥ 1. Let �g denote the series

�g =
∑

μ∈P

T |μ|
∏

�∈μ

∏g
i=1(z

a(�)+1 − αi q
l(�))(za(�) − α−1

i ql(�)+1)

(za(�)+1 − ql(�))(za(�) − ql(�)+1)
,

and let

Hg = −(1 − q)(1 − z) Log �g, Hg =

∞∑

r=1

Hg,r T r .
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Poincaré polynomials of moduli spaces 303

Then for all r ≥ 1, Hg,r is a Laurent polynomial in q, z and α1, . . . , αg, and

for all d, Ag,r,d is obtained by setting z = 1 in Hg,r :

Ag,r,d(q, α1, . . . , αg) = Hg,r (q, 1, α1, . . . , αg).

As a corollary, we obtain the GL-version of the conjecture of Hausel and

Thaddeus (see Conjecture 3.2 in [7]):

Corollary 1.2 For r, d, d ′ satisfying (r, d) = (r, d ′) = 1, the E-polynomials

of M(g, r, d) and M(g, r, d ′) coincide.

Davesh Maulik and Aaron Pixton announced an independent proof of The-

orem 1.1. Their approach is to make rigorous the physical considerations of

[1]. They claim that their work will settle the more general conjectures about

Higgs bundles with parabolic structures.

In the next paper [13], we extend Schiffmann’s [17] and Schiffmann–

Mozgovoy’s [16] methods to the parabolic case. Combined with the results of

the present work, we obtain a proof of the conjecture of Hausel et al. [8] on

the Poincaré polynomials of character varieties with punctures.

For a more precise technical version of the main result the reader is referred

to Theorem 5.2. We warn the reader that variables q, t in Sect. 5 correspond

to z, q in the rest of the paper and apologize for the inconvenience.

In Sect. 6 we discuss motivic classes of moduli stacks and connect our

results to the work of Fedorov, Soibelman and Soibelman [4].

2 Arms and legs

We begin by stating an elementary formula which relates the generating series

of arms and legs and the generating series of weights of partitions, proved in

[2] (we follow notations from [3]). For a partition λ and any cell � we denote

by aλ(�) and lλ(�) the arm and leg lengths of � with respect to λ. These

numbers are non-negative when � ∈ λ and negative otherwise. For partitions

μ, ν define

Eμ,ν =
∑

�∈μ

q−aν(�)t lμ(�)+1 +
∑

�∈ν

qaμ(�)+1t−lν(�).

For any partition μ, let

Bμ =
∑

�∈μ

qc(�)tr(�),

where c(�), r(�) denote the column and row indices. For any f let f ∗ be

obtained from f by the substitution q → q−1, t → t−1.
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304 A. Mellit

Lemma 2.1 For any partitions μ, ν, we have

Eμ,ν = qt Bμ + B∗
ν − (q − 1)(t − 1)BμB∗

ν . (1)

Proof We prove by induction on the largest part μ1 of μ (defined to be 0 if

μ = ∅). If μ = ∅, we have aμ(�) = −1 − c(�). Therefore

E∅,ν =
∑

�∈μ

q−c(�)t−lν(�).

For each fixed value of c(�), the numbers lν(�) go over the same range as the

numbers r(�). Thus we obtain

Eμ,∅ = B∗
ν .

This establishes the case μ1 = 0.

For the induction step, let μ′ be obtained from μ by removing the first

column, i.e. μ′ = (μ1 −1, μ2 −1, . . .). Splitting the sum according to whether

� is in the first column, we obtain

∑

�∈μ

q−aν(�)t lμ(�)+1 = q
∑

�∈μ′

q−aν(�)t lμ(�)+1 +

l(μ)∑

i=1

q1−νi t l(μ)−i+1.

For any cell �, we have

aμ(�) =

{
aμ′(�) + 1 if r(�) < l(μ),

−1 − c(�) otherwise.

This implies

∑

�∈ν

qaμ(�)+1t−lν(�) = q
∑

�∈ν

qa′
μ(�)+1t−lν(�)

+(1 − q)
∑

�∈ν : r(�)≥l(μ)

q−c(�)t−lν(�).

In the last sum for each fixed value of c(�) the numbers lν(�) go over the

same range as the numbers r(�) − l(μ), so we have
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Poincaré polynomials of moduli spaces 305

∑

�∈ν : r(�)≥l(μ)

q−c(�)t−lν(�) =
∑

�∈ν : r(�)≥l(μ)

q−c(�)t l(μ)−r(�)

=

∞∑

i=l(μ)+1

t l(μ)−i+1 1 − q−νi

1 − q−1
.

Putting things together, we have

Eμ,ν − q Eμ′,ν =

∞∑

i=1

t l(μ)−i+1(q1−νi − q) + q

l(μ)∑

i=1

t l(μ)−i+1.

The first sum reduces to

∞∑

i=1

t l(μ)−i+1(q1−νi − q) = qt l(μ)(q−1 − 1)B∗
ν = (1 − q)t l(μ)B∗

ν .

The second sum becomes

q

l(μ)∑

i=1

t l(μ)−i+1 = qt
t l(μ) − 1

t − 1
.

This implies

Eμ,ν − q Eμ′,ν = (1 − q)t l(μ)B∗
ν + qt

t l(μ) − 1

t − 1

On the other hand we have

Bμ − q Bμ′ =

l(μ)∑

i=1

t i−1 =
t l(μ) − 1

t − 1
.

Therefore if we denote the right hand side of (1) by E ′
μ,ν , we obtain

E ′
μ,ν − q E ′

μ′,ν =qt
t l(μ) − 1

t − 1
+ (1 − q)B∗

ν − (q − 1)(t − 1)B∗
ν

t l(μ) − 1

t − 1

=qt
t l(μ) − 1

t − 1
+ (1 − q)t l(μ)B∗

ν .

So Eμ′,ν = E ′
μ′,ν

implies Eμ,ν = E ′
μ,ν and the induction step is established.

⊓⊔
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306 A. Mellit

For a partition μ, we define zi (μ) to match zi in [17]:

zi (μ) = t−l(μ)+i qμi (i = 1, 2, . . . , l(μ)).

Our notations match after the substitution (q, z) → (t, q). Note the following

generating series identity:

l(μ)∑

i=1

zi (μ) = t−l(μ)+1

(
(q − 1)Bμ +

t l(μ) − 1

t − 1

)
. (2)

What we will actually need is the following generating series:

Kμ := (1 − t)
∑

i< j

zi (μ)

z j (μ)
.

It can be obtained as follows. Note that the sum Kμ contains only terms with

non-positive powers of t . So we can start with

K̃μ := (1 − t)

l(μ)∑

i=1

zi (μ)

l(μ)∑

i=1

zi (μ)−1 = (1 − t)

l(μ)∑

i, j=1

zi (μ)

z j (μ)
,

and take only non-positive powers of t . Let L be the operator

L(t i q j ) =

{
t i q j (i ≤ 0)

0 (i > 0)
.

Then

Kμ = L(K̃μ) − l(μ).

Note that we had to subtract l(μ) to cancel the contribution from the terms

i = j appearing in K̃μ. We can calculate K̃μ using Lemma 2.1 and (2):

K̃μ = (1 − t)

(
(q − 1)Bμ +

t l(μ) − 1

t − 1

)(
(q−1 − 1)B∗

μ +
t−l(μ) − 1

t−1 − 1

)

= (q−1 − 1)Eμ,μ − t l(μ)(q−1 − 1)B∗
μ + t1−l(μ)(q − 1)Bμ

−(t l(μ) − 1)

l(μ)−1∑

i=0

t−i ,
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Poincaré polynomials of moduli spaces 307

from which it is clear that

L(K̃μ) = (q−1 − 1)L(Eμ,μ) + t1−l(μ)(q − 1)Bμ +

l(μ)−1∑

i=0

t−i .

= (q−1 − 1)
∑

�∈μ

qaμ(�)+1t−lμ(�) +

l(μ)∑

i=1

zi (μ).

The conclusion is the following

Proposition 2.2 For any partition μ we have

(1 − t)
∑

i< j

zi (μ)

z j (μ)
= (q−1 − 1)

∑

�∈μ

qaμ(�)+1t−lμ(�) +

l(μ)∑

i=1

(zi (μ) − 1).

Converting additive generating functions to multiplicative with an extra

variable u we obtain

Corollary 2.3 For any partition μ we have

∏

i< j

1 − tu
zi (μ)
z j (μ)

1 − u
zi (μ)
z j (μ)

=
∏

�∈μ

1 − uqaμ(�)+1t−lμ(�)

1 − uqaμ(�)t−lμ(�)

l(μ)∏

i=1

1 − u

1 − uzi (μ)
.

Note that the left hand side contains “non-symmetric” ratios
zi (μ)
z j (μ)

for i < j ,

while the right hand side contains “simple terms” zi (μ) and 1, “correct arm-

leg terms” qaμ(�)+1t−lμ(�) and “incorrect arm-leg terms” qaμ(�)t−lμ(�). Our

strategy is to trade incorrect arm-leg terms in Schiffmann’s formula for non-

symmetric ratios, which will complement or cancel other non-symmetric ratios

so that the result contains only correct arm-leg terms and something symmetric.

3 Schiffmann’s terms

Let X be a smooth projective curve over Fq of genus g with zeta function

ζX (x) =

∏2g
i=1(1 − αi x)

(1 − x)(1 − qx)
.

Let us order αi in such a way that αi+g =
q
αi

holds. We will treat α1, α2, . . . , αg

as formal variables and set αi+g =
q
αi

. An alternative way to think of the

parameters αi is to view them as the exponentials of the chern roots of the
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308 A. Mellit

Hodge bundle on the moduli space of curves times q
1
2 . The expressions we

will be writing will depend on q, z, α1, . . . , αg. There is a correspondence

between these variables and the variables from [14] given as follows:

q, z, α1, . . . , αg → t, q, u−1
1 , . . . , u−1

g . (3)

The formula of Schiffmann (see [16,17]) involves a sum over partitions

�Sch :=
∑

μ

�μT |μ|.

For each partition μ the corresponding coefficient is

�μ := q(g−1)〈μ,μ〉 JμHμ.

Here 〈μ, μ〉 =
∑

i μ′2
i where μ′ is the conjugate partition of μ. We will

proceed defining Jμ and Hμ and taking them apart in the process. We have

Jμ =
∏

�∈μ

∏2g
i=1(1 − αi q

−1−l(�)za(�))

(1 − q−1−l(�)za(�))(1 − q−l(�)za(�))
=0

.

The notation (−)
=0 means we omit the corresponding factor if it happens to

be zero. This naturally splits as follows:

Jμ =
∏

�∈μ

∏g
i=1(1 − αi q

−1−l(�)za(�))

1 − q−1−l(�)za(�)

∏

�∈μ

∏g
i=1(1 − α−1

i q−l(�)za(�))

(1 − q−l(�)za(�))
=0

.

Applying Corollary 2.3 we obtain

Jμ =
∏

�∈μ

∏g
i=1(1 − αi q

−1−l(�)za(�))

1 − q−1−l(�)za(�)
×
∏

�∈μ

∏g
i=1(1 − α−1

i q−l(�)za(�)+1)

1 − q−l(�)za(�)+1

×
∏

i< j

g∏

k=1

1 − α−1
k

zi (μ)
z j (μ)

1 − qα−1
k

zi (μ)
z j (μ)

×

l(μ)∏

i=1

g∏

k=1

1 − α−1
k

1 − α−1
k zi (μ)

×
∏

i< j

(
1 − q

zi (μ)
z j (μ)

)

=0

1 −
zi (μ)
z j (μ)

×

l(μ)∏

i=1

(1 − zi (μ)),

where zi (μ) = q−l(μ)+i zμi coincides with Schiffmann’s zn−i+1. Denote the

last four products in the above right hand side by A, B, C, D. Note that
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Poincaré polynomials of moduli spaces 309

∑
l(�)+

∑
(l(�)+1) = 〈μ, μ〉, so q〈μ,μ〉 together with the first two products

produce

∏g
i=1 Nμ(α−1

i )

Nμ(1)
,

where Nμ is the arm-leg product as in [14]:

Nμ(u) =
∏

�∈μ

(za(�) − uq1+l(�))(za(�)+1 − u−1ql(�)). (4)

So we have

q〈μ,μ〉 Jμ =

∏g
i=1 Nμ(α−1

i )

Nμ(1)
ABC D,

where

A =
∏

i< j

g∏

k=1

1 − α−1
k

zi (μ)
z j (μ)

1 − qα−1
k

zi (μ)
z j (μ)

, B =

l(μ)∏

i=1

g∏

k=1

1 − α−1
k

1 − α−1
k zi (μ)

C =
∏

i< j

(
1 − q

zi (μ)
z j (μ)

)

=0

1 −
zi (μ)
z j (μ)

D =

l(μ)∏

i=1

(1 − zi (μ)).

We proceed by defining Hμ. Let1

ζ̃ ′(x) = x1−gζ(x) =

∏g
k=1 x−1(1 − αk x)(1 − qα−1

k x)

x−1(1 − x)(1 − qx)
.

Let L(z1, . . . , zl(μ)) be the rational function (note that we reversed the order

of zi )

L(z1, . . . , zl(μ))

=
1

∏
i> j ζ̃ ′

(
zi

z j

)
∑

σ∈Sl(μ)

σ

⎧
⎨
⎩
∏

i< j

ζ̃ ′

(
zi

z j

)
1

∏
i<l(μ)

(
1 − q

zi+1

zi

) 1

1 − z1

⎫
⎬
⎭ .

1 What we call ζ̃ ′ is usually denoted ζ̃ , but we prefer to modify it slightly and use ζ̃ for the

modified version.
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310 A. Mellit

Note that ζ̃ ′ appears in the numerator as many times as in the denominator, so

it can be multiplied by a constant without changing L . So we replace ζ̃ ′ with

something more resembling the other products we have seen:

ζ̃ (x) =

∏g
k=1(1 − α−1

k x−1)(1 − qα−1
k x)

(1 − x−1)(1 − qx)
.

Hμ is defined as the iterated residue (remember that our ordering of zi is the

opposite of Schiffman’s)

Hμ = reszi =zi (μ) L(z1, . . . , zl(μ))
∏

i :μi =μi+1

dzi+1

zi+1

.

Note that the only poles L can have at zi = zi (μ) are coming from factors of

the form 1 − q
zi

zi+1
for i such that μi = μi+1. Each such factor can appear at

most once in the denominator of L . We have

reszi+1=qzi

1

1 − q
zi

zi+1

dzi+1

zi+1
= 1.

Thus we will obtain the same result if we multiply L by the product of these

factors and then evaluate at zi = zi (μ). Note that C has precisely the same

factors removed. Therefore we have

C Hμ =

⎛
⎝∏

i< j

1 − q
zi

z j

1 − zi

z j

L

⎞
⎠ (z1(μ), . . . , zl(μ)(μ)).

Putting in A as well we obtain a nice expression:

AC Hμ =

⎛
⎝∏

i 
= j

1 − q
zi

z j∏g
k=1 1 − qα−1

k
zi

z j

∑

σ∈Sl(μ)

σ {· · · }

⎞
⎠ (z1(μ), . . . , zl(μ)(μ)).

We see that the product is symmetric in zi , so it can be moved inside the

summation. Since B and D are symmetric, they can also be moved inside the

summation. After some cancellations we arrive at the following. Define for

any n

f (z1, . . . , zn) =
∏

i

g∏

k=1

1 − α−1
k

1 − α−1
k zi

×
∑

σ∈Sn

σ

⎧
⎨
⎩
∏

i> j

⎛
⎝ 1

1 − zi

z j

g∏

k=1

1 − α−1
k

zi

z j

1−qα−1
k

zi

z j

⎞
⎠ ∏

i> j+1

(
1−q

zi

z j

)∏

i≥2

(1 − zi )

⎫
⎬
⎭.

(5)
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Then

ABC DHμ = f (z1(μ), . . . , zl(μ)(μ)).

Summarizing we obtain

Proposition 3.1 For any partition μ the term �μ is given by

�μ =
fμ
∏g

i=1 Nμ(α−1
i )

Nμ(1)
, fμ = f (z1(μ), . . . , zl(μ)(μ)),

where zi (μ) = q−l(μ)+i zμi , and N, f are defined in (4), (5).

Example 3.1 Let us calculate f in a few cases. It is convenient to set

P(x) =

g∏

i=1

(1 − α−1
i x).

We have

f (z1) =
P(1)

P(z1)

f (z1, z2)=
P(1)2

P(z1)P(z2)(z1 − z2)

(
z1(1 − z2)

P( z2
z1

)

P(q z2
z1

)
−z2(1 − z1)

P( z1
z2

)

P(q z1
z2

)

)

Note that the denominator of this expression is P(z1)P(z2)P(q z1
z2

)P(q z2
z1

)

if no cancellations happen. If z2 = qz1, the denominator reduces to

P(z1)P(z2)P(q2), so it has only 3 P-factors instead of 4.

4 Combinatorics of the function f

4.1 Bounding denominators

First we analyse denominators of f defined in (5). For generic values of zi ,

the denominator of f can be as bad as the full product

∏

i

P(zi )
∏

i 
= j

P(q
zi

z j
),

where P(x) =
∏g

k=1(1 −α−1
k x). Pick numbers r1, r2, . . . such that

∑
m rm =

n. Split z1, z2, . . . , zn into a union of subsequences of sizes r1, r2, ….

Let jm = 1 +
∑

i<m ri . For each m the m-th subsequence looks like
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312 A. Mellit

z jm , z jm+1, . . . , z jm+rm−1. Suppose each subsequence forms a geometric pro-

gression with quotient q:

z jm+i = q i z jm (i < rm).

Then f can be viewed as a function of variables z jm . The denominator can be

bounded as follows

Proposition 4.1 The following expression is a Laurent polynomial:

f

n∏

i=1

⎛
⎝P(zi )

∏

m: jm+rm>i

P
(

qrm z jm

zi

) ∏

m: jm>i

P
(

q
zi

z jm

)
⎞
⎠

Proof First write the definition of f as follows:

f =
∏

i

P(1)

P(zi )

∑

σ∈Sn

∏

σ(i)>σ( j)

P
(

zi

z j

)

(
1 − zi

z j

)
P
(

q
zi

z j

)
∏

σ(i)>σ( j)+1

(
1 − q

zi

z j

) ∏

σ(i)≥2

(1 − zi ).

Note that 1− zi

z j
does not contribute to the denominator because of symmetriza-

tion. Next note that if j = i + 1 and j, i belong to the same subsequence, then

1 − q
zi

z j
= 0. So all summands with σ(i) > σ( j) + 1 vanish. So it is enough

to sum only over those σ which satisfy the condition

σ(i + 1) ≥ σ(i) − 1 whenever i, i + 1 are in the same subsequence. (6)

So in each sequence σ( jm), . . . , σ ( jm + rm − 1) if there is a drop, the size of

the drop is 1. Now for each such σ we look at the product

∏

σ(i)>σ( j)

P
(

zi

z j

)

P
(

q
zi

z j

) =
∏

i< j, σ (i)>σ( j)

P
(

zi

z j

)

P
(

q
zi

z j

)
∏

i< j, σ (i)<σ( j)

P
(

z j

zi

)

P
(

q
z j

zi

) .

It is enough to show that for each value of i and each σ the following expres-

sions are Laurent polynomials:

P(1)
∏

m: jm>i

P
(

q
zi

z jm

)
×

∏

i< j, σ (i)>σ( j)

P
(

zi

z j

)

P
(

q
zi

z j

) ,

∏

m: jm+rm>i

P
(

qrm z jm

zi

)
×

∏

i< j, σ (i)<σ( j)

P
(

z j

zi

)

P
(

q
z j

zi

) .
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Further, let us split the product over all j > i into products over our subse-

quences. We only need to consider values of m such that jm > i (when j and

i are in different subsequences) or jm ≤ i < jm + rm (when they are in the

same subsequence). So it is enough to show that the following products are

Laurent polynomials:

P
(

q
zi

z jm

) ∏

k<rm , σ (i)>σ( jm+k)

P
(

zi

z jm+k

)

P
(

q
zi

z jm+k

) ( jm > i), (7)

P
(

qrm z jm

zi

) ∏

k<rm , σ (i)<σ( jm+k)

P
(

z jm+k

zi

)

P(q
z jm+k

zi
)

( jm > i), (8)

P(1)
∏

i− jm<k<rm , σ (i)>σ( jm+k)

P
(

zi

z jm+k

)

P
(

q
zi

z jm+k

) ( jm > i), (9)

P
(

qrm z jm

zi

) ∏

i− jm<k<rm , σ (i)<σ( jm+k)

P
(

z jm+k

zi

)

P
(

q
z jm+k

zi

) ( jm > i). (10)

Observe that because of the condition (6) in each of the cases (7)–(10) the val-

ues of k from a contiguous set kmin, . . . , kmax (if non-empty). So the arguments

to P from a geometric progression with ratio q or q−1. Hence the product col-

lapses and the only remaining denominator is P(q
zi

z jm+kmin
) in cases (7) and

(9), and P(q
zi

z jm+kmax
) in cases (8) and (10). Further analysis leads to kmin = 0

in (7), kmax = rm − 1 in (8), kmin = i − jm + 1 in (9) and kmax = rm − 1 in

(10). ⊓⊔

Example 4.1 In the situation of n = 1 we obtain that f P(z1)P(q) is a Laurent

polynomial. For n = 2 and z2 = qz1 we obtain f P(z1)P(z2)P(q2)P(q) is

a Laurent polynomial. Comparing with Example 3.1 one can notice that our

denominator bound is not optimal.

For the case when zi = zi (μ) = zμi q i−l(μ) for a partition μ we obtain

Proposition 4.2 The following product is a Laurent polynomial for any par-

tition μ:

fμ
∏

�∈μ

P(za(�)+1q−l(�))P(z−a(�)ql(�)+1). (11)

Proof Recall that fμ is a shorthand for f (z1(μ), . . . , zl(μ)(μ)) where zi (μ) =

zμi q i−l(μ). In view of Proposition 4.1 it is enough to show that for each i the

product
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P(zi )
∏

m: jm+rm>i

P
(

qrm z jm

zi

) ∏

m: jm>i

P
(

q
zi

z jm

)
(12)

divides the arm-leg product in (11) for cells � ∈ μ occurring in the row i . Note

that our subsequences of geometric progressions in zi simply correspond to

repeated parts of μ. Let � be the cell in row i and column μ jm ( jm + rm > i).

Then we have a(�) = μi − μ jm , l(�) = jm + rm − 1 − i . Therefore

z−a(�)ql(�)+1 = qrm z jm

zi
.

Let � be the cell in row i and column μ jm + 1 ( jm > i). Then a(�) =

μi − μ jm − 1, l(�) = jm − 1 − i . Therefore

za(�)+1q−l(�) = q
zi

z jm
.

For the cell in column 1 we have a(�) = μi − 1, l(�) = l(μ) − i , so

za(�)+1q−l(�) = zi .

Thus the factors of (12) form a sub-multiset of the factors of the arm-leg

product (11), and the claim follows. ⊓⊔

Corollary 4.3 For any partition μ, the product Nμ(1)�μ is a Laurent poly-

nomial.

Proof We have

Nμ(1)�μ =

g∏

i=1

Nμ(α−1
i ) fμ

and

g∏

i=1

Nμ(α−1
i ) =

∏

�∈μ

P(za(�)+1q−l(�))P(z−a(�)ql(�)+1) × ± a monomial.

⊓⊔

4.2 Interpolation

We remind the reader that f is not a function in fixed number of variables, but

a sequence of functions: a function in n variables for each n. A nice property

of f is that the substitution z1 = 1 into the function in n + 1 variables leads

to essentially the same function in n variables:
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Proposition 4.4 For any n we have

f (1, z1, . . . , zn) = f (qz1, . . . , qzn).

Proof Note that because of the product
∏n

i=2(1 − zi ) in the definition of

f (1, z1, . . . , zn), only the terms with σ(1) = 1 survive. So we can reduce the

summation over Sn+1 to a summation over Sn . After cancellation of
∏

i (1−zi )

we obtain

f (1, z1, . . . , zn) =
∏

i

P(1)

P(zi )

×
∑

σ∈Sn

σ

⎧
⎨
⎩
∏

i> j

P
(

zi

z j

)

(
1 − zi

z j

)
P
(

q
zi

z j

)
∏

i> j+1

(
1 − q

zi

z j

)∏

i>1

(1 − qzi )
∏

i

P(zi )

P(qzi )

⎫
⎬
⎭ ,

which coincides with f (qz1, . . . , qzn). ⊓⊔

Corollary 4.5 Let μ be a partition and let n ≥ l(μ). Define zn,i (μ) = zμi q i−n

for i = 1, . . . , n. Then

f (zn,1(μ), . . . , zn,n(μ)) = f (z1(μ), . . . , zl(μ)(μ)).

Thus, instead of having a separate function for each value of l(μ) we can

use the same function of n arguments if n is big enough.

5 Polynomiality and the main result

In this section we return to variables q, t which correspond to Schiffmann’s

variables z, q respectively. First we prove the following statement. The proof

is straightforward using methods of [14], but tedious. Let R be a lambda ring

containing Q(t)[q±1]. We denote by R∗ the tensor product R⊗Q(t)[q±1]Q(q, t)

and assume R ⊂ R∗.

Definition 5.1 A regular function of zi is a sequence of Laurent polynomials

fn ∈ R[z±1
1 , . . . , z±1

n ] (n ≥ 0)

such that

(i) fn is symmetric in z1, . . . , zn ,

(ii) fn+1(1, z1, . . . , zn) = fn(t z1, . . . , t zn).

For a regular function f and a partition μ, we set

fμ = fl(μ)(z1(μ), . . . , zl(μ)(μ)), zi (μ) = qμi t i−l(μ).
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We will use the modified Macdonald polynomials H̃μ[X; q, t], see [6,14].

Lemma 5.1 Let f (u) = 1 + f (1)u + f (2)u2 + · · · be a power series whose

coefficients f (i) are regular functions in the above sense. Let

�[X ] =
∑

μ∈P

cμ H̃μ[X; q, t]

be a series with cμ ∈ R∗, c∅ = 1 such that all coefficients of

H[X ] = (q − 1) Log �[X ]

are in R. Let

� f [X, u] =
∑

μ

cμ H̃μ[X; q, t] fμ(u), H f [X, u] = (q − 1) Log � f [X, u].

Consider the expansion

H f [X, u] = H[X ] + uH f,1[X ] + u2H f,2[X ] + · · · .

Then all coefficients of H f,i [X ] for i ≥ 1 are in (q − 1)R. In other words, the

specialization q = 1 of H f [X, u] is independent of u.

Proof Let S = −(q − 1)(t − 1). Recall the notation
∫ S

X
F[X, X∗] (see [14]).

This is a linear operation such that

∫ S

X

G[X ]F[X∗] = (G[X ], F[X ])S
X = (G[X ], F[SX ])X ,

and (−, −)X is the standard Hall scalar product,

(sμ[X ], sλ[X ])X = δμ,λ.

Recall that modified Macdonald polynomials are orthogonal with respect to

(−, −)S
X . In this proof we call an expression F admissible if (q −1) Log F has

all of its coefficients in R. It was proved in [14] that
∫ S

X
preserves admissibility.

By the assumption �[X ] is admissible. We will “construct” H f [X, u] from

admissible building parts.

Let R[Z , Z∗] be the free lambda ring over R with two generators Z and

Z∗. Fix a large integer N . For each i ≥ 1 let f̃ (i) ∈ R[Z , Z∗] be any element

such that

f̃ (i)

[
N∑

i=1

zi ,

N∑

i=1

z−1
i

]
= f

(i)
N (z1, . . . , zN ).
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One way to construct such an element is to find m ≥ 0 such that

(z1 · · · zN )m f
(i)
N (z1, . . . , zN ) = p(z1, . . . , zn) does not contain negative pow-

ers of zi , then lift p to a symmetric function p̃ ∈ R[Z ] and set

f̃ (i)[Z , Z∗] = p̃[Z ]eN [Z∗]m .

Then set

f̃ (u) = 1 + f̃ (1)u + f̃ (2)u2 + · · · ∈ R[Z , Z∗][[u]].

We can take plethystic logarithm:

Log f̃ (u) = g(u) = g(1)u + g(2)u2 + · · · ∈ u R[Z , Z∗][[u]].

For any partition μ satisfying l(μ) ≤ N by regularity of f we have

fμ = fl(μ)(q
μ1 t1−l(μ), qμ2 t2−l(μ), . . . , qμl(μ)) = fN (qμ1 t1−N , qμ2 t2−N , . . . , qμN ).

Thus we can obtain fμ from f̃ by specializing at

Z = Zμ =

N∑

i=1

qμi t i−N = t1−N (q − 1)Bμ +

N∑

i=1

t i−N

=
t1−N

1 − t
SBμ +

t−N − 1

t−1 − 1
,

and similarly for Z∗. Hence there exists a series

g′(u) ∈ u R[Z , Z∗][[u]]

such that for any partition μ with l(μ) ≤ N we have

fμ = Exp[g′(u)[SBμ, SB∗
μ]].

This g′ is obtained from g by the lambda ring homomorphism which sends

Z to t1−N

1−t
Z + t−N −1

t−1−1
and similarly for Z∗. Specialization can be replaced by

scalar product using the identity

F[SY ] = (F[X ], Exp[SXY ])X = (F[X ], Exp[XY ])∗X ,

and we obtain

fμ =

∫ S

Z ,V

Exp[g′(u)[Z , V ]] Exp[Z∗Bμ + V ∗B∗
μ] (l(μ) ≤ N ). (13)
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Let us show that the sum

�̃[X, Z , V ] =
∑

μ∈P

cμ H̃μ[X; q, t] Exp[Z Bμ + V B∗
μ] (14)

is admissible. Begin with the series

∑

μ∈P

H̃μ[X ]H̃μ[Y ]H̃μ[Z ]H̃μ[V ]

(H̃μ, H̃μ)S
, (15)

which is admissible by the main theorem of [14]. Recall the nabla operator

∇, the shift operator τ and the multiplication by Exp
[

X
S

]
operator τ ∗, and

Tesler’s identity

∇ττ ∗ H̃μ[X ] = Exp

[
DμX

S

]
,

where Dμ = −1 − SBμ. This implies

τ ∗∇ττ ∗ H̃μ[X ] = Exp[−X Bμ].

All of the operators involved preserve admissibility (Corollary 6.3 from [14]).

In particular, we see that the operator that sends H̃μ[X ] to Exp[X Bμ] preserves

admissibility. Let ω be the operator that sends q, t, X to q−1, t−1, −X . Then

using ω∇ = ∇−1ω, ωH̃μ[X ] =
H̃μ[X ]

H̃μ[−1]
and the fact that ∇−1 preserves

admissibility (Corollary 6.4 from [14]) we see that the operator that sends

H̃μ[X ] to Exp[X B∗
μ] preserves admissibility too. Applying these operators to

(15) in the variables Z , V we obtain that the following series is admissible:

∑

μ∈P

H̃μ[X ]H̃μ[Y ] Exp[Z Bμ + V B∗
μ]

(H̃μ, H̃μ)S
.

Finally, pairing this series with �[X ] we obtain admissibility of (14).

Because of (13) we have

� f (u) =

∫ S

Z ,V

Exp[g′(u)[Z , V ]]�̃[X, Z∗, V ∗] up to terms of degree > N in X.

In what follows we ignore the terms of degree > N in X . Since N can be chosen

as large as possible, this is enough. Notice that Exp[g′(u)[Z , V ]] is “more”

than admissible in the following sense. Introduce a new free (in the lambda
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ring sense) variable W . Then Exp[W
S

g′(u)[Z , V ]] is admissible. Therefore the

following is admissible:

� f [X, W, u] :=

∫ S

Z ,V

Exp[W
S

g′(u)[Z , V ]]�̃[X, Z∗, V ∗].

So we have

H f [X, W, u] = (q − 1) Log � f [X, W, u] =
∑

i≥0

H f,i [X, W ]ui

with H f,i [X, W ] ∈ R[X, W ]. Finally notice that

H f,i [X ] = H f,i [X, S] ≡ H f,i [X, 0] (mod (q − 1)R[X ]),

and

H f [X, 0, u] = (q − 1) Log � f [X, 0, u],

� f [X, 0, u] =

∫ S

Z ,V

�̃[X, Z∗, V ∗] = �̃[X, 0, 0] = �[X ].

This implies

H f,i [X ] ≡ 0 (mod (q − 1)R[X ]) (i ≥ 1).

⊓⊔

Then our main result is

Theorem 5.2 For any g ≥ 0 let

�(T, q, t, α1, . . . , αg) =
∑

μ∈P

∏g
i=1 Nμ(α−1

i )

Nμ(1)
T |μ|,

where

Nμ(u) =
∏

�∈μ

(qa(�) − ut1+l(�))(qa(�)+1 − u−1t l(�)).

Let

�Sch(T, q, t, α1, . . . , αg) =
∑

μ∈P

�μ(q, t, α1, . . . , αg)T |μ|,
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where �μ are the Schiffmann’s terms defined in Sect. 3. Let

H(T, q, t, α1, . . . , αg) = −(q − 1)(t − 1) Log �(T, q, t, α1, . . . , αg),

HSch(T, q, t, α1, . . . , αg) = −(q − 1)(t − 1) Log �Sch(T, q, t, α1, . . . , αg),

and let H(q, t, α1, . . . , αg)k denote the k-th coefficient of H(T, q, t, α1, . . . , αg)

viewed as a power series in T , and similarly for HSch. Then we have

(i) HSch(q, t, α1, . . . , αg)k ∈ Q(t)[q±1, α±1
1 , . . . , α±1

g ],

(ii) HSch(1, t, α1, . . . , αg)k = H(1, t, α1, . . . , αg)k .

Proof By the main result of [14] we have

H(q, t, α1, . . . , αg)k ∈ Q[t, q, α±1
1 , . . . , α±1

g ].

By Corollary 4.3 we have

HSch(q, t, α1, . . . , αg)k ∈ Q(t, q)[α±1
1 , . . . , α±1

g ].

So we can pass to the ring of Laurent series in α−1
1 , . . . , α−1

g and it is enough

to prove the corresponding statements (i) and (ii) for the coefficients in front

of monomials of the form
∏g

i=1 α
mi

i . Let us apply Lemma 5.1 for the ring

R = Q(t)[q±1, α±1
1 , . . . , α±1

g ], series

�[X, q, t, α1, . . . , αg] =
∑

μ∈P

∏g
i=1 Nμ(α−1

i )H̃μ[X, q, t]

Nμ(1)
,

and the regular function f (u) obtained from f (see (5) and Proposition 4.4)

by setting uα−1
i in place of α−1

i , so that f (u) becomes a power series in u

with coefficients in R.

To be able to apply Lemma 5.1, we need to show that the constant coefficient

of f (u) is 1, in other words we need to check that

∑

σ∈Sn

σ

⎧
⎨
⎩
∏

i> j

(
1

1 − zi

z j

)
∏

i> j+1

(
1 − q

zi

z j

)∏

i≥2

(1 − zi )

⎫
⎬
⎭ = 1.

We do this by induction. Denote the left hand side by Ln . Notice that Ln is

a polynomial. Suppose we know that Ln−1 = 1. Then by Proposition 4.4 we

know that Ln − 1 is divisible by z1 − 1. Since it is a symmetric polynomial, it

must be divisible by
∏n

i=1(zi − 1). On the other hand, the degree of Ln is at

most n − 1, so necessarily Ln − 1 = 0.
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After applying Lemma 5.1 we can set X = T , where T is the variable from

the statement of the Theorem. In particular, T is assumed to satisfy pk[T ] = T k

and we can use the identity H̃μ[T ; q, t] = T |μ|. Let

HSch(T, q, t, u) = −(q − 1)(t − 1) Log

⎡
⎣∑

μ∈P

∏g
i=1 Nμ(α−1

i )

Nμ(1)
T |μ| fμ(u)

⎤
⎦ .

Lemma 5.1 says that

HSch(T, q, t, u) − H(T, q, t) ∈ (q − 1)Q(t)[q±1, α±1
1 , . . . , α±1

g ][[T, u]].

On the other hand, the coefficient in front of any monomial in α1, . . . , αg, T

has bounded degree in u, wo we can set u = 1 and obtain a statement about

Laurent series in α−1
i :

HSch(T, q, t, 1) − H(T, q, t) ∈ (q − 1)Q(t)[q±1]((α−1
1 , . . . , α−1

g ))[[T ]].

Finally we remember that HSch(T, q, t) = HSch(T, q, t, 1) and remember that

the coefficients of HSch(T, q, t) are Laurent polynomials in αi to obtain

HSch(T, q, t) − H(T, q, t) ∈ (q − 1)Q(t)[q±1, α±1
1 , . . . , α±1

g ][[T ]].

⊓⊔

Remark 5.1 We have been using the substitution (q, z) → (t, q) to relate

Schiffmann’s variables to the HLV variables. Note that the Hausel–Villegas

functions � and H are symmetric in q, t because replacing μ by the conjugate

partition interchanges arms and legs. So we could have worked with the sub-

stitution (q, z) → (q, t), but then we would need to replace a partition by the

conjugate partition somewhere in the argument.

Theorem 1.1 is a direct corollary of Theorem 5.2 and [17].

6 Motivic interpretation

To answer some of the questions asked by Yan Soibelman, Davesh Maulik and

an anonymous referee, we sketch an approach connecting the present work to

the work of Fedorov et al. [4]. There they explain how to recast Schiffmann’s

formula to compute motivic classes of moduli spaces in the Grothendieck

group of stacks over a field of characteristic zero. It is natural to ask if results

of the present paper can be used to improve our understanding of motivic

123



322 A. Mellit

classes, and if Hausel–Rodriguez-Villegas formula can be recast in a similar

way.

The Grothendieck group of stacks is denoted by Mot and consists of for-

mal linear combinations of Artin stacks of finite type modulo cut-and-paste

relations. For a stack X the corresponding element of Mot is denoted by [X ]

and is called the motivic class of X . The dimensional completion of Mot is

denoted by Mot. Fix a curve C and assume it has a divisor of degree 1. The

Grothendieck ring of stacks Mot contains natural elements: the class of A1

denoted by L, and the class of the curve [C]. There is a natural operation of

symmetric power which for a stack X is defined by

Sn[X ] = [Xn/Sn].

This operation satisfies the condition

Sn[X + Y ] =

n∑

i=0

Si [X ]Sn−i [Y ],

which means that Mot is a pre-λ-ring. Sn extends to Mot and makes it into a pre-

λ-ring too. It is not clear2 whether Mot or Mot are λ-rings, which would mean

that Sn(xy) and Sn(Sm(x))) can be expressed as certain prescribed polyno-

mials in x, S2(x), S3(x), . . . and y, S2(y), S3(y), . . .. Nevertheless, Totaro’s

lemma [5] tells us that Sn(LX) = Ln Sn(X) holds for any X and n. The formal

sum of the form

1 + zS1[X ] + z2S2[X ] + · · · = Exp[z X ]

is called plethystic exponential (a.k.a. motivic zeta function). The inverse oper-

ation is called the plethystic logarithm Log.

Denote by Rg the ring of polynomials in α±1
1 , …, α±1

g and q±1 invariant

under permutations of αi and substitutions of the form αi → qα−1
i . As a ring

Rg is the polynomial ring in the first g elementary symmetric functions in

α1, . . . , αg, qα−1
1 , . . . , qα−1

g over Z[q, q−1]. Using Kapranov’s results [10]

on the motivic zeta function of a curve one can show that there is a ring

homomorphism

evC : Rg → Mot

which sends q to L and when extended to Rg[[z]] → Mot[[z]] sends the

formal zeta function to the motivic zeta function:

2 For some interesting counter-examples in this direction see [11,12].
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evC

(∏g
i=1(1 − zαi )(1 − zqα−1

i )

(1 − z)(1 − qz)

)
=

∞∑

n=0

zn Sn[C] = ζC(z) ∈ Mot[[z]].

The ring Rg is a λ-ring. Rg has a filtration by the total degree in q, α1, . . . , αg .

Denote the corresponding completion by Rg. An infinite sum converges in the

completion if degrees of the summands tend to −∞. The homomorphism evC

extends to the completions.

Consider Schiffmann’s generating function (see Sect. 3 for details)

�Sch(T, z, q, α1, . . . , αg) =
∑

μ

�μ(z, q, α1, . . . , αg)T |μ|.

In [4] it is explained how the definition of �Sch can be recast to produce an

element �Mot ∈ Mot[[T, z]]. Analysing their construction it is easy to see that

in fact we have

�Mot = evC(�Sch),

where we extend evC to formal power series in z and T . To obtain the motivic

class of the moduli stack of semistable Higgs bundles of rank r and degree d

one needs to first compute plethystic logarithm:

∑

r,d

Br,d T r zd = L Log �Mot(T, z),

then for any rational slope τ compute plethystic exponential

∑

d/r=τ

L(1−g)r2

HMot
r,d T r zd = Exp

∑

d/r=τ

Br,d T r zd ,

and finally recover the motivic class of the moduli stack as

[Mss
r,d ] = HMot

r,d+er (e ≫ 0)

for sufficiently large e.

This recipe can be reformulated as follows. Let us decompose �Mot into an

infinite product according to slopes first:

�Mot =
∏

τ∈Q≥0

∑

d/r=τ

H̃Mot
r,d T r zd .
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Then we have

∑

d/r=τ

L(1−g)r2

HMot
r,d T r zd = Exp L Log

∑

d/r=τ

H̃Mot
r,d T r zd .

Analogously, we can decompose

�Sch(T, z, q, α1, . . . , αg) =
∏

τ∈Q≥0

∑

d/r=τ

H̃Sch
r,d (q, α1, . . . , αg)T r zd ,

and define HSch
r,d by

∑

d/r=τ

q(1−g)r2

HSch
r,d T r zd = Exp q Log

∑

d/r=τ

H̃Sch
r,d T r zd .

We make two observations. If Mot was a λ-ring, it would follow that evC

commutes with Exp and Log, and we would have HMot
r,d = evC (HSch

r,d ). So any

result about �Sch could have been directly translated to HMot
r,d . For instance,

we would have

∑

d/r=τ

L(1−g)r2

[Mss
r,d ]T r zd =

(
Exp

L
∑

d/r=τ evC (Ag,r )T
r zd

L − 1

)
(in a λ-ring).

(16)

In particular, in the universal λ-ring quotient of Mot we conclude that the

above formula holds.

On the other hand, if we are only interested in the case of coprime r, d, then

we do not need the λ-ring property because in all the expansions of Exp and

Log above we use only the first term. So we directly obtain

HMot
r,d = L(g−1)r2+1 H̃Mot

r,d = L(g−1)r2

Br,d = evC (HSch
r,d ),

[Ms
r,d ] =

L(g−1)r2+1evC(Ag,r )

L − 1
((r, d) = 1). (17)

So in the above two situations no information is lost when passing from motivic

invariants to functions in q, α1, . . . , αg .

Next we would like to connect the motivic formula to the Hausel–Rodriguez-

Villegas generating function �g. Unfortunately, the function is not invariant

under the map αi → qα−1
i , so the function is not in Rg. Following Mozgovoy’s

approach [15], we apply change of variables q → qz−1:
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�Moz
g =

∑

μ∈P

T |μ|z(g−1)〈μ′,μ′〉
∏

�∈μ

∏g
i=1(1 − αi q

l(�)z−h(�))(1 − α−1
i ql(�)+1z−h(�))

(1 − ql(�)z−h(�))(1 − ql(�)+1z−h(�))

=
∑

μ∈P

T |μ|(q/z)(g−1)〈μ,μ〉
∏

�∈μ

∏g
i=1(1 − αi q

−l(�)−1zh(�))(1 − α−1
i q−l(�)zh(�))

(1 − q−l(�)−1zh(�))(1 − q−l(�)zh(�))
,

where h(�) = a(�) + l(�) + 1 and 〈μ′, μ′〉 =
∑

i μ2
i . In this way we obtain

�Moz
g ∈ Rg[[T, z]]. We apply evC to define the motivic Mozgovoy function:

�MotMoz
g = evC(�Moz

g ) =
∑

μ∈P

T |μ|(q/z)(g−1)〈μ,μ〉
∏

�∈μ

ζC(q−l(�)−1zh(�)),

where ζC(z) = Exp[Cz] is the motivic zeta function of C . Theorem 1.1 implies

�Moz
g = Exp

[
z/q

∑∞
r=1 Hg,r (q/z, z, α1, . . . , αg)T r

(1 − z/q)(1 − z)

]
.

Using the evaluations Hg,r (q, 1, . . .) = Hg,r (1, q, . . .) = Ag,r (q, . . .), we

obtain

z/q Hg,r (q/z, z, α1, . . . , αg)

(1 − z/q)(1 − z)
=

1

q − 1

(
1

1 − z
−

1

1 − z/q

)
Hg,r (q/z, z, α1, . . . , αg)

=

∞∑

d=1

Ag,r (q, α1, . . . , αg)

q − 1
(1 − q−d)zd

+Laurent polynomial in z.

So the coefficients do not stabilize like they do for Log �Sch, but nevertheless

tend to
Ag,r

q−1
in Rg as d goes to ∞. Therefore in the product expansion of the

ratio

�Sch(T, z, q, α1, . . . , αg)

�Moz(T, z, q, α1, . . . , αg)
=
∏

τ∈Q

∑

d/r=τ

Dr,d T r zd

the coefficients Dr,d ∈ Rg tend to 0 when r is fixed and d goes to ∞. Applying

evC to both sides we conclude that

�Mot(T, z)

�MotMoz(T, z)
=
∏

τ∈Q

∑

d/r=τ

DMot
r,d T r zd ,

where DMot
r,d tend to 0 in Mot when r is fixed and d goes to ∞. So constructing

HMotMoz
r,d from �MotMoz in the same way as HMot

r,d was constructed from �Mot

123



326 A. Mellit

in [4], we obtain for τ ∈ Q

∑
d/r=τ L(1−g)r2

HMot
r,d+er T r

∑
d/r=τ L(1−g)r2

HMotMoz
r,d+er T r

→ 1 (e → ∞)

coefficientwise. This immediately implies a version of [4] for Mozgovoy’s

function:

Corollary 6.1 For any r, d we have

[Mss
r,d ] = lim

e→∞
HMotMoz

r,d+er ∈ Mot.
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