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Abstract. One of the earliest attempts to rigorously prove the

solvability of Dirichlet’s boundary value problem was based on

seeking the solution in the form of a ”potential of double layer”, and

this leads to an integral equation whose kernel is (in general) both

singular and non-symmetric. C. Neumann succeeded with this ap-

proach for smoothly bounded convex domains, and H. Poincaré,

by a tremendous tour de force, showed how to push through the

analysis for domains with sufficiently smooth boundaries but no

hypothesis of convexity. In this work he was (according to his own

account) guided by consideration of a variational problem involving

the partition of energy of an electrostatic field induced by charges

placed on the boundary of a domain, more precisely the charge dis-

tributions which render stationary the energy of the field inside the

domain divided by the energy of the field outside the domain. Un-

fortunately, a rigorous treatment of this problem was not possible

with the tools available at that time (as Poincaré was well aware).

So far as we know, the only one to propose a rigorous treatment

of Poincarés problem was T. Carleman (in the two dimensional

case) in his doctoral dissertation. Thanks to later developments

(especially concerning Sobolev spaces, and spectral theory of oper-

ators on Hilbert space) one can now give a complete, general and

rigorous account of Poincaré’s variational problem, and that is the

object of the present paper.
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1. Introduction and historical note

Riemann built his magnificent function theoretic edifice on the solv-

ability of Dirichlet’s boundary value problem. When his proposed proof

of this (based on ”Dirichlet’s principle”) was found wanting, it became

a priority of the highest order to find a rigorous alternative proof. One

early attempt was through potential theory. Since it was soon dis-

covered that it was hopeless to express the solution to the Dirichlet

problem in the form of a (”single layer”) potential of some suitably

selected function defined on the boundary of the domain, emphasis

shifted to ”double layer” potentials, a very plausible choice insofar as

this amounts to replacing the (in general unfindable) Poisson kernel,

or normal derivative of the (equally unfindable) Green function, by the

normal derivative of the log (in the two dimensional case) which con-

stitutes the singularity of Green’s function. It is not our purpose here

to review this development, but only to remark that this reduced the

Dirichlet problem to an integral equation with ”kernel”K(z, w) , where

z and w are variables ranging over the boundary of the domain in ques-

tion (the so-called Neumann - Poincaré kernel). A significant feature

of this kernel is that, except in the case where the domain is a disk

(or ball in Rd) K is not symmetric, so the usual expansion theorems



ON POINCARÉ’S VARIATIONAL PROBLEM IN POTENTIAL THEORY 5

for integral operators were not applicable. Nonetheless, the few ex-

amples that were understood indicated that this integral operator had

lots of real eigenvalues, as well as (non-orthogonal) eigenfunctions, and

there was no general theory available that could explain such behav-

ior. Later, Marty and Korn introduced the notion of symmetrizability

of an operator, and showed that this applied to the N - P operator.

But, over a decade before this happened Poincaré initiated the study

of a certain (self adjoint!) variational problem that did not seem prima

facie to be related to the N - P kernel, but turns out to be the ”high

ground” which fully clarifies the ”self adjoint features” of the N - P

integral operator. So far as we know this fascinating approach has not

yet been fully worked out. To do so is our purpose in this paper.

C. Neumann had proven the solvability of Dirichlet’s problem in

convex domains by a recursive (and in principle constructive) procedure

based on calculating an infinite sequence of double layer potentials

which were the summands in a series converging to the solution. Later

Poincaré had proven by an altogether different method (which he called

”balayage”) the solvability in domains of quite general character. Thus,

in 1897, when Poincaré’s paper [34] appeared, there was already a

rigorous proof at hand, but Poincaré set himself the task to find an

alternate proof based on establishing the convergence of the Neumann
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series also for nonconvex domains. This he succeeded to do (under

fairly strong regularity assumptions: the domain had a C2 boundary

and the boundary values were sufficiently differentiable). Motivation

for this undertaking was that the balayage method was not suitable for

numerical computation of solutions, and a solution based on Neumann’s

series was superior in this regard.

Poincaré’s new proof was extremely long and technical, and we won’t

enter into the details here. It is based on energy estimates for the elec-

trostatic field due to charges distributed on the boundary of a domain,

more precisely how the energy is partitioned between the part of the

field inside the domain and the part lying outside. The final section

of the paper has an unusual character: Poincaré poses an extremal

problem (more precisely, a sequence of such problems) concerning this

partition of energy, which he says guided his steps through the pre-

ceding demonstration. But this is placed in a sort of quarantine , and

not referred to in the course of the demonstration because, as Poincaré

repeatedly tells us, he has been unable to establish the salient details

of the extremal problem on a rigorous basis. The paper concludes with

the words: ”After having established these results [concerning conver-

gence of the Neumann series] rigorously, I felt obliged in the two final

chapters to give an idea of the insights which initially led me to foresee
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these results. I thought that, despite their lack of rigor, these could be

useful as tools for research insofar as I had already used them success-

fully once.”

Here is what is involved. Consider (we use here, for the most part,

Poincaré’s notations) a closed surface Γ in R3 and denote by Ω,Ω′

respectively the interior and exterior domains into which R3 is parti-

tioned by Γ. Let there be given a real valued continuous function u

on R3 and whose restrictions to Ω and Ω′ (denoted by W and W ′) are

harmonic functions with finite Dirichlet integrals (denoted J(W ) and

J(W ′) ). Then u is the potential of an electrostatic charge distributed

on Γ. (In modern language, this charge is f := ∆u in the distributional

sense, it is a Schwartz distribution with support in Γ.) If we assume

the total energy J(W ) + J(W ′) equals 1, what is the minimum value

possible for J(W )? It is 0, and this is attained if, and only if W is

a constant c, and W ′ is the solution to the Dirichlet problem for the

exterior domain with data W ′ = c on Γ (the ”conductor potential”

of Γ). Here c is to be chosen so that J(W ′) = 1. The correspond-

ing charge distribution f is (modulo a constant factor) the equilibrium

measure for the compact set Γ. All this was well understood at the

time. But now Poincaré embarks into terra incognita: Consider the
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analogous extremal problem, but with u conditioned to be orthogo-

nal to the extremal potential for the preceding problem (in the sense

that, if u0 denotes the extremal for that problem,
∫

R3 ∇u ·∇u0dx = 0).

What is now the minimum for J(W )/(J(W ) + J(W ′)) ? (We may as

well assume the denominator equals 1). Here arises the first of a se-

ries of difficulties Poincaré was not able to overcome: is this minimum

attained? If so, then denoting by r1 the minimum and by u1 some

extremal, Poincaré obtains by a routine formal variational procedure

the condition that the normal derivative of W1 equals −r1 times the

normal derivative of W ′
1 at each point of Γ, where W1 and W ′

1 are the

restrictions of u1 to Ω,Ω′. (Again there is a lack of rigor insofar as,

even assuming existence of an extremal, the existence of the normal

derivatives along S is unclear.) Poincaré now proceeds to the next

problem in the succession, whereby u is conditioned to be orthogonal

in the indicated sense to u0 and u1. And so forth.

The pattern is now clear to a modern observer. There is in the back-

ground a Hilbert space H whose entries are pairs of harmonic functions

(V, V ′) defined on Ω,Ω′ respectively, the inner product between two

such pairs given by

〈(V, V ′), (W,W ′)〉 =

∫

Ω

∇V · ∇Wdx+

∫

Ω′

∇V ′ · ∇W ′dx.
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(Well, this is not quite accurate since we need some adjustment to

rule out elements of the form V = c, V ′ = c′ where c, c′ are constants

not both 0, yet (V, V ′) would have norm zero. We’ll deal with such

technical points later.) In other terms we are in the framework of a

Hilbert space H which is the direct sum of the Sobolev spaces W 1,2(Ω)

and W 1,2(Ω′) and its closed subspace P (the potentials) consisting of

those pairs (V, V ′) whose traces on Γ coincide. We have two Hermitian

forms on H:

J(V, V ′) =

∫

Ω

|∇V |2dx

and

J ′(V, V ′) =

∫

Ω′

|∇V ′|2dx.

The successive minimum problems considered by Poincaré are precisely

those employed nowadays (following F. Riesz) in the standard proof of

the spectral theorem for compact self-adjoint operators. More precisely,

if T is such an operator on a Hilbert space with elements denoted x, y, ...

and inner product 〈., .〉 we consider the two Hermitian forms 〈Tx, x〉

and 〈x, x〉 , and begin by (say) seeking the minimum of the former

while restricting the latter to be 1. We then repeat the procedure with

the competing elements x restricted to be orthogonal to the extremal

element x0 from the first stage, and so forth.
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Coming back to Poincaré’s problem seen in this light, the immedi-

ate question is: Is there a compact linear operator lurking behind the

form J? Yes, there is, but we must first replace J by J − J ′ (which

clearly leads to an extremal problem equivalent to the former insofar

as the ratios J/(J + J ′) and (J − J ′)/(J + J ′) ...or for that matter

J/J ′ , which Poincaré actually uses...are simply related. It is a highly

nontrivial fact that, restricted to the subspace P of H consisting of

pairs (V, V ′) with equal traces on Γ, the form J −J ′ is completely con-

tinuous (to use an older terminology, that held sway when ”operators

on Hilbert space” were exhibited in terms of Hermitian forms rather

than operators). This was first established rigorously by T. Carleman

in his remarkable doctoral dissertation [4]. Following modern practice

we shall, below, rework all this in the language of operators along the

lines of the abstract treatment given by M. G. Krein [20].

This gets us off the ground: extrema in Poincaré’s problem are al-

ways attained. In terms of the abstract model, we can continue to seek

(and find) the minima of 〈Tx, x〉 subject to the successively stricter

orthogonality constraints imposed on the unit vector x. But one point

has to be emphasized: If we assume (as is the case in Poincaré’s prob-

lem) that 〈Tx, x〉 takes negative values it attains a minimum on the

unit sphere. In general, for any compact operator T, 〈Tx, x〉 attains a
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maximum and a minimum on the unit ball but only in the case of a

positive maximum or a negative minimum can we assert the extremal

element has norm 1. Thus, the sequence of minimum problems will

continue to furnish an increasing sequence of negative eigenvalues of T

so long as 〈Tx, x〉 attains negative values for x among the remaining

(competing) vectors. If this is not so, the process terminates, and ei-

ther all remaining x are in the kernel of T , or 〈Tx, x〉 takes positive

values for some x. If this is the case, we can maximize 〈Tx, x〉 among

all unit vectors, and then, analogously as before continue to find a de-

creasing sequence of positive eigenvalues (and associated eigenvectors)

of T , which process only terminates if at some point 〈Tx, x〉 takes no

positive values on the eligible set of x. From modern spectral theory

we know moreover that to each negative and each positive eigenvalue is

associated only a finite dimensional family of eigenvectors, whereas cor-

responding to the spectral point 0 there may be either no eigenvector,

or a family of finite or infinite dimension.

Poincaré seems to have conjectured that (translated into our ter-

minology) an infinite sequence of increasing negative eigenvalues (the

first being −1) would exist (i.e. his recursive process would never ter-

minate ) and that moreover the associated eigenfunctions would span

the Hilbert space. This is a very bold conjecture, implying that the
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operator associated to the form J ′ − J(which we shall later relate to

the so-called Neumann - Poincaré integral operator) has only positive

spectrum and moreover is injective. These assertions are true in case

Γ is a sphere, but we will show they do not hold generally, indeed not

even for ellipsoids of revolution in R3. For d = 2 there are some notable

anomalies.

To complete this survey of Poincaré’s extremal problem we should

take up his variational condition for extrema, which characterizes the

extremal potentials u = (W,W ′) by the condition that the normal

derivatives of W and W ′ , computed along Γ from opposite sides with

respect to the same normal vector, are a (negative) constant multiple

of one another. We postpone the further examination of this con-

dition, which relates to the aforementioned integral operator and its

symmetrization, to a later section.

Let us briefly describe the contents of the paper. Section 2 contains

some terminology and conventions plus a collection of known facts from

the Newtonian potential theory, seen from the modern point of view of

distribution theory and Sobolev spaces. Section 3 is devoted to an ab-

stract symmetrization principle for linear bounded operators acting on

a Hilbert space. This theme was popular precisely because of potential
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theoretic applications, during the first decades of the XX-th century,

see for instance [14, 17, 19, 23, 28]; later on, symmetrizable operators

have appeared in more abstract studies, for example, of partial differ-

ential equations on spaces with two norms, see [9, 25, 38]. We owe to

Carleman [4] and Krein [20] the clarification of the subject. We follow

their treatment, simplifying whenever possible the reasoning with the

help of modern operator theory.

Section 4 presents Poincaré’s variational problem in a new light: as

the study of the angle operator between two orthogonal decompositions

of the space of harmonic fields of finite energy. Roughly speaking, in

the presence of a smooth closed surface Γ , this amounts to the de-

composition into the fields of single and double layer potential, and re-

spectively that of inner and outer fields. When passing from Euclidean

space to Γ, this interpretation, well correlated with the symmetrization

scheme, naturally leads to the characteristic values and eigenfunctions

of the double layer integral operator (the Neumann-Poincaré opera-

tor) in a ”negative norm” space defined by the single layer operator.

We offer here (as far as we know for the first time for the modern

reader) complete proofs of existence, smoothness and completeness of

the eigenfunctions appearing in Poincaré’s variational problem.
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In Section 5 we extend the Hilbert-Beurling transform to act on

gradients of harmonic functions in all dimensions and show how one can

read the spectrum of the Neumann-Poincaré (boundary) operator, and

implicitly that of Poincaré’s problem, from this spatial singular integral

operator. Section 6 is a brief and novel account of the Beurling operator

in its original two real variable form. Without aiming at completeness,

we unify and simplify here some classical works in complex analysis

revolving around the Fredholm eigenfunctions of a planar domain [1,

2, 3, 40, 41].

Section 7 deals with applications of Poincaré’s variational principle.

They amply illustrate the flexibility and advantages of his point of view:

work on the entire Euclidean space with harmonic fields, and their en-

ergy norm, rather than with charges on complicated function spaces

supported on the boundary. Specifically, we prove the existence of a

domain in R3 with negative spectrum (of its associated N-P operator),

the possibility of ”gluing together” finite parts of such disjoint spectra,

and analyze the oscillations of certain eigenfunctions of this operator.

Section 8 contains examples, comments and open problems. In particu-

lar, the ball in Rn is characterized by the symmetry of its N-P operator.
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2. Prerequisites of potential theory

The aim of this section is to assemble some terminology and basic

facts of Newtonian potential theory.

Let Ω be a bounded domain in Rd with boundary Γ. We assume

that Γ is at least C2-smooth. The (d− 1)-dimensional surface measure

on Γ is denoted by dσ and the unit outer normal to a point y ∈ Γ will

be denoted ny.

Throughout this article E(x, y) = E(x − y) denotes the normalized

Newtonian kernel:

E(x, y) =



















1
2π

log 1
|x−y|

, d = 2,

cd|x− y|2−d, d ≥ 3,

(1)

where c−1
d is the surface area of the unit sphere in Rd. The signs were

chosen so that ∆E = −δ (Dirac’s delta-function).

For a C2-smooth function (density) f(x) on Γ we form the funda-

mental potentials: the single and double layer potentials in Rd; denoted
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Sf and Df respectively:

Sf (x) =

∫

Γ

E(x, y)f(y)dσ(y)

Df (x) =

∫

Γ

∂

∂ny

E(x, y)f(y)dσ(y).

(2)

The surface Γ divides Rd into two domains Ω = Ωi (interior to Γ) and

the exterior Ωe. Thus the potentials above define pairs of functions

(Si
f , S

e
f ) and (Di

f , D
e
f ) which are harmonic in Ωi and Ωe respectively.

As is well known from classical potential theory (cf. [15, 42]) denot-

ing by Si
f (x),

∂
∂nx

Si
f (x) (and corresponding symbols with superscript

e) the limits at x ∈ Γ from the interior (or exterior), the following

relations (known as the jump formulas for the potentials) hold for all

x ∈ Γ:

Si
f (x) = Se

f (x);

∂

∂nx

Si
f (x) =

1

2
f(x) +

∫

Γ

∂

∂nx

E(x, y)f(y)dσ(y);

∂

∂nx

Di
f (x) =

∂

∂nx

De
f (x);

Di
f (x) = −1

2
f(x) +

∫

Γ

∂

∂ny

E(x, y)f(y)dσ(y);

∂

∂nx

Se
f (x) = −1

2
f(x) +

∫

Γ

∂

∂nx

E(x, y)f(y)dσ(y);

De
f (x) =

1

2
f(x) +

∫

Γ

∂

∂ny

E(x, y)f(y)dσ(y).

(3)
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We warn the reader that different conventions (on the choice of the

sign of the fundamental solution or the unit normal) may affect these

formulas.

Rather direct computations ( see for instance Chapter II in [15],

Chapters 18-19 in [42] or [29]) show that the integral kernels

K(x, y) := − ∂

∂ny

E(x− y); K∗(x, y) = − ∂

∂nx

E(x− y)

satisfy on Γ the following estimates, for d ≥ 3:

|K(x, y)| = O(
1

|x− y|d−2
), x, y ∈ Γ, x 6= y,

|K∗(x, y)| = O(
1

|x− y|d−2
), x, y ∈ Γ, x 6= y.

(4)

For d = 2, due to the fact that log |z−w| is the real part of a complex

analytic function log(z−w) = log |z−w|+ i arg(z−w), z, w ∈ Γ, and

by Cauchy-Riemann’s equations one obtains

K(z, w) =
∂

∂τw
arg(z − w),

where τw is the unit tangent vector to the curve Γ. Thus, on any

smooth curve Γ ⊂ R2, the kernels K(z, w) and K∗(z, w) are uniformly

bounded.
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Returning to the general d-dimensional case, we define on L2(Γ, dσ)

the Neumann-Poincaré operator K:

(Kf)(x) = 2

∫

Γ

K(x, y)f(y)dσ(y), f ∈ L2(Γ, dσ). (5)

The L2 adjoint K∗ will be an integral operator with kernel K∗(x, y).

The nature of the diagonal singularity of the kernel K(x, y) shows

that K is a compact operator in the Schatten-von Neumann class

Cp(L2(Γ)), p > d − 1, see [15]. Since the kernel K is bounded when

d = 2, it is Hilbert-Schmidt on any smooth planar curve. We will

show in the next section that K∗ is symmetrizable, that is K∗ becomes

self-adjoint with respect to a different (incomplete) inner product on

L2(Γ).

Similarly, the linear operator

Sf = Sf |Γ, f ∈ L2(Γ),

turns out to be bounded (from L2(Γ) to the same space). Remark that

the representing kernel E(x, y) of S is pointwise non-negative for d ≥ 3.



ON POINCARÉ’S VARIATIONAL PROBLEM IN POTENTIAL THEORY 19

With these conventions the jump formulas become, as functions on Γ:

Si
f = Se

f = Sf ;

∂nS
i
f =

1

2
f − 1

2
K∗f ;

∂nS
e
f = −1

2
f − 1

2
K∗f ;

Di
f = −1

2
f − 1

2
Kf ;

De
f =

1

2
f − 1

2
Kf.

(6)

Above, and always in this paper n designates the outer normal to Ω.

In this paper we shall mostly be concerned with the relationship

between the spectral analysis of the Neumann-Poincaré operator K

and some extremal problems arising from comparing the energies in

Ωi and Ωe of the single layer potentials defined by densities supported

by Γ, cf. the Introduction. To this aim we will use a Sobolev space

on Ωi ∪ Ωe, its trace on Γ, and some closed subspaces imposed by our

considerations.

Let H be the space of harmonic functions on Ωi ∪ Ωe, vanishing at

infinity and with finite energy seminorm:

‖h‖2
H =

∫

Ωi∪Ωe

|∇h|2dx. (7)
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Only locally constant functions are annihilated by this seminorm. It

will be necessary to distinguish between the two restrictions of h to the

inner and outer domain; we denote h = (hi, he) where hi = h|Ωi
and

similarly he = h|Ωe . In virtue of Poincaré’s inequality the functions hi

and he are in the Sobolev W 1,2-spaces of the corresponding domains.

To simplify notation we put henceforth W s = W s,2.

We can regard an element h ∈ H ⊂ D′(Rd) as a distribution defined

on the whole space. Then ∆h = µ ∈ D′
Γ(Rd) (the lower index means

supp(µ) ⊂ Γ) and, by a slight abuse of notation

−h(x) = Sµ(x) =

∫

Γ

E(x, y)dµ(y), x ∈ Rd \ Γ. (8)

If the distribution µ is given by a smooth function times the surface

measure of Γ, then h = Sµ and by (6) hi|Γ = he|Γ. Our next aim is to

identify the closed subspace of H characterized by the latter matching

property.

By assumption the surface Γ is smooth. Hence there are linear con-

tinuous trace operators

Tr : W 1(Ωi,e) −→ W 1/2(Γ).

Moreover, the trace operator from each side of Γ is surjective (and

hence it has a continuous right inverse), see for instance [27]. We will
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denote in short

h|Γ = Tr h.

If d ≥ 3, then for any function f ∈ W 1/2(Γ) there exist solutions

(hi, he) ∈ H to the inner and outer Dirichlet problems with boundary

data f : hi|Γ = he|Γ = f , see [24].

In the case d = 2 the additional assumption
∫

Γ
fdσ = 0 must be

made, to assure the existence of he with he(∞) = 0 and finite energy,

see [24] .

The following consequence of Green’s formula will be frequently used

in this section. For a harmonic function u in Ω, of class C2 on the closed

domain:

2

∫

Γ

u
∂u

∂n
dσ =

∫

Ω

∆(u2)dx = 2

∫

Ω

|∇u|2dx. (9)

Another common form of Green’s formula, for arbitrary functions φ, ψ ∈

C2(Ω) reads:

∫

Ω

∇φ · ∇ψdx+

∫

Ω

φ∆ψdx =

∫

Γ

φ∂nψdσ.

As a first application we note an important isometric identification,

see [24].

Lemma 2.1. Let f ∈ L2(Γ). Then

〈Sf, f〉 = ‖Sf‖2
H. (10)
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We deduce from here that S is a non-negative self-adjoint operator

on L2(Γ). Moreover Sf = 0 implies ∇Sf = 0 in Rd \ Γ, whence

Sf is constant on both sides of Γ. But Sf (∞) = 0, so Sf = 0 as a

distribution on Rd. Therefore f = −∆Sf = 0. This proves that S is a

strictly positive operator on L2(Γ). We will prove below that S is not

invertible.

Proposition 2.2. Assume d ≥ 3 and let h = (hi, he) ∈ H. Then

hi|Γ = he|Γ if and only if there exists ρ ∈ W−1/2(Γ) such that h = Sρ.

Proof. Let H− be the completion of L2(Γ) with respect to the Hermit-

ian form 〈Sf, f〉 = ‖
√
Sf‖2. Let H+ = Ran

√
S, viewed as a non-closed

vector subspace of L2(Γ), and also regarded as the domain of the posi-

tive unbounded operator
√
S
−1

. Note that H+ is a complete space with

respect to the norm induced by the form 〈
√
S
−1
f,
√
S
−1
f〉. Then the

positive operator S can be extended by continuity to an isomorphism

S : H− −→ H+, and the L2-pairing

〈
√
Sf, g〉 = 〈f,

√
Sg〉

defines a duality between the Hilbert spaces H+ and H−.

The above standard duality construction can be correlated to the

Dirichlet space seminorm of H. First we polarize the identity in the
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Lemma:

〈Sf, g〉2,Γ = 〈Sf , Sg〉H, f, g ∈ L2(Γ).

Let h ∈ H be an element with equal traces on Γ:

hi|Γ = he|Γ = f ∈ W 1/2(Γ).

For a C2-smooth density g on Γ we find via Green’s formula:

〈f, g〉2,Γ = 〈h, Sg〉H.

Thus the linear functional

g 7→ 〈g, f〉2,Γ

is continuous with respect to the seminorm 〈Sg, g〉 and hence Riesz’

lemma implies the existence of an element k ∈ L2(Γ) such that

〈g, f〉2,Γ = 〈g,
√
Sk〉2,Γ, g ∈ L2(Γ).

That is W 1/2(Γ) ⊂
√
SL2(Γ) = H+.

Conversely, an element f ∈ H+, can be written as f = Sk with

k ∈ H−. Then the coupling 〈Sk, k〉 is well defined. Let (kn) be a

sequence in L2(Γ) which converges to k in the topology of H−. Then

‖Skn − Skm‖2
H = 〈S(kn − km), kn − km〉H .
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Thus the sequence of potentials (Skn) is Cauchy in H and its limit h

satisfies hi = Sk = f , by the continuity of the trace map. Therefore

f ∈ W 1/2(Γ).

In conclusion H+ = W 1/2(Γ), and the L2(Γ) dual of this space is

H− = W−1/2(Γ). As noted before, the operator S extends continuously

to the space W−1/2(Γ), and

SW−1/2(Γ) = W 1/2(Γ).

In other terms, the density distribution ρ = ∆h, h ∈ H, represents a

matching pair h = (hi, he), hi|Γ = he|Γ if and only if ρ ∈ W−1/2(Γ). �

The case d = 2 requires again the additional assumption that ρ(1) =

0. Otherwise Sρ would not have a square summable gradient on the

exterior domain.

We define the subspace of single layer potentials by

S = {h ∈ H, hi|Γ = he|Γ}.

The orthogonal complement in H will be denoted D = S⊥ and we will

identify this with the space of double layer potentials belonging to H.

First we have to define, in a weak sense, the normal derivative of

a distribution along Γ. Let (hi, he), (gi, ge) be the representatives of

elements h, g ∈ H. Assume first that both hi, gi ∈ C2(Ω). Then Green’s
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formula yields

|
∫

Γ

∂hi

∂n
gidσ| = |

∫

Ω

∇hi · ∇gidx| ≤ ‖∇hi‖2,Ω‖∇gi‖2,Ω.

By Banach’s open mapping theorem, the continuous bijective trace

operator

Tr : {h ∈ W 1(Ω),∆h = 0} −→ W 1/2(Γ)

is bicontinuous, hence, in our situation we find a positive constant C

such that

‖∇gi‖2,Ω ≤ C‖gi|Γ‖W 1/2 .

Consequently

|
∫

Γ

∂hi

∂n
gidσ| ≤ C‖∇hi‖2,Ω‖gi‖W 1/2 .

A standard regularization argument shows that every harmonic func-

tion gi in Ω, having finite energy inside Ω (i.e. ‖∇gi‖2,Ω < ∞) can be

approximated in the energy metric by harmonic functions which are

smooth up to the boundary. And we know that the traces gi exhaust

the space W 1/2(Γ). Thus ∂hi

∂n
dσ defines a linear continuous functional

on W 1/2(Γ), which via the L2(Γ) duality can be identified with a dis-

tribution ∂hi

∂n
∈ W−1/2(Γ). Moreover, the above estimate implies

‖∂hi

∂n
‖W−1/2(Γ) ≤ C‖∇hi‖2,Ω.

Again by regularization we obtain the following statement.
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Proposition 2.3. The normal derivatives of the boundary values of

a pair (hi, he) ∈ H are distributions ∂hi

∂n
, ∂he

∂n
∈ W−1/2(Γ) depending

continuously on ‖hi‖H, ‖he‖H, respectively, and satisfying the duality

identities:

∫

Γ

∂hi

∂n
gidσ =

∫

Γ

hi
∂gi

∂n
dσ =

∫

Ω

∇hi · ∇gidx,

∫

Γ

∂he

∂n
gedσ =

∫

Γ

ge
∂he

∂n
dσ = −

∫

Ω

∇he · ∇gedx,

(11)

for every g = (gi, ge) ∈ H.

We are ready to identify double layer potentials in the space H.

Corollary 2.4. Let h = (hi, he) ∈ H. The following conditions are

equivalent:

a) h ∈ D(= S⊥);

b) ∂hi

∂n
= ∂he

∂n
(in W−1/2(Γ));

c) There exists f ∈ W 1/2(Γ) such that h = Df .

In this case f = he − hi.

Proof. Assume that h, g ∈ H are orthogonal elements. Then the above

proposition yields

∫

Γ

(
∂hi

∂n
gi −

∂he

∂n
ge)dσ = 0.
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Any element f ∈ W 1/2(Γ) can be realized as f = gi = ge for a proper

choice of g, hence b) follows. Conversely, if b) holds, then the same

identity implies a).

Assume that b) is true and define f = he−hi. ThenDf is well defined

and satisfies by (6) (Df )e−(Df)i = f,
∂(Df )i

∂n
=

∂(Df )e

∂n
. This proves that

the pair of harmonic functions h−Df form a single harmonic function

on Rd which vanishes at infinity, and hence identically. Therefore h =

Df . �

The only elements of H annihilated by the energy seminorm are scalar

multiples of (1, 0). This is the double layer potential of the constant

function, and is, therefore, orthogonal to S. By the boundary formula

(Df )e = 1
2
f − 1

2
K we infer K1 = 1.

Another distinguished element of H is provided by the equilibrium

distribution ρ on Γ; namely (1, h) ∈ S, that is Sρ = 1 and h = Se
ρ, see

Example 1.

The following result is known as Plemelj’s symmetrization principle,

see [33, 16, 18] .

Lemma 2.5. The operators S,K : L2(Γ) −→ L2(Γ) satisfy the identity

KS = SK∗. (12)
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Proof. Let f ∈ C2(Γ). It is sufficient to prove

DSf (x) = S∂nSf (x), x ∈ Ωe.

Indeed, passing from x to a point x0 of the boundary we would obtain

Sf(x0) −KSf(x0) = −SK∗f(x0) + Sf(x0)

and the proof would be complete.

The asserted identity follows again from Green’s fromula:

DSf (x) =

∫

Γ

∂

∂ny

E(x, y)[

∫

Γ

E(y, z)f(z)dσ(z)] =

∫

Γ

f(z)[

∫

Γ

∂

∂ny

E(x, y)E(z, y)dσ(y)]dσ(z) =

∫

Γ

f(z)[

∫

Γ

E(x, y)
∂

∂ny

E(z, y)dσ(y)]dσ(z) =

∫

Γ

E(x, y)[
∂

∂ny

∫

Γ

f(z)E(z, y)dσ(z)]dσ(y) = S∂nSf (x).

�

3. Symmetrizable operators

In the present section we closely follow Carleman ([4], §11) and iso-

late an abstract symmetrization principle for linear bounded operators.

A few decades after Carleman, the same symmetrization technique was

analyzed in detail, in a very flexible general framework, by M.G. Krein

[20].
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To be more specific, we are studying a bounded non-selfadjoint oper-

ator acting on a Hilbert spaceH which becomes symmetric with respect

to a another, bounded scalar product on H. Prior works related to the

same idea have appeared early in the study of the Neumann-Poincaré

operator. A good account of these works is contained in the survey

article by Hellinger and Toeplitz [14].

The theorem below is aimed at and will be directly applicable to the

Neumann-Poincaré operator.

Let H be an infinite dimensional, separable, complex Hilbert space

and let Cp = Cp(H), p ≥ 1, be the Schatten-von Neumann class of

compact operators acting on H, see [12].

Theorem 3.1. Let p ≥ 1 and let M ∈ Cp(H) be a linear bounded

operator with the property that there exists a strictly positive bounded

operator R such that R2M is self-adjoint.

Then the spectrum of M is real and for every non-zero eigenvalue λ,

if (M − λ)mf = 0 for some m > 1, then (M − λ)f = 0.

Moreover, the eigenvectors of M∗, including the null vectors, span

H.

By R strictly positive we mean R ≥ 0 and kerR = 0.

Proof. Let us define on H the bounded sesquilinear form:
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〈f, g〉R = 〈Rf,Rg〉, f, g ∈ H.

Note that the space H is complete with respect to this new norm if

and only if the operator R is invertible.

The assumption in the statement implies

〈Mf, g〉R = 〈RMf,Rg〉 = 〈Rf,RMg〉 = 〈f,Mg〉R.

That is M is a symmetric operator with respect to the new scalar

product.

We prove a little more than the statement. Namely that there exists

a bounded self-adjoint operator A ∈ Cp with the property:

AR = RM. (13)

Let N denote the self-adjoint operator:

N = R2M = M∗R2.

We regularize the inverse of R by a small positive parameter ǫ; to

the effect that the strong operator topology limit (R + ǫ)−1R → I

exists when ǫ tends to zero. And for any operator L ∈ Cq the limit

(R + ǫ)−1RL → L exists in the norm topology of Cq (by a finite rank

approximation argument).
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Fix a positive integer n so that p < 2n and consider the operator:

Aǫ = (R + ǫ)−1R2M(R + ǫ)−1.

Then Aǫ ∈ Cp ⊂ C2n, and

|Aǫ|2 = A2
ǫ = (R + ǫ)−1R2M(R + ǫ)−2R2M(R + ǫ)−1.

In virtue of the cyclic invariance of the trace we obtain:

tr|Aǫ|2n = tr[(R + ǫ)−2R2M ]2n → trM2n <∞.

Thus the family of operators (Aǫ)ǫ>0 is bounded in C2n, hence rela-

tively compact in the weak topology of the same ideal.

On the other hand, AǫR converges in the norm topology of C2n to

RM . This implies that any weak limit point A of (Aǫ)ǫ>0 must satisfy

the identity AR = RM . Since the operator R was assumed to be

injective, all limit points coincide with a uniquely determined operator

A ∈ C2n satisfying identity (1).

Moreover,

RAR = R2M = M∗R2 = N. (14)

Since R is injective with dense range, it follows from

〈ARf,Rg〉 = 〈Rf,ARg〉, f, g ∈ H,

that A is self-adjoint.
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It remains to prove that A ∈ Cp. Let λk be a non-zero value in the

spectrum of A and let fk be a corresponding eigenvector, normalized

by the condition ‖fk‖ = 1. Then, by (13),

M∗Rfk = RAfk = Rλkfk.

Hence λk ∈ σ(M∗). Since M∗ ∈ Cp, the convergence of the series

∞
∑

k=1

|λk|p <∞

shows that A ∈ Cp. In the enumeration λk we allow multiplicities and

can assume by the compactness of A that |λk| ≥ |λk+1|, for all values

of k.

As for the zero eigenvectors h of A, they span its kernel, and each

element Rh is annihilated by M∗, as follows from the identity M∗Rh =

RAh = 0. Since the vectors (fk)k≥1 span, together with h ∈ kerA, the

space H, the M∗-eigenvectors (Rfk)k≥1 and (Rh)Ah=0 span H by the

density of the range of R. This proves the last part of the theorem.

Remark next that the spectral decomposition of A provides a norm

convergent series:

Af =
∑

k

λk〈f, fk〉fk, f ∈ H. (15)
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In general, if E(µ, T ) denotes the spectral projection of an isolated

point in the spectrum of a linear bounded operator T , then:

E(µ, T )∗ = E(µ, T ∗),

see [6] Theorem VII.3.10. Hence the spectral spaces Hλ(M), Hλ(M
∗)

of M and M∗ corresponding to the same isolated eigenvalue λ have

the same dimension. Now, due to the intertwining relations AR =

RM, RA = M∗R, the operator R induces injective maps:

Hλ(M)
R−→ Hλ(A)

R−→ Hλ(M
∗),

for all λ 6= 0. Since dimHλ(M) = dimHλ(M
∗) we deduce that the

three spectral spaces above are isomorphic.

Furthermore, let E(λ,M)H be the spectral subspace of M corre-

sponding to the eigenvalue λ ∈ σ(M)\{0}. By compactness, E(λ,M)H

is a finite dimensional space, and in general it may contain generalized

eigenvectors of M , that is solutions g of the equation (M − λ)mg = 0.

But by hypothesis, M |E(λ,M)H is symmetric with respect to the new

scalar product induced by R, and therefore diagonalizable on that sub-

space. Hence E(λ,M)H only contains eigenvectors of M .

�
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We expand below a couple of comments and corollaries derived from

the preceding proof.

1. Eigenfunction expansions. Let gk ∈ H be the eigenvector of M

corresponding to the non-zero eigenvalue λk. In case of higher multi-

plicities, we repeat λk accordingly in the enumeration of the spectrum.

Set fk = Rgk, and normalize gk so that ‖fk‖ = 1. The spectral decom-

position of A implies the norm convergent expansion

RMf =
∑

k

λk〈f,R2gk〉Rgk, f ∈ H,

or equivalently, the ‖.‖R-convergent series:

Mf =
∑

k

λk〈f, gk〉R gk.

By applying another R we obtain

M∗R2f =
∑

k

λk〈R2f, gk〉R2gk.

In general, however, the stronger continuity assumption

‖Mf‖ ≤ C‖Rf‖, f ∈ H,

(with C a positive constant) is needed for the series

Mf =
∑

k

λk〈f,R2gk〉gk, f ∈ H,

to be norm convergent. See for details [20].
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Along the same lines, note that the self-adjoint operator N = RAR

admits a non-orthogonal, norm convergent decomposition into rank-

one self-adjoint operators (cf. (13)):

Nh =
∑

k

λk〈h,Rfk〉Rfk, h ∈ H. (16)

It does not follow from (16) that the eigevectors of M are complete

in H.

2. Compactness and eigenvalues in the negative space. Let H̃ be the

completion of H in the ‖.‖R-norm, and let M̃ be the linear continuous

extension of M there. We call H̃ the negative space by analogy with

distribution theory (and the theory of Gelfand triples).

Our next aim is to prove that M̃ is compact and self-adjoint on H̃

and that every eigenvector of M̃ corresponding to a non-zero eigenvalue

belongs to H, and hence it is an eigenvector of M .

The intertwining identity AR = RM implies that M̃ is compact on

H̃ ( even in the same class Cp). We prove the compactness of M̃ . Let

(φn) be a bounded sequence in H̃. We can find a sequence (hn) in H

such that ‖R(φn − hn)‖ ≤ 2−n, n ≥ 1. Then by the compactness of

A, the sequence (ARhn) has a convergent subsequence which we will

denote by the same symbols (ARhn). But ARhn = RMhn. That is
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the sequence Mhn is convergent in the ‖.‖R-norm. Thus the sequence

(M̃hn) is convergent in H̃, and so is the sequence (M̃φn).

We extend next the operator R to H̃. Let h̃ ∈ H̃ and consider a

sequence (hn) in H which converges in H̃ to h̃. By the very definition

of the negative norm, the sequence (Rhn) is Cauchy in H. Define

R̃h = limnRhn. Moreover, this definition implies that the operator

R̃ : H̃ −→ H is continuous in the respective norms, and

‖R̃h̃‖ ≤ ‖h̃‖R.

Since the range of R is dense in H, it follows that R̃H̃ = H.

On the other hand, we can consider R−1 : RH −→ H as an un-

bounded self-adjoint operator. Its domain, H+ = RH is complete with

respect to the graph norm ‖h‖H+
= ‖R−1h‖. Let L be a linear con-

tinuous functional on H+. By the Riesz representation lemma, and by

the preceding definition of R̃ there exists an element g = R̃g̃ ∈ H such

that

L(Rh) = 〈h, g〉 = 〈h, R̃g̃〉 = 〈Rh, h̃〉.

Therefore, the scalar product of H defines a non-degenerate contin-

uous pairing between the Hilbert spaces H+ = RH and H̃. We claim

that M̃ is the adjoint of M with respect to this duality pairing. Indeed,

let h̃ ∈ H̃ and f ∈ H+ be arbitrary elements. The above definitions
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imply:

〈M̃h̃, f〉 = 〈R̃M̃h̃, R−1f〉 =

〈AR̃h̃, R−1f〉 = 〈R̃h̃, AR−1f〉 =

〈h̃, RAR−1f〉 = 〈h̃,M∗f〉.

Consequently, by general duality theory for the spectral spaces, the

spectrum of M̃ is real, equal to the spectrum of the compact operator

M∗ : H+ −→ H+, and the multiplicities of the non-zero eigenvalues are

equal. But every eigenvalue ofM∗ : H+ −→ H+ is an eigenvalue ofM∗ :

H −→ H. And conversely, we have proved that every eigenvalue of M∗

is of the form R2gk, where Mgk = λkgk. Hence the spectral subspace

corresponding to a non-zero eigenvalue of M∗ : H −→ H is included

in H+, and has the same multiplicity as the spectral subspace of M .

But the operator M is a restriction of M̃ to H and as such coincides

with the latter on all finite dimensional subspaces of H. Therefore, all

eigenvectors of M̃ corresponding to a non-zero eigenvalue belong to H,

and coincide with the eigenvectors of M .

For more details about the above proof, and another way of reaching

the same conclusion, the reader may consult [20].

3. Min-max. Having understood the full spectral picture of the

operator M and its continuous extension M̃ we are now prepared to
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discuss the meaning of the abstract variational principle which makes

the subject of the present article.

We know that M̃ : H̃ −→ H̃ is a compact operator, with the same

real spectrum as M , and the same eigenfunctions: M̃g = λg, λ 6=

0, g ∈ H. The spectrum can have positive and negative eigenvalues,

with only 0 as an accumulation point. We denote the positive eigen-

values by:

λ+
0 ≥ λ+

1 ≥ λ+
2 ≥ . . . ≥ 0,

and, similarly,

λ−1 ≤ λ−2 ≤ . . . ≤ 0.

The associated eigenfunctions are correspondingly denoted by g+
k , g

−
k .

The asymmetry in the notation comes from the particular integral op-

erator we deal with in this paper.

Both sequences might be finite (in case M is a finite rank operator),

or one can be finite and the other infinite, etc.

The classical Courant-Fischer minimax principle yields:

min
V

max
f∈V \{0}

〈M̃f, f〉R
‖f‖R

= λ+
k ,

where V ⊂ H̃ is a subspace of codimension k. Moreover, the minimum

is attained on the subspace V = {g+
0 , . . . , g

+
k−1}⊥ ⊂ H̃.



ON POINCARÉ’S VARIATIONAL PROBLEM IN POTENTIAL THEORY 39

Note that in this process we obtain a non-increasing sequence of opti-

mal values which converges, or stabilizes to 0. Due to the compactness

of M̃ , the min-max process will never detect the negative eigenvalues.

On the other hand, keeping the same notational conventions (in case

of finite negative spectrum) we obtain:

max
V

min
f∈V \{0}

〈M̃f, f〉R
‖f‖R

= λ−k ,

where V ⊂ H̃ is a subspace of codimension k − 1. Again the op-

timal subspace is generated by the vectors which are orthogonal to

g−1 , . . . , g
−
k−1. For the same reason this max-min process will not reach

non-negative eigenvalues.

The next Proposition is obtained by assembling a part of the above

observations. As a step towards unifying the notation used in the rest

of the paper we put S = R2.

Proposition 3.2. Let M ∈ Cp(H), p ≥ 1, be a linear operator satsi-

fying the identity M∗S = SM , where S is a positive bounded operator

on H. Let λ+
0 ≥ λ+

1 ≥ . . . ≥ 0 ≥ . . . ≥ λ−2 ≥ λ−1 be the eigenvalues of

M repeated according to their multiplicity, and let g+
k , g

−
k ∈ H be the

corresponding eigenvalues.
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Then,

λ+
k = max

f⊥{g+

0
,...,g+

k−1
}

〈SMf, f〉
〈Sf, f〉 . (17)

and similarly

λ−k = min
f⊥{g−

1
,...,g−k−1

}

〈SMf, f〉
〈Sf, f〉 . (18)

4. Operators with a continuous kernel. A slightly stronger assump-

tion than the S-symmetry of the compact operator M discussed above

is the factorization M = LS, where S > 0 and L ≥ 0 is a compact

operator. Indeed, SM = SLS = M∗S.

This is the class of symmetrizable operators with a continuous kernel,

in the terminology of Krein [20]. We put as before R =
√
S. Since

M = (LR)R, we find

‖Mf‖ ≤ ‖LR‖‖f‖R, f ∈ H.

Therefore the continuous extension M̃ maps continuously and com-

pactly the negative space H̃ into H.

Henceforth we assume that S > 0 and L ≥ 0. As a consequence of

the compactness and positivity of L one obtains the convergence in H

of the series:

Lf =
∑

k

λk〈f, gk〉gk, f ∈ H, (19)
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see Theorem 9 of [20]. Indeed, recall that (gk)k is an orthonormalized

system of eigenvectors in H̃, which spans together with ker M̃ the whole

space. In particular, for a vector f ∈ H we have the convergent Fourier

series in H̃:

f =
∑

k

〈f, Sgk〉gk +
∑

j

〈f, ξj〉H̃ξj,

where (ξj) is a completion of (gk), with vectors in ker M̃ , to an or-

thonormal basis. By applying the operator M to the above sum we

find

LSf = Mf =
∑

k

λk〈Sf, gk〉gk,

where the convergence is now assured in H. Let

LNf =
∑

k≤N

λk〈Sf, gk〉gk,

so that

〈LSf, Sf〉 =
∑

k

λk|〈Sf, gk〉|2 ≥

∑

k≤N

λk|〈Sf, gk〉|2 = 〈LNSf, Sf〉, f ∈ H.

But the range of S is dense in H, so that LN ≤ L, as self-adjoint

operators. Then it is well known that L′ = SOT − limN LN exists,

it is a bounded operator and moreover L(Sf) = L′(Sf) for all f . In

conclusion L = L′ and the convergence of the expansion (19) is proved.

Assume in addition that the operator L is strictly positive. Then

the system (gk) ⊂ H of eigenfunctions of M spans H, and at the same
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time it is an orthonormal basis in H̃. Indeed, if 〈x, gk〉 = 0 for all k,

then Lx = 0 and x = 0.

The expansion (19) can be regarded as an abstract analogue of Mer-

cer’s theorem in the theory of integral operators, see [20].

5. The norm of a symmetrizable operator. Let L(H) denote the

C∗-algebra of linear bounded operators acting on the Hilbert space H.

Assuming R2M = M∗R2 as in Theorem 3.1 we immediately obtain the

formula

‖M‖L(H̃) = λ+
0 . (20)

Indeed,using the notation introduced in the proof of Theorem 3.1,

〈Mf, f〉H̃ = 〈ARf,Rf〉H ≤ λ+
0 ‖f‖2

H̃
= λ+

0 ‖Rf‖2
H ,

and the inequality is attained by the compactness of the operator A.

For a symmetrizable operator M as before, the following non-trivial

norm estimate holds:

‖M‖L(H̃) ≤ ‖M‖L(H),

see [20].
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The applications envisaged in this article are more natural in the

context of real Hilbert spaces. However, all operators arising in poten-

tial theory have real kernels, and, accordingly, all the results discussed

in the present section apply to them. To see this formally, the reader

should consider an antilinear isometric involution J on H (complex

conjugation on function spaces, or on the coefficients of a distinguished

orthonormal basis) and assume that the operators M,S,R, in our no-

tation are real, that is they commute with J .

4. Poincaré’s variational problem

We keep the notation and conventions introduced in the preliminar-

ies: H is the space of pairs of harmonic functions (hi, he) defined on Ωi,

respectively Ωe, he(∞) = 0, and having finite energy.

The prehilbertian space H possesses two natural direct sum decom-

positions:

H = S ⊕ D = Hi ⊕ He.

By definition, the latter subspaces are

Hi = {(hi, 0) ∈ H}, He = {(0, he) ∈ H}.
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Let Ps, Pd, Pi, Pe be the corresponding orthogonal projections. The

only subspace N = C(1, 0) annihilated by the seminorm satisfies:

N ⊂ D ∩ Hi.

Sometimes we will prefer to work within a Hilbert space, and then we

will replace tacitly H by H ⊖ N.

Recall that the boundary single layer potential S is an L2-positive

operator mapping W−1/2(Γ) onto W 1/2(Γ). The L2 pairing between

the two Sobolev spaces is still denoted 〈Sρ, f〉2,Γ, ρ ∈ W−1/2(Γ), f ∈

W 1/2(Γ).

We will prove that the quadratic form used by Poincaré in his vari-

ational problem is essentially the “angle operator” between these or-

thogonal decompositions (that is PsPiPs or an affine combination such

as Ps(Pe − Pi)Ps).

Lemma 4.1. Let g ∈ W−1/2(Γ) (assuming g(1) = 0 in case d = 2).

Then

〈(Pe − Pi)Sg, Sg〉H
‖Sg‖2

H

=
〈KSg, g〉2,Γ

〈Sg, g〉22,Γ

. (21)

Proof. Due to the continuity of all terms we can assume that g is a

smooth function on Γ. By Green’s formula, the jump formulas (6) and

the opposite orientation of Γ with respect to the exterior domain we
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find

∫

Ωe

|∇Sg|2dx = −
∫

Γ

Sg ∂nS
e
gdσ = 〈Sg, 1

2
g +

1

2
K∗g〉2,Γ,

and
∫

Ωi

|∇Sg|2dx =

∫

Γ

Sg ∂nS
i
gdσ = 〈Sg, 1

2
g − 1

2
K∗g〉2,Γ.

Therefore,

〈(Pe − Pi)Sg, Sg〉H = 〈KSg, g〉2,Γ,

‖Sg‖2
H = 〈Sg, g〉2,Γ.

�

In view of Plemelj’s symmetrization principle (Lemma 2.5), the con-

ditions of the abstract symmetrization scheme in Theorem 3.1 are met

for the second Rayleigh quotient above. Accordingly we can state the

following theorem, whose main points were foreseen by Poincaré.

Theorem 4.2. Let Ω ⊂ Rd be a bounded domain with smooth boundary

Γ and let Ωe = Rd \ Ω. Let Sρ denote the single layer potential of a

distribution ρ ∈ W−1/2(Γ), (ρ(1) = 0 in case d = 2).

Define successively, as long as the maximum is positive, the energy

quotients

λ+
k = max

ρ⊥{ρ+

0
,...,ρ+

k−1
}

‖∇Sρ‖2
2,Ωe

− ‖∇Sρ‖2
2,Ω

‖∇Sρ‖2
2,Rd

, (22)
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where the orthogonality is understood with respect to the total energy

norm. The maximum is attained at a smooth distribution ρ+
k ∈ W 1/2(Γ).

Similarly, define

λ−k = min
ρ⊥{ρ−

1
,...,ρ−k−1

}

‖∇Sρ‖2
2,Ωe

− ‖∇Sρ‖2
2,Ω

‖∇Sρ‖2
2,Rd

. (23)

The minimum is attained at a smooth distribution ρ−k ∈ W 1/2(Γ).

The potentials Sρ±k
together with all Sχ ∈ kerK(χ ∈ W−1/2(Γ)),

are mutually orthogonal and complete in the space of all single layer

potentials of finite energy.

The stronger than expected regularity of the eigenfunctions (ρ±k ∈

W 1/2(Γ)) was explained in abstract form, in the last section. The equi-

librium distribution of Ω provides the first function ρ+
0 in this process:

Sρ+
0 = 1, Sρ+

0
|Ω = 1. The first eigenvalue is always λ+

0 = 1 and has

multiplicity equal to one (cf. Example 8.1).

Lemma 4.1 gives a precise correlation between the above Poincaré

variational problem and the Neumann-Poincaré operator.

Corollary 4.3. The spectrum of the Neumann-Poincaré operator K,

multiplicities included, coincides with the spectrum (λ±k ) of Poincaré’s

variational problem, together with possibly the point zero. The extremal

distributions for the Poincaré problem are exactly the eigenfunctions of

K.
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In practice it is hard to work directly with the N-P operator on

L2(Γ). Instead, the following interpretation of the extremal solutions

to Poincaré’s variational problem is simpler and more flexible. This

also goes back to Poincaré’s memoir [34] , and it was constantly present

in the works of potential theory in the first decades of the twentieth

century, cf. for instance [33].

Let us start with an eigenfunction f ∈ L2(Γ) of the operator K∗.

Then

K∗f = λf ⇒ KSf = SK∗f = λSf,

and by the jump formulas (6)

∂nS
i
f =

1 − λ

2
f, ∂nS

e
f =

−1 − λ

2
f.

The associated energies are

Ji[f ] =

∫

Ωi

|∇Sf |2dx =
1 − λ

2
〈Sf, f〉,

Je[f ] =

∫

Ωe

|∇Sf |2dx =
1 + λ

2
〈Sf, f〉.

To verify our computations, simply note that

Je[f ] − Ji[f ]

Je[f ] + Ji[f ]
= λ.

The characteristic feature of the above single layer potential Sf is

encoded in the following statement.
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Proposition 4.4. A pair of harmonic functions (hi, he) ∈ H represents

an extremal potential for Poincaré’s variational problem (distinct from

the equilibrium distribution) if and only if, there are non-zero constants

α, β such that

hi|Γ = αhe|Γ ∂nhi|Γ = β∂nhe|Γ. (24)

Proof. For the proof we simply change he into αhe, and remark that

this is a single layer potential of a charge ρ. The second proportionality

condition implies, via the jump formulas, K∗Sρ = λSρ for a suitable λ.

By the injectivity of S we find Kρ = λρ, and the general symmetriza-

tion framework implies ρ ∈ W 1/2(Γ). �

Note that in the above proof we could as well renormalize the normal

derivatives and assume that (βhi, he) is a double layer potential of a

density f ∈ W 1/2(Γ) which turns out to be an eigenfunction of the N-P

operator K.

5. Schiffer’s operator

The operator angle, in the Hilbert space H of potentials, between

the subspace of single layer potentials and that of elements supported

by Ω can also be computed as Pi(Pd − Pe)Pi. In dimension two, a

recapturing of the latter as a singular integral operator, was studied

by M. Schiffer and S. Bergman [3, 40, 41]. We present below a general
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d-dimensional construction of an integral operator acting on harmonic

fields as Pi(Pd − Pe)Pi. This justifies the title of the section.

Our first aim is to link, in arbitrary dimension, Pi(Pd − Pe)Pi to a

boundary operator.

Let f ∈ W 1/2(Γ) and g ∈ W−1/2(Γ), and assume that

De
f + Se

g = 0.

By passing to boundary values,

1

2
f − 1

2
Kf + Sg = 0. (25)

In other terms

Sg ∈ ran(I −K) = ker(I −K∗)⊥.

But we know that the density g0 of the equilibrium distribution satisfies

Sg0 = 1, the constants are the only elements in ker(I − K) and that

(I−K)S = S(I−K∗). Whence ker(I−K∗) = Cg0. Thus equation (25)

has a solution if and only if 〈g,1〉 =
∫

gdσ = 0. Then we can write f =

2(K− I)−1Sg, based on the observation that (I−K) : 1⊥ −→ ran(I−

K) is an invertible operator. By these orthogonality assumptions we

can assume without loss of generality that both functions f, g have real

values. Then, using one more time the assumption De
f + Se

g = 0, the
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jump formulas (6) and (25) we find

〈(Pd − Ps)(Df + Sg), Df + Sg〉H =

∫

Ω

∇(Df − Sg) · ∇(Df + Sg)dx =

∫

Γ

(Di
f−Si

g)∂n(Di
f+S

i
g)dσ =

∫

Γ

(−1

2
f−1

2
Kf−Sg)∂n(Di

f+S
i
g−De

f−Se
g)dσ =

−
∫

Γ

Kfgdσ.

Similarly,

‖Df + Sg‖2
H =

∫

Ω

|∇(Df + Sg)|2dx = −
∫

Γ

fgdσ.

We have arrived at the following isometric identification.

Lemma 5.1. Let h ∈ H be an element supported by the inner domain,

i.e. he = 0. Decompose h = Df + Sg, f ∈ W 1/2(Γ), g ∈ W−1/2(Γ).

Then g, f ⊥ 1, (I −K)−1Sg is well defined, and

〈(Pd − Ps)h, h〉H
‖h‖2

H

=
〈K(I −K)−1Sg, g〉2,Γ

〈(I −K)−1Sg, g〉2,Γ

. (26)

To put this into the abstract symmetrization scheme we have only

to replace L2(Γ) by the codimension one subspace H = 1⊥ of vectors

orthogonal to the constants. The operator (I −K)−1S is strictly posi-

tive on H, and can replace S in Proposition 3.2. However, in general,

the operator K does not leave H invariant. To correct this we con-

sider the orthogonal projection PH of K onto H and the compression
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K1 = PHKPH of K; then

K1(I −K)−1S = (I −K)−1SK∗
1 .

Indeed, start with f, g ∈ H satisfying f = (I −K)−1Sg, that is (I −

K)f = Sg. Then (I − K)Kf = KSg = SK∗g, or equivalently (I −

K)K1f = SK∗
1g, which is the relation to be proved.

The following analogue of Poincaré’s principle holds.

Theorem 5.2. Let Ω ⊂ Rd be a bounded domain with smooth bound-

ary. Let Ps, Pd denote the orthogonal projections of the energy space H

onto the subspace of single, respectively double layer potentials. Let Hi

be the subspace of functions vanishing on the complement of Ω.

Define successively, as long as the maximum is positive, the energy

quotients

λ+
k = max

h∈Hi

h⊥{h+

1
,...,h+

k−1
}

〈(Pd − Ps)h, h〉Hi

‖h‖2
Hi

. (27)

Then the maximum is attained at an element h+
k ∈ Hi.

Similarly, define

λ−k = min
h∈Hi

h⊥{h−
1

,...,h−

k−1
}

〈(Pd − Ps)h, h〉Hi

‖h‖2
Hi

. (28)

The minimum is attained at h−k ∈ Hi.

Exactly as before, the link to the operator K is very simple.
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Corollary 5.3. In the conditions of the Theorem, the spectrum of

the Neumann-Poincaré operator K consists, including mutiplicities, of

{λ±k ; k ≥ 1} together with the points {0, 1}.

Remark that the eigenvalue λ+
0 = 1 cannot be detected by the above

variational scheme. This is due to the fact that the corresponding

eigenfunction 1 of K cannot satisfy the compatibility condition −1
2
1 +

1
2
K1−Sg = 0, (which would mean g = 0). This scenario would produce

the pair (1, 0) of zero total energy.

The extremal solutions to the above problem are precisely

h±k = Su±

k
+Dg±k

,

where

Kg±k = λ±k g
±
k ,

and

2Su±k = (1 − λ±k )g±k .

Next we describe a realization of the abstract angle operator Pi(Pd−

Ps)Pi. To this aim we consider an arbitrary element h ∈ H and its

harmonic field ∇h ∈ L2(Rd, dx). We define, for points x ∈ Ω

Π(∇h)(x) = p.v.∇x

∫

Rd

∇yE(x, y) · ∇yhdy. (29)
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Lemma 5.4. The operator Π acts as follows:

Π(∇Sg)(x) = −∇Sg(x), Π(∇Df )(x) = 0,

whenever x ∈ Ω, f ∈ W 1/2(Γ), g ∈ W−1/2(Γ).

Proof. Let x ∈ Ω and choose ǫ > 0 small enough so that the closed

ball Bǫ(x) is contained in Ω. Denote by Ωǫ = Ω \ Bǫ(x). Let f, g be

densities as in the statement. By a repeated use of Green’s formula

and Gauss’ mean value theorem on the sphere |x− y| = ǫ we obtain:

∫

Ωǫ∪Ωe

∇yE(x, y) · ∇ySg(y)dy =

−
∫

Ωe

Sg(y)∆E(x− y)dy −
∫

Γ

Sg(y)(∂
e
n − ∂i

n)E(x, y)dσ(y)

−
∫

Ωǫ

Sg(y)∆E(x− y)dy −
∫

|x−y|=ǫ

Sg(y)∂nE(x− y)dσ(y) =

−Sg(x).

Thus Π(∇Sg)(x) = −∇Sg(x).

We proceed similarly for double layer potentials:

∫

Ωǫ∪Ωe

∇yE(x, y) · ∇yDf (y)dy =

−
∫

Γ

E(x, y)∂e
nDf (y)dσ(y) +

∫

Γ

E(x, y)∂i
nDf (y)dσ(y)

+

∫

|x−y|=ǫ

E(x− y)∂nDf (y)dσ(y) =

E(ǫ)

∫

|x−y|=ǫ

∂nDf (y)dσ(y) = 0.
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�

In order to properly define our angle operator on harmonic fields we

consider the analogue of the Bergman space in Ω:

B(Ω) = {∇u; ∆u = 0 in Ω, ‖∇u‖2,Ω <∞}.

It is a Hilbert space of vector valued functions. We also define

TΩ : B(Ω) −→ B(Ω),

by

TΩ(∇u)(x) = (I + 2Π)(∇u, 0)(x), x ∈ Ω.

Recall that every element (u, 0) ∈ H can be expressed as (u, 0) =

Df + Sg. Thus, for such a pair

TΩ∇(Df + Sg) = ∇(Df − Sg) ∈ B(Ω).

Moreover, the computations at the beginning of this section yield the

following result.

Proposition 5.5. The linear operator TΩ : B(Ω) −→ B(Ω) is compact

and its spectrum coincides with the spectrum of the Neumann-Poincaré

operator, with the exception of the point 1.
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Proof. For the proof we have only to observe the validity of the identity

〈TΩ(∇u),∇u〉
‖∇u‖2

=
〈K1(I −K)−1Sg, g〉2,Γ

〈(I −K)−1Sg, g〉2,Γ

,

where (u, 0) = Df + Sg.

The point 1 is missing from the spectrum of TΩ because (u, 0) =

Sg + Df imples f, g ∈ H, that is f, g ⊥ 1 and the compression of K

to the space H eliminates the point 1 from the spectrum, cf. the text

following (26).

�

Since the operator TΩ is invariant under homotheties x 7→ tx, t > 0,

we deduce that the spectrum of the Neumann-Poincaré operator asso-

ciated to a domain Ω is invariant under all shape preserving transfor-

mations (i.e., translations, rotations and homotheties) of Ω.

6. Neumann-Poincaré’s operator in two dimensions

The natural connection to complex analytic functions provides a bet-

ter understanding of the spectral analysis of the Neumann-Poincaré

operator in two dimensions. There are a few specific two dimensional

phenomena, whose discovery goes back to the works of Ahlfors [1] ,

Bergman [2, 3], Plemelj [33], Schiffer [40, 41] and Springer [43]. This



56 DMITRY KHAVINSON, MIHAI PUTINAR, AND HAROLD S. SHAPIRO

section is devoted to the proofs of some of the specifically two dimen-

sional results which are related to the main theme of the present article.

We do not aim at completeness, and for example we do not discuss the

link between the eigenvalues of the Neumann-Poincaré operator and

quasiconformal mappings. These and other results are well exposed in

the aforementioned works. On the other side none of these papers em-

phasizes on the relationship between the spectrum of the N-P operator

and Poincaré’s extremum problem, the focus of the present study.

We return to the notation introduced in the preliminaries, with some

specific adaptations to dimension two: Γ is a C2-smooth Jordan curve,

surrounding the domain Ω ⊂ C, and having Ωe as exterior domain.

We denote by z, w, ζ, ... the complex coordinate in C and by ∂z = ∂
∂z

the Cauchy Riemann operator, and so on. The area measure will be

denoted dA. The space H consists of (real-valued) harmonic functions

h on C \ Γ having square summable gradients:

h ∈ H ⇔
∫

Ω∪Ωe

| ∂zh(z)|2dA(z) <∞, h(∞) = 0.

Note that the gradients ∂zh are now square summable complex anti-

analytic functions. In other terms, in our notation B(Ω) is the complex

conjugate of the Bergman space A2(Ω) of Ω.
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The single and double layer potentials are in this case strongly related

to Cauchy’s integral. For instance,

(Kf)(z) =

∫

Γ

f(ζ)Re [
dζ

2πi(ζ − z)
] =

1

2π

∫

Γ

f(ζ) d arg(ζ − z),

see [15].

The following complex antilinear singular integral operator plays the

role of the symmetry Pd − Ps in our notation. Let F = ∇Sf , f ∈

W 1/2(Γ), be regarded as a single anti-analytic function defined on all

Ω ∪ Ωe. Define the Hilbert (sometimes called Beurling) transform

(TF )(z) = p.v.
1

π

∫

Ω∪Ωe

F (ζ)

(ζ − z)2
dA(ζ) (30)

Lemma 6.1. Let h ∈ H be represented as h = Df+Sg, f ∈ W 1/2(Γ), g ∈

W−1/2(Γ). Then

T∇(Df + Sg) = ∇(Df − Sg). (31)

The proof is very similar to the proof of Lemma 5.4 and we omit it.

In other terms, returning to our old notation:

T∇h = ∇(Pd − Ps)h, h ∈ H.

In particular we note the following simple but important fact.

Corollary 6.2. The antilinear transform T is an isometric isomor-

phism of the space B(Ω) ⊕ B(Ωe) onto itself.
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By repeating the definitions of the last section we set

TΩ : B(Ω) −→ B(Ω), TΩ(F )(z) = T (F, 0)(z), z ∈ Ω,

where (F, 0) means the extension of F ∈ A2(Ω) by zero on Ωe. Thus

the operator TΩ and the one described above coincide as linear transfor-

mations over the real field. Consequently we have proved the following

result. For convenience we state it for analytic functions, rather than

their complex conjugates. The correspondence between one space and

another is an obvious isometry.

Theorem 6.3. Let Ω be a bounded planar domain with C2 smooth

boundary and let TΩ : A2(Ω) −→ A2(Ω) be the antilinear operator

[TΩf ](z) = p.v.
1

π

∫

Ω

f(ζ)

(ζ − z)2
dA(ζ), f ∈ A2(Ω), z ∈ Ω.

Then TΩ is compact and the eigenvalues of the antilinear eigenvalue

problem

TΩfk = λkfk

coincide (multiplicities included) with the spectrum of the Neumann-

Poincaré operator, except the eigenvalue 1. The eigenfunctions (fk)

are orthogonal and complete in A2(Ω).
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As a matter of fact we know more, namely the isometric identification

〈TΩ(∇u),∇u〉Ω
‖∇u‖2

Ω

=
〈K1(I −K)−1Sg, g〉2,Γ

〈(I −K)−1Sg, g〉2,Γ

,

where this time we work with antianalytic functions ∇(u), with u ∈ H.

The reader can easily transform this into an identity for the associated

operator acting on the Bergman space.

This, and the symmetrization construction yield

‖TΩ‖ = λ+
1 (32)

where λ+
1 is the largest eigenvalue of K less than 1.

Note the ambiguity of phase in the eigenvalue problem TΩf = λf .

By multiplying f by a complex number τ of modulus one, the complex

antilinearity of TΩ implies TΩf = τ 2λf. On the other hand, we have

identified T with an R-linear operator (Pd −Ps) acting on gradients of

real harmonic functions. This simple observation leads to the following

characteristic symmetry of the Neumann-Poincaré operator specific for

two variables.

Proposition 6.4. Let Γ ⊂ R2 be a C2-smooth Jordan curve. Then,

except the point 1, the spectrum of the Neumann-Poincaré operator

acting on L2(Γ) is symmetric with respect to the origin, multiplicities

included: λ ∈ σ(K), λ < 1 if and only if −λ ∈ σ(K).



60 DMITRY KHAVINSON, MIHAI PUTINAR, AND HAROLD S. SHAPIRO

Proof. Let λ ∈ σ(K) \ {1} and let (u, 0) ∈ H be the associated eigen-

function of the operator Pi(Pd − Pe)Pi, cf. Proposition 5.5. By the

above correspondence there exists an anti-analytic function F = ∂zu

satisfying TΩF = λF . Let G = iF and remark that the antilinearity

of TΩ implies TΩG = −λG. Remark also that G = ∂zũ, where ũ is the

harmonic conjugate of u. Thus, the eigenvector in H corresponding to

the eigenvalue −λ is simply (ũ, 0). �

The eigenvalue 1 does not have a companion, see Example 8.1.

Another symmetry is available from the above framework.

Proposition 6.5. Let Ω be a bounded planar domain with C2-smooth

boundary and let Ωe be the exterior domain. Then the Bergman space

operators TΩ and TΩe have equal spectra.

Proof. Let (F, 0) be an eigenvector of TΩ, corresponding to the eigen-

value λ. Denote T (F, 0) = (λF,G). Since T 2 = I we get (F, 0) =

λT (F, 0) + T (0, G) = (λ2F, λG) + T (0, G). Thus T (0, G) = ((1 −

λ2)F,−λG). This means −λ ∈ σ(TΩe) and by the preceding symmetry

principle λ ∈ σ(TΩe). �



ON POINCARÉ’S VARIATIONAL PROBLEM IN POTENTIAL THEORY 61

7. Qualitative analysis of the Neumann-Poincaré

operator

The present section is devoted to a few aspects of spectral analysis

of the Neumann-Poincaré operator, obtained via Poincaré’s variational

principles.

Our first aim is to prove the existence of a domain in R3 which carries

a negative spectrum (of the associated N-P operator), arbitrarily close

to −1. This infirms Poincaré’s guess, based on the case of a ball, that

the spectrum of spatial bodies is always non-negative. We start by

constructing a couple of cut-off functions.

Lemma 7.1. For every positive δ there exists an odd C∞-function

ψ : R −→ R, such that

ψ(t) = t, t ∈ [−1, 1],

∫

|t|>1

|ψ′(t)|2dt < δ,

lim
±t→∞

ψ(t) = ±1.

Proof. Let Λ be a positive constant. Choose, for t > 1

ψ(t) = 1 + (t− 1)e−Λ2(t−1)2 .

Then

ψ′(t) = e−Λ2(t−1)2 [1 − 2(t− 1)2Λ2],
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and the conditions in the statement are met for Λ sufficiently large. �

Lemma 7.2. Given r > 1 there exists a function φ : R −→ [0,∞),

such that

φ(x) =



















1 |x| ≤ 1,

0 |x| ≥ r2

and
∫ ∞

−∞

φ′(x)2dx =
C

r2 − 1
,

for a universal constant C.

Proof. Let χ be a smooth function satisfying χ(x) = 1 for x < 0 and

χ(x) = 0 for x ≥ 1. Define

φ(x) =



















1 |x| ≤ 1,

χ(| x−1
r2−1

|), |x| ≥ 1.

Then

φ′(x) =
1

r2 − 1
χ′(

x− 1

r2 − 1
), x > 1,

and similary for x < −1. A change of variable in the integral will prove

the statement. �

Theorem 7.3. There exists a bounded domain with smooth boundary

such that its Neumann-Poincaré operator has negtive spectrum, arbi-

trarily close to −1.
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Proof. Fix a small positive ǫ and consider the cylinder

G = {(x, y, z); x2 + y2 < 1, |z| < ǫ}.

We will approximate G arbitrarily close from inside by a domain Ω with

smooth boundary. For instance Ω can be an ellipsoid of revolution. The

distribution u which will produce a negative spectrum is given on the

boundary Γ of Ω by the function

u(x, y, z) = φ(x2 + y2)ψ(z/ǫ),

where the functions φ, ψ are those constructed in the previous lemmas,

with parameters to be determined in the course of the proof.

Note that for (x, y, z) ∈ Ω the function u(x, y, z) = z/ǫ is harmonic.

Thus

J [u] =

∫

Ω

|∇u|2dxdydz.

Since the domain Ω was chosen close enough to the cylinder G, the

energy J [u] can be made arbitrarily close to

J [u] ≈
∫

G

|∇(u)|2dxdydz = π

∫ ǫ

−ǫ

1

ǫ
|ψ′(

z

ǫ
)|2d(z

ǫ
) =

2π

ǫ
.

By abuse of notation we will not carry below this approximation.
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To estimate the energy of the field outside the domain, although the

function u is not harmonic there, in virtue of Dirichlet’s principle

J ′[u] := Je[u] ≤
∫

Ωe

|∇(u)|2dxdydz ≈
∫

Ge

|∇(u)|2dxdydz.

It will be simpler to estimate the total energy, starting from the par-

ticular form of the function u:

J [u] + J ′[u] ≤ 2π

∫ r

1

4ρ2φ′(ρ2)2ρdρ .

∫ ∞

−∞

|ψ(
z

ǫ
)|2dz+

2π

∫ r

0

φ(ρ2)2ρdρ .

∫ ∞

−∞

1

ǫ
|ψ′(

z

ǫ
)|2d(z

ǫ
).

Next we denote by C > 0 a generic universal constant. According to

our lemmas,

J [u] + J ′[u] ≤ C

r2 − 1
+ πr2

{
∫ ǫ

−ǫ

+

∫

|z|>ǫ

}

1

ǫ
|ψ′(

z

ǫ
)|2d(z

ǫ
) ≤

C

r2 − 1
+ πr2 2

ǫ
+ πr2 δ

ǫ
=

C

r2 − 1
+ π(r2 − 1)

2

ǫ
+ J [u] + πr2 δ

ǫ
.

We choose δ =
√
ǫ, r2 − 1 =

√
ǫ, and obtain

J [u] + J ′[u] ≤ J [u] +
C√
ǫ
,

and finally

J ′[u] ≤ C√
ǫ

= J [u]C
√
ǫ.
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This proves that the distribution u on the boundary of Ω produces

an arbitrarily small energy ratio J ′[u]/J [u]. According to Poincaré’s

principle, the associated N-P operator has then a point in the spectrum

arbitrarily close to the value −1. �

The above proof has a plausible physical interpretation: If a con-

denser consisting of two neighboring parallel plates is charged by plac-

ing large charges of equal magnitude and opposite signs on the plates,

most of the energy of the resulting field is in the space between the

plates.

The next result complements the previous example.

Theorem 7.4. Let Ω be a domain with smooth boundary Γ in R3.

Then, there exists a positive constant c such that, if λ is an eigenvalue

of the Neumann-Poincaré operator associated to Ω with λ < −1 + c

and f a corresponding eigenfunction, f takes both positive and negative

values on ∂Ω. The constant c can be chosen uniformly for all domains

Ω with C2 boundary having uniformly bounded principal curvatures.

Proof. We use c1, c2, ... to denote positive numerical constants. The

proof is by contradiction. Suppose then that f is a non-negative eigen-

function associated to eigenvalue λ < −1+c. We’ll show that for small
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c this leads to a contradiction. We may assume w.l.o.g. that

∫

Γ

fdσ = 1. (33)

We first show

J [f ] ≤ c1. (34)

Indeed, we have λf(x) =
∫

Γ
K(x, y)f(y)dσ(y), where K denotes the

Neumann - Poincaré kernel. By iteration we get

λ3f(x) =

∫

Γ

K3(x, y)f(y)dσ(y) (35)

where K3 is the third iterate of K. It is known that |K3(x, y)| ≤ c2 on

Γ× Γ (see [15] ). Hence, in view of (35), and since |λ| cannot be small

due to our assumption,

f(x) ≤ c3, x ∈ Γ. (36)

This immediately implies (34) .

To proceed with the proof, note that we may (and do) assume Ω

is contained in the ball B1/2 (where BR denotes the ball of radius R

centered at 0). Let F be the function on ∂B1 such that the measure

Fdσ is the balayage of fdσ . Then, P (x, y) denoting Poisson’s kernel

for the unit ball (where x is in B1 and y in ∂B1 ),

F (y) =

∫

Γ

P (x, y)f(x)dσ(x).
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Since P (x, y) ≥ c4 for |x| ≤ 1/2 (and hence for x in ∂Ω) this implies

F (y) ≥ c4, y ∈ ∂B1. (37)

Let h denote the function identically equal to 1 on ∂B1. It is im-

portant to stress that h is a multiple of the equilibrium potential and

J(h) > 0. Since F ≥ c4h, we have J [F ] ≥ (c4)
2I[h] ( the energy

functional is monotonic for positive charges) , and so

J [F ] ≥ c5. (38)

Now, from (38) follows that, for the electrostatic field in R3 engen-

dered by F , the part in the exterior of B1 has energy greater than

(1/2)c5 (this is a consequence of the theory of Poincaré’s variational

problem for the ball, as presented in Section 8.2). Since F arises from

f via balayage, this is identical (outside B1) with the field due to f ,

and so, a fortiori , the energy Je[f ] of the field due to f outside Ω is

not less than (1/2)c5 =: c6. Recall now from (34) that J [f ] ≤ c1. Since

λ =
Je[f ] − Ji[f ]

Je[f ] + Ji[f ]
= 2

Je[f ]

J [f ]
− 1 ≥ 2(c6/c1) − 1 = c7 − 1,

whereas we assumed λ < −1 + c. This is a contradiction for c = c7,

and the proof is concluded. �

Remark. By a similar argument one can show e.g. if f, g are eigen-

functions each associated to some eigenvalue in the range (−1,−1+ c),
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then every nontrivial linear combination of f and g changes sign, and

the same is true for more eigenfunctions.

Our next goal is by applying some standard approximation theory to

the N-P operator, to ”glue” two domains into a one, without distorting

too much finitely many points of the union of the two spectra. The

precise statement follows.

Theorem 7.5. Let Ω1,Ω2 ⊂ Rd be two bounded domains with smooth

boundary. Let Fi ⊂ σ(Ki) \ {0}, i = 1, 2, be two disjoint finite sets in

the spectra of the corresponding N-P operators.

For a given ǫ > 0, there exists a bounded domain Ω with smooth

boundary and associated N-P operator K such that for every λ ∈ F1 ∪

F2,

dist(λ, σ(K)) < ǫ.

If the point λ has multiplicity m, then the ball B(λ, ǫ) contains exactly

m points of σ(K), counting multiplicities.

Proof. We will base our reasoning on the following known fact: If T ∈

L(H) is a linear bounded operator, acting on a Hilbert space, and λ is

an isolated point of its spectrum of finite multiplicity m, then for every

small ǫ > 0 there exists a positive δ such that, whenever an operator

S ∈ L(H) satisfies ‖S − T‖ < δ, the spectrum of S contains exactly
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m points (counting multiplicities) in the disk centered at λ and having

radius ǫ. A possible proof can be derived from counting the poles of the

resolvent (z−S)−1 along the fixed contour |z−λ| < ǫ, see for instance

[12].

We start with the two domains Ω1,2 and the given finite sets of spec-

tral points F1,2. We know that a translation of the domain will not

change the spectrum of the N-P operator. Let Ω2 +Ra be such a trans-

lation, with unit vector a fixed and large parameter R. We join the

boundary of Ω1 to that of Ω2 +Ra by a smooth curve γ and consider a

tubular neighborhood U of γ whose width η will be chosen sufficiently

small. The result of these operations, plus a local smoothing of the

intersection of the boundaries of the these sets, is the domain

Ω ≈ Ω1 ∪ U ∪ (Ω2 +Ra).

We work first on the Lebesgue space L2(∂Ω), and consider there the

N-P operator K associated to Ω. Let Γ1(η) = ∂Ω1 \ U be the part of

the boundary of Ω1 which does not intersect the (smooth) joint with

the tubular neighborhood U . The multiplication by the characteristic

function of the set Γ1(η) defines a self-adjoint projector, denoted P1(η),

acting on L2(∂Ω).
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On the other hand, the boundary ∂Ω1 carries a Lebesgue space, the

N-P operator K1 and the same cut-off projector by the characteristic

function of Γ1(η), still denoted P1(η). Moreover, the isometric identifi-

cation

‖P1(η)f‖∂Ω = ‖P1(η)f‖∂Ω1
,

holds. Note that the projectors P1(η) converge strongly to the identity

of L2(∂Ω1) when η converges to zero. Since the operatorK1 is compact,

the following norm convergence

lim
η→0

‖K1 − P1(η)K1P1(η)‖ = 0,

is true.

As a conclusion of these computations, and the general approxima-

tion principle stated at the beginning of the proof, we find that for

η sufficiently small the spectrum of P1(η)K1P1(η) approaches within

distance ǫ the given finite part F1 of the spectrum of K1. Similarly, the

projection P2(η) does the same service on the boundary of Ω2 +Ra.

Thus, the two ”corners” P1(η)KP1(η) and P2(η)KP2(η) of the N-P

operator of Ω have spectra in an ǫ neighborhood of the given set F1∪F2.

Next we use Poincaré’s theorem, asserting that the spectrum of K

can equally be computed via the energy form 〈SK∗f, f〉 = 〈KSf, f〉,
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and the freedom to choose the translation parameter R large. Indeed,

lim
R→∞

〈SP1(η)f, P2(η)〉 = 0

for every pair of functions f, g ∈ L2(∂Ω). Likewise, using the energy

norm interpretation of the boundary scalar product 〈Sf, f〉 we infer

lim
η→0

〈S(P1(η) + P2(η))f, f〉 = ‖f‖2.

Since the operator K is compact, we deduce that the differences

KS − (P1(η)KSP1(η) ⊕ P2(η)KSP2(η))

and

[K − (P1(η)KP1(η) ⊕ P2(η)KP2(η))]S

tend to zero uniformly, as soon as R becomes large and η small.

Thus, the spectrum of K can be approximated in the specified sense

by the spectrum of P1(η)KP1(η)⊕P2(η)KP2(η) and this completes the

proof of the theorem. �

Knowing that there are domains with negative spectrum as close to

−1 as we desire, and the example of the unit ball (see Section 8.2), the

preceding theorem shows that there are domains in Rd with at least as

many finite negative and finite positive eigenvalues as one desires.
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8. Examples

8.1. The equilibrium distribution. The notations are those adapted

in the preliminaries. Let (1, h) ∈ H be a single layer potential of the

equilibrium distribution ρ ∈ W−1/2(Γ). Then by taking boundary val-

ues along Γ we find:

Si
ρ = Se

ρ = 1, 0 = 2∂nS
i
ρ = ρ−K∗ρ.

Therefore

K1 = KSρ = SK∗ρ = Sρ = 1.

If another function f ∈ W 1/2(Γ) satisfies Kf = f , then there exists

ξ ∈ W−1/2(Γ) such that Sξ = f and by reversing the above identities

we find K∗ξ = ξ, that is Sξ produces zero energy inside Ω, hence it is

a constant function. But this will imply that ξ is a scalar multiple of

the equilibrium distribution.

Thus, for any closed smooth surface Γ, dim ker(K − I) = 1. On the

other hand, always ker(K + I) = 0.

Indeed, assume that Kξ + ξ = 0. That means K∗Sξ + Sξ = 0, that

is ∂nS
e
ξ = 0, which means that the field ∇Sξ has zero energy on Ωe.

Thus Se
ξ = 0 which implies ξ = 0.

8.2. The ball in Rd. The complete solution of Poincaré’s variational

problem for the unit ball in R3 was given by Poincaré [34] . As this
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example is very important for our purposes let us briefly present it.

We confine our attention to dimension d = 3, the cases d > 3 being

analogous (there are however some anomalous aspects for d = 2).

In this section B denotes the unit ball in R3 and Γ its boundary. Let

k be a non-negative integer, and denote byHk the set of of homogeneous

polynomials of degree n which satisfy the Laplace equation (augmented

by 0, to make it a vector space). The dimension of Hk is 2k + 1, cf.

[15]. For each F in Hk we can write F (x) = rkf(y) where r = |x| :=

[
∑

(xi)
2]1/2, y := x/r is a point of Γ, and f is a function on Γ, a so-

called spherical harmonic of order k. Since F (x)/rk+1 is harmonic in

Be (the exterior of Γ), the pair ui := rkf(y) and ue := r−k−1f(y) fit

together continuously across Γ to form the (single layer) potential of a

charge g on Γ. If n = ny denotes the outer normal to Γ at y, we have

∂ui

∂n
= kf(y),

∂ue

∂n
= −(k + 1)f(y), along Γ.

Thus g(y) = (2k + 1)f(y). For the field due to g, the part in B has

energy equal to the integral of (∂nui)g over Γ, that is k(2k+1)
∫

Γ
f 2dσ,

while the part in Be has energy (k+1)(2k+1)
∫

Γ
f 2dσ. Each of the pairs

(ui, ue) so obtained is an extremal for the Poincaré problem insofar as

the normal derivatives are proportional on Γ. The associated Neumann
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- Poincaré eigenvalue equals the ratio (with notations as earlier) (J ′ −

J)/(J ′ + J) = 1/(2k + 1). To summarize:

The eigenvalues are the set {1, 1/3, 1/5, ...} , and to the eigenvalue

1/(2k + 1) belongs an eigenspace of dimension 2k + 1 consisting of all

spherical harmonics of order k.

Since these eigenfunctions already span L2(Γ) there can be no other

eigenvalues. In particular the spectral point 0 of the Neumann - Poincaré

operator is not an eigenvalue , i.e. the Neumann - Poincaré’ integral

operator is injective in this case. Also, this can be seen at once since

K = 1
2
S, see [7].

Observe also the remarkable consequence that for any charge of finite

energy on Γ, the ratio of the energy of its field outside Γ to that of its

field inside Γ exceeds 1/2 , and the value 1/2 here is the largest possible.

The identity K = 1
2
S also shows that the operator K does not satisfy

the strongest S-symmetrization condition, namely that of possessing a

continuous kernel (i.e. K = LS with L compact), in the terminology

of Krein [20].

The explicit spectral picture above implies that the N-P operator of

the ball in Rd, d ≥ 3, is not trace-class. It would be interesting to

decide whether there are domains with trace-class N-P operator.
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For the disk in R2 a degeneracy occurs: For each k > 0, the space of

”spherical harmonics” of order k is 2 - dimensional, spanned by sin(kt)

and cos(kt) , where t is an angle variable along the unit circle, and for

each f in the codimension one span of these, the field it engenders has

equal energies inside and outside the unit circle. Here the Neumann -

Poincaré operator has rank one. It is known [39] that the disk is the

only planar domain for which the N - P operator has finite rank. It is

not known whether there are such domains in higher dimensions.

Another characteristic property of the ball is discussed below.

Theorem 8.1. The following is true: for a ball in Rd the N - P kernel

is symmetric, and balls are the only domains with this property.

Proof. For the proof let us confine attention to (smoothly bounded)

domains in R3. The argument is nearly identical in all dimensions.

Apart from a constant of normalization the kernel in question is

K(x, y) =
(x− y) · n(y)

‖x− y‖3
, x, y ∈ Γ,

where C denotes the boundary of the domain Ω under consideration,

and n(y) denotes the unit outer normal to Γ at y. The symmetry of K

means

(x− y) · n(y) = (y − x) · n(x), for all x, y ∈ Γ,
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i.e.

(*)For any two distinct points x, y of Γ the vector sum of the unit

outer normals to Γ at x and y is perpendicular to the chord joining x

and y.

It is easy to check that spheres enjoy this property, so let us turn to

the converse. Assume Γ has property (*). We shall show it is a sphere.

First note the following two immediate consequences of (*):

(i) If the normal to Γ at some point has other intersections with Γ,

it coincides with the normal at each of those points.

(ii) If the normals to Γ at two distinct points x, y intersect at a point

z, the distances of z from x and y are equal. (Indeed , it follows from

(*) that the triangle formed by x, y, z is isosceles, having equal angles

at x and y.)

We now conclude the proof that Γ is a sphere. Let x be any point

inside Γ, and y a point of Γ at minimal distance from x. The line L

joining y to x is orthogonal to Γ at y, and meets Γ in another point

z distinct from y , where again it is orthogonal to Γ, by (i). Let now

w denote the midpoint of the chord joining y and z. We claim Γ is

a sphere centered at w, with radius r equal to half the length of the

chord joining y and z. Indeed, suppose there is a point of Γ at distance

from w unequal to r, say greater than r. Then a point u exists on
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Γ at maximal distance s from w, where s > r. A moment’s thought

implies that u cannot be collinear with w and z, and the line joining

w to u meets Γ orthogonally. Hence (ii) applies, and yields that w is

equidistant from z and u, which is a contradiction. This concludes the

proof. �

Remarks. It may be of some interest to try to characterize those

domains whose N - P kernel satisfies various weaker symmetry assump-

tions, such as:

a) K is symmetric ”modulo rank 1” , i.e. it is a symmetric kernel

plus a ”perturbation” of the form a(x)b(y).

b) The iterated (or, m times iterated) kernel associated to K is sym-

metric.

Yet another aspect of symmetrization of the kernel (in two dimen-

sions) based on change of independent variable, was discussed in an

interesting paper [10] by D. Gaier.

8.3. The ellipse. An analysis of the single and double layer potential

operators on an ellipse goes back to Neumann [31]. The computations,

also reproduced in the book by Plemelj [33], start with the elliptical
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coordinates:

x(t) = E cosh ρ cos t, y(t) = E sinh ρ sin t,

where ρ and E are positive parameters. The half axes of the ellipse are

a = E cosh ρ, b = E sinh ρ.

Let

q = e−2ρ =
a− b

a+ b
< 1

be the eccentricity of the ellipse. For two points z(t) = (x(t), y(t)), z(s) =

(x(s), y(s)) on the ellipse one computes by elementary means

arg(z(t)− z(s)) = arctan
y(t) − y(s)

x(t) − x(s)
=
s+ t+ π

2
+

∞
∑

k=1

qk

k
sin k(s+ t),

and

log |z(t) − z(s)| = log |(a+ b) sin
s− t

2
| −

∞
∑

k=1

qk

k
sin k(s+ t).

By differentiation one identifies the kernel K(s, t) of the Neumann-

Poincaré operator:

K(s, t) = 1 + 2
∞

∑

k=1

qk cos k(s+ t).

From here, the spectrum can be identified by standard Fourier meth-

ods.
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Proposition 8.2. The spectrum of the Neumann-Poincaré operator on

an ellipse of eccentricity q < 1 is {±qk; k ≥ 1} ∪ {0, 1}.

The same conclusion was reached by Bergman and Schiffer [3] via

the operator TΩ, the associated L-kernel, and a conformal mapping on

the complement of the ellipse.

8.4. Lemniscates. Let P denote a polynomial in one complex variable

with complex coefficients (of degree at least 1) and M a sufficiently

large positive number that the curve Γ = {z; |z| = M} encloses all the

roots of P . We’ll prove:

Theorem 8.3. The Neumann - Poincaré operator for the domain en-

closed by Γ has an infinite dimensional kernel.

Proof. It is no loss of generality to suppose M = 1. Write P = u + iv

where u and v are real harmonic polynomials. Then, on Γ we have

u+ iv = 1/(u− iv). Therefore the pair of harmonic functions

u on Ω, u/(u2 + v2) on Ωe,

where Ω,Ωe denote respectively the interior and exterior domains de-

termined by Γ, have matching boundary values on Γ. Together they

constitute the potential of a charge supported on Γ and having finite
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energy. As we have seen, this charge is in the kernel of the N - P oper-

ator if and only if the normal derivatives of these functions on Γ (w.r.t.

say the outer normal n) are everywhere negatives of each other, that is

∂nu+ (u2 + v2)∂nu− u(2u∂nu+ 2v∂nv) = 0 on Γ, (39)

or, simplifying

(1 − u2)∂nu− uv∂nv = 0 on Γ.

Substituting 1 − u2 = v2 and cancelling v, this becomes

v∂nu = u∂nv on Γ.

By virtue of the Cauchy - Riemann equations, ∂nu = ∂τv and ∂τu =

−∂nv, where τ denotes the unit tangent vector to Γ. Thus, the last

equation is equivalent to u∂τu+ v∂τv = 0 along Γ. But, this is true, it

is just the result of differentiating u2 + v2 = 1 along Γ in the tangen-

tial direction. Since all the steps are reversible, (39) is proved and the

charge defined by the above potential is indeed in the kernel. Apply-

ing the identical procedure, but starting in turn with the polynomials

P 2, P 3, P 4, ... we get infinitely many elements in the kernel. These are

linearly independent, since their potentials all have different rates of

decay at ∞. The theorem is proved. �
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Remark. The multiplication trick at the end to get the infinite di-

mensionality seems to have no counterpart in more than 2 dimensions.

Although the first part of the proof also was heavily dependent on two

dimensional features (harmonic conjugates and Cauchy - Riemann) it

does not seem beyond credibility that an analogous example could be

found in 3 or more dimensions, i.e. an example where the kernel is

nontrivial.

More precisely, calculations analogous to those above lead to the

conclusion that a sufficient condition for existence of a domain in R3

with non-injective N - P operator is the affirmative resolution of the

following

Hypothesis. There are three real polynomials p, q, r of 3 variables

satisfying the following conditions:

a) p is harmonic;

b) p, q, r have no common zero on R3;

c) s := p2 + q2 + r2 tends to ∞ at ∞;

d) p/s is harmonic;

e) Denoting by Ω a nonempty component of the set {s < 1} we have

along the surface ∂Ω the identity

∂np

p
=
∂nq

q
=
∂nr

r
.
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One could presumably write a computer program to search for such

a triple among low degree polynomials.

Note that already for the disk the closure of the single layer potentials

which belong to kerK in the energy norm coincides with W 1/2 modulo

constants, i.e. with the subspace in W 1/2 consisting of all functions

on the circle with the mean value zero. This explains the painstaking

caution one must obey in the statement of Theorem 4.2: unlike for

eigenfunctions corresponding to nonzero eigenvalues one cannot really

expect much additional regularity, e.g. membership in W 1/2, for mass

distributions χ for which Sχ ∈ kerK.

Furthermore, for general lemniscates we still do not know whether

the closure of ℜP n,ℑP n, n = 1, 2, ... (cf. the notation in the proof of

Theorem 8.3) covers all of kerK, i.e. whether the preimages of these

functions with respect to the operator S are dense in the space of all

distributions χ ∈ W−1/2 such that Sχ ∈ kerK ( cf. Theorem 4.2).

Even less is known in higher dimensions. As we saw ( Section 8.1)

in the ball kerK = 0. We do not know any particular example of a

bounded domain in Rd with a nontrivial kerK, yet we strongly suspect

that there are such domains. For unbounded domains the situation is

completely different, e.g., for the half-space K is simply a trivial zero

operator, so it is kernel is all of L2.
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Notations:

Ω is a bounded domain of R
d;

Ωi = Ω, Ωe = R
d \ Ω;

Γ = ∂Ω the boundary of Ω, assumed to be smooth of class at least C2;

dσ(s) the d − 1 volume measure on Γ;

n or ns = n(s) the outer (unit) normal to a point s ∈ Γ; ∂n = ∂
∂n

;

E(x) the fundamental solution to the Laplace operator ∆: −∆E = δ;

(Sf)(x) =
∫

Γ
E(x − y)f(y)dσ(y) the single layer potential operator on L2(Γ);

Sρ(x) = ρy(E(x, y)), x ∈ R
d \ Γ, the single layer potential of a distribution

ρ ∈ D′(Γ);

(Kf)(x) = −2
∫

Γ
∂n(y)E(x− y)f(y)dσ(y) the double layer potential operator on

L2(Γ);

(Df )(x) = ρy(∂ny
E(x, y)), x ∈ R

d\Γ, the double layer potential of a distribution

ρ ∈ D′(Γ);
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W s
F (U) = W

s,2
F (U) the Sobolev space of order (s, 2), on the open set U , with

supports in F ;

H the Hilbert space of pairs h = (hi, he)of harmonic functions in Ωi,Ωe with

norm ‖(hi, he)‖2
H

=
∫

Ωi
|∇hi|2dx +

∫

Ωe
|∇he|2dx;

J [h] = Ji[h] =
∫

Ωi
|∇hi|2dx, J ′[h] = Je[h] =

∫

Ωe
|∇he|2dx, the inner, respec-

tively outer, energies of the potential h;

S ⊕ D = H the orthogonal decomposition into the subspaces of single (respec-

tively double) layer potentials .
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Ecken, Almquist and Wiksells, Uppsala, 1916.
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88 DMITRY KHAVINSON, MIHAI PUTINAR, AND HAROLD S. SHAPIRO
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