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Abstract

The Poincaré sphere representation is used to analyze the polarization transformation achieved

with a ferroelectric liquid crystal (FLC) optical modulator. This device acts as a switchable

wave-plate, in which the orientation of the principal axes rotates under the action of an applied

bipolar voltage. In the standard operational mode for intensity switching, the rotation angle of

the principal axes is �θ = π/4 and the phase shift is φ = π (half-wave-plate). However, for

wavelengths different from the design one, the FLC deviates from the half-wave-plate

performance and the optical contrast is diminished. We use the Poincaré sphere representation

to perform a theoretical analysis of the intensity switch performance of the FLC modulator as a

function of the phase shift φ. Using spherical trigonometric relations we derive analytical

expressions for the intensity contrast as a function of φ and we show how to compensate its

decrease when φ �= π by using appropriate elliptically polarized illumination. These situations

are experimentally demonstrated using a commercially available FLC cell.
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1. Introduction

Liquid crystal devices (LCDs) have become attractive for

practical applications such as diffractive optics, adaptive

optics, or optical metrology [1–3]. LCDs based on ferroelectric

liquid crystals (FLCs) are of particular interest because of their

very fast frame rates (several kilohertz) and highly efficient

electro-optic effect [4–6]. Single-pixel FLC modulators

have found applications such as optical switches [7], tunable

filters [8], optical rotators [9], and phase shifters [10].

Pixelated FLC displays have also found applications in

4 Address for correspondence: Departamento de Ciencia de Materiales,

Optica y Tecnologı́a de Materiales, Universidad Miguel Hernández de Elche,

03202 Elche, Spain.

diffractive optics for the generation of digital holograms [11]

or optical tweezers [12].

The SmC∗ liquid crystal phase used in commercial FLC

modulators is biaxial, and the orientation of the optical axes

shows slight wavelength dispersion. However, these effects

are so small (the biaxiality presents typical values of the

order of 10−3 for the refractive index difference, and the

dispersion of the optical axes is less than one degree for the

visible optical range) [13], that an FLC modulator can be

approximated as a uniaxially birefringent wave-plate layer,

with two stable optical axis orientations with a relative angle

�θ [14]. The extraordinary axis corresponds to the orientation

of the liquid crystal (LC) director and it switches between the

two stable orientations by changing the sign of an addressed
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voltage. For the standard configuration, the orientation of the

LC director rotates with a relative angle �θ = π/4 and the

FLC modulator acts as a half-wave-plate (it introduces a phase

shift φ = π radians) for a specific design wavelength [14].

Then, by placing the FLC modulator in between a pair of

polarizers with the proper orientation, either a maximum

contrasted binary intensity modulation or a binary π phase-

only modulation can be achieved. However, as the wavelength

of the optical signal varies, so does the phase shift (φ).

Consequently, at least one of the two emerging polarization

states is no longer linear and a decrease in the contrast is

observed. This is a detrimental effect that limits its use in the

above-mentioned applications. For that reason, compensation

techniques to provide an achromatic optimized response for a

wide spectral band have been proposed, on the basis of the

material dispersion of external wave-plates [9]. Recently we

have addressed a related but different problem, which is the

optimization for a single but not the design wavelength, and

we presented a simple technique for improving the contrast

of the optical signal [15]. We employed a quarter-wave-

plate in front of the modulator in order to illuminate the

device with appropriate elliptically polarized light rather than

with linearly polarized light. This type of optimization has

been widely and successfully employed to obtain specific

modulation responses in other devices like twisted-nematic

liquid crystal cells [16, 17].

In our previous work [15], the orientations of the

polarization elements (input and output polarizers, and quarter-

wave-plate) were numerically searched in order to achieve

the optimal intensity contrast. In the present paper we

apply the Poincaré sphere representation of the polarization

states involved in the FLC switching to provide a physical

explanation and an analytical probe of our previously reported

numerical optimization procedure. By using this formalism

the optimization process of the FLC switching performance

is reduced to a simple geometrical problem. Optimal binary

intensity modulation is achieved when the two polarization

states emerging from the FLC modulator are linear and

orthogonal. We show that these characteristics cannot be

achieved when φ differs from the ideal value of π radians,

but we make use of the Poincaré sphere to find polarization

configurations that are very close to this ideal situation.

Using spherical trigonometric relations, we provide analytical

expressions for the intensity contrast as a function of the

phase shift φ for both the standard configuration (the device

is illuminated with linearly polarized light) and the optimized

configuration that uses appropriate elliptically polarized light.

The paper is organized as follows. In section 2 we briefly

review some properties of the Poincaré sphere formalism

which are useful to analyze the polarization transformations

upon the action of the FLC modulator. In section 3, this

formalism is applied to improve the FLC optical contrast for

arbitrary values of the phase shift φ. Theoretical expressions

of the intensity contrast as a function of φ are derived.

Experimental verification is outlined in section 4 with a

commercially available device. Finally, section 5 summarizes

the main conclusions of the work.

Figure 1. (a) Polarization ellipse and (b) its representation on the
Poincaré sphere. ε and α represent the ellipticity and azimuth angles,
respectively.

2. Poincaré sphere and the FLC modulator

In this section we review some properties of the Poincaré

sphere representation which are useful for our FLC intensity-

modulator optimization purpose. This representation has been

used in early and modern liquid crystal devices [17–22]. It

provides a useful method to represent the polarization states,

as well as to visualize their transformation upon the action of

different polarization devices. In the Poincaré representation

there is a biunivocal correspondence between a polarization

state and a point on the sphere surface. Let us consider an

arbitrary state described by the Jones vector:

J =
(

Ax exp(iδx)

Ay exp(iδy)

)

. (1)

This state of polarization (SOP) can be described typically

either in the amplitude’s ratio—phase shift (χ,�) representa-

tion, or in the azimuth—ellipticity (α, ε) representation, as de-

fined in figure 1(a). These angles are derived from equation (1)

as [23]

� = δy − δx , (2a)

tan(χ) =
Ay

Ax

, (2b)
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tan(2α) =
2Ax Ay

A2
x − A2

y

cos(�), (2c)

tan(ε) =
b

a

= ±

√

√

√

√

A2
x sin2(α) + A2

y cos2(α) − Ax Ay cos(�) sin(α/2)

A2
x cos2(α) + A2

y sin2(α) + Ax Ay cos(�) sin(α/2)
.

(2d)

The Stokes vector S = (S1, S2, S3) is defined in terms of

the normalized Stokes parameters, which are calculated from

the previous angles as

S1 = cos(2χ) = cos(2ε) cos(2α), (3a)

S2 = sin(2χ) cos(�) = cos(2ε) sin(2α), (3b)

S3 = sin(2χ) sin(�) = sin(2ε). (3c)

The direct analogy of these equations with the spherical

coordinates allows the univocal representation of any SOP on

the Poincaré sphere. The three positive orthogonal axes (S1, S2

and S3 in figure 1(b)) denote, respectively, linear polarizations

at 0◦, 45◦, and L circular polarization. The equator circle is the

locus of the linearly polarized states, whereas the elliptically

polarized states lie on the rest of the sphere surface. The

longitude (2α) and latitude (2ε) of a surface point define the

azimuth and the ellipticity angles, respectively. These angles

can be expressed in terms of the Stokes parameters from

equation (3) as

α =
1

2
arctan

(

S2

S1

)

, −
π

2
� α �

π

2
, (4a)

ε =
1

2
arcsin(S3), −

π

4
� ε �

π

4
. (4b)

Some properties of the Poincaré sphere, especially

relevant for our purpose, are the following:

(I) From equation (4a) equi-azimuth SOPs are given by a

constant value of S2/S1. Thus, they lie on a sphere

meridian. On the other hand, equi-ellipticity SOPs have

a constant value of S3 (see equation (4b)), i.e., they lie on

a sphere parallel.

(II) Two polarization states SOPa and SOPb are orthogonal

if they are located on antipodal points. They share the

same ellipticity but opposite helicity (i.e., εa = −εb),

and their azimuths fulfil αb = αa ± π/2. The scalar

product of their Stokes vectors, ρ = Sa · Sb, is equal

to −1. According to this scalar product the degree of

orthogonality (τo) between two SOPs can be defined as

τo = (1 − ρ)/2, with τo = 1 for two perfectly orthogonal

states and τo = 0 for two equal states.

(III) The action of a linear retarder (wave-plate), with phase

shift φ and orientation θ , on the polarization states is

visualized as a φ-rotation of the sphere along the axis

defined by 2θ [23]. This is illustrated in figure 2(a),

where F and S denote the wave-plate fast and slow axes.

This actuation shows that two SOPs that traverse a wave-

plate keep their relative degree of orthogonality (τo) at the

output, since the angle between the corresponding Stokes

vectors is maintained after the sphere rotation.

Figure 2. Visualization on the Poincaré sphere of: (a) action of a
generic linear wave-plate with orientation θ (points F and S denote
the fast and slow axes) and phase shift φ. (b) Projection of
polarization states onto a linear polarizer with orientation θP (point P
denotes the linear state that is fully transmitted) and γ is the
projection angle. All points on circle C transmit with equal intensity.

(IV) A quarter-wave-plate (QWP) can be used to transform a

pair of orthogonal arbitrary SOPs onto a pair of orthogonal

linear SOPs. This is obtained by simply orienting the

QWP fast axis coincident with the azimuth of one of the

elliptical states. Then, the phase shift φ = π/2 rotates the

antipodal points in such a way that they are translated onto

antipodal points located on the equator of the sphere.

(V) Finally, figure 2(b) shows the projection of an arbitrary

SOP onto a linear polarizer, with orientation θP. All points

lying on a circle that keeps an angle γ with the state

fully transmitted by the polarizer (point P in figure 2(b))

transmit with equal normalized intensity i = cos2(γ /2);

this is known as the generalized Malus law [24].

Figure 3 shows the FLC modulator performance as a

binary intensity modulator in the standard operational mode.

The LC director switches between two stable orientations upon

addressing an electric field, with an overall LC rotation angle

3
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Figure 3. Standard operational mode of the FLC modulator (phase
shift φ = π and rotation angle θ = π/4). Input polarization is
parallel to the LC director at state 1. (a) State 1: output and input
polarizations are parallel. (b) State 2: output polarization is rotated
by π/2. (c) Analyzer configuration for binary intensity modulation
i(t) as a function of the addressed voltage V (t).

of �θ = π/4 and a phase shift of φ = π radians (i.e. the

FLC acts as a half-wave-plate). We assume the two stable LC

molecular orientations at θ = 0 and π/4 and the input linearly

polarized light with orientation α = 0. This state leaves

the FLC modulator without change in the first LC position

(figure 3(a)). When the FLC director switches to the second

stable position, the typical half-wave action yields a π/2

rotation of the output linear polarization (figure 3(b)). Thus,

the device acts as a perfect binary intensity modulator if the

analyzer is oriented parallel to one of these two output linear

states, since one is fully transmitted while the orthogonal state

is fully absorbed. Consequently, this configuration modulates

the transmitted intensity with maximum contrast (figure 3(c)).

Since the FLC modulator acts as a switchable wave-plate,

its action on an arbitrary SOP is described on the Poincaré

sphere by two rotations around two different axes defined

by the two LC director orientations, in our case 0 (rotation

around the S1 axis) and π/4 (rotation around the S2 axis),

respectively. In the ideal situation sketched in figure 3, these

two rotations are of φ = π radians and transform any input

linear SOP onto a pair of output SOPs which are linear and

orthogonal [15]. However, when φ differs from the ideal π

value the two rotations lead, in general, to elliptical states, and

the performance presented in figure 3 is lost.

3. Poincaré sphere transformations for an arbitrary
phase shift

In this section we illustrate the Poincaré sphere transformations

for arbitrary values of the phase shift φ. In all cases we will

consider that the rotation angle is fixed: �θ = π/4 (it does

not depend on the operating wavelength). For representation in

figures, we consider the specific phase shift φ = 135◦, which

corresponds to our device when being illuminated with a He–

Ne laser of wavelength λ = 633 nm [15].

3.1. Contrast reduction in the standard configuration

We start by analyzing the standard modulation scheme

described in figure 3. Figure 4(a) shows the transformation

induced by the two stable LC positions. Output SOP1 (asterisk

marker) coincides with the input state (black circular marker)

since the rotation around the S1 axis does not affect this input

SOP (this linear polarization coincides with the principal axis

of the FLC modulator in state 1). However, the rotation of

the sphere around the S2 axis leads to an output state 2 in

general located outside the equator plane (diamond marker),

thus corresponding to an elliptically polarized state. This

elliptical state has its major and minor axes centered on the

x–y axes regardless of the value of φ (the azimuth is α = 0

for φ ∈ [0, π/2] and φ ∈ [3π/2, 2π], or α = π/2 for

φ ∈ [π/2, 3π/2]). Only when the phase shift is φ = π radians,

does the rotation around the S2 axis lead to an output state

located at the equator plane, which corresponds to an output

SOP2 which is linear and orthogonal to output SOP1. The

geometry of figure 4(a) shows that the ellipticity (ε2) of SOP2

is directly related to the phase shift value through the following

relations:

2ε2 =

⎧

⎪

⎨

⎪

⎩

−φ if φ ∈ [0, π
2
]

φ − π if φ ∈ [π
2
, 3π

2
]

2π − φ if φ ∈ [ 3π
2

, 2π].
(5)

If the analyzer is kept in the vertical orientation (figure 3),

these two output SOPs are projected onto the point located at

coordinates (S1 = −1, S2 = 0, S3 = 0) (point P in figure 4(a)).

Following the generalized Malus law sketched in figure 2(b),

the intensity for the first state is always i1 = 0, and the contrast

c = |i2 − i1| is reduced to the value

c = i2 = cos2(ε2) = sin2

(

φ

2

)

. (6)

This is the analytical expression for the intensity contrast

as a function of φ in the standard operational mode. In table 1

(left columns) we give the polarization parameters for the

configuration shown in figure 4(a) and for the specific value

φ = 135◦ of our device. The degree of orthogonality between

the two output SOPs is τo = 0.853 and the intensity contrast is

reduced to c = 0.853.

4
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Table 1. Polarization parameter values for different configurations for an FLC modulator with phase shift φ = 135◦. The standard
configuration has the input polarizer oriented at 0◦. The optimized configuration has the input polarizer oriented at 22.5◦ and a QWP behind
the FLC modulator oriented at −22.5◦.

Standard configuration (figure 4(a))
Sinput = (1, 0, 0)

Optimized polarization (figure 4(b))
Sinput = (0.707, 0.707, 0)

SOPs behind FLC SOPs behind QWP

Output1 Output2 Output1 Output2 Output1′ Output2′

S1 1 −0.707 +0.707 −0.500 +0.250 −0.250
S2 0 0 −0.500 +0.707 −0.957 +0.957
S3 0 −0.707 +0.500 −0.500 +0.146 +0.146
α 0 +90.0◦ −17.6◦ +62.6◦ −37.7◦ +52.3◦

ε 0 −22.5◦ +15.0◦ −15.0◦ +4.2◦ +4.2◦

τo 0.853 0.978 0.978

Figure 4. Poincaré sphere analysis for the FLC with phase shift
mismatch (φ = 135◦, θ = π/4). (a) Standard configuration with
input polarizer oriented at 0◦. (b) Optimized configuration with input
polarizer oriented at 22.5◦. Symbols (•), ( ) and ( ) denote,
respectively, the input SOP and the output SOP1 and SOP2 behind
the FLC modulator. Symbols ( ) and (◦) denote the final SOP1 and
SOP2 in the optimized configuration after traversing the QWP
oriented at −22.5◦.

3.2. Contrast optimization

The Poincaré sphere analysis is now applied to find a

polarization configuration that improves the contrast. The idea

is based on the properties II and IV described in section 2.

We look for the orientation of the input polarizer that yields

two output SOPs with maximum orthogonality τo (i.e., two

final points on the sphere with maximum antipodality). Then

these two states can be further transformed by a QWP onto

two quasi-linear orthogonal states, which can provide a high

contrasted optical intensity signal.

This situation is obtained for an input linear SOP oriented

at α0 = 22.5◦, which corresponds to the point on the sphere

bisecting the S1 and S2 axes. Figure 4(b) illustrates the

corresponding transformations induced by the FLC modulator.

The two sphere rotations around the S1 and S2 axes transform

this input SOP onto two output states that lie on opposite sides

of the sphere. Table 1 (central columns) shows the Stokes

parameters and angles for these SOPs. These data and the

geometry of figure 4(b) indicate that the two output SOPs share

the same ellipticity but opposite helicity (they both have the

same latitude, but in opposite hemispheres), and their azimuth

has changed the same amount but in the opposite sense with

respect to the input SOP. Therefore, the ellipticity and azimuth

angles of the two SOPs emerging from the FLC modulator are

related by

ε2 = −ε1. (7a)

2α2 = π/2 − 2α1. (7b)

These values can be related to the FLC phase shift φ by

applying spherical trigonometric relations. The details are left

for the appendix, and here we only give the results. The angles

ε1 and α1 for the output SOP1 are given by

sin(2ε1) =
sin(φ)
√

2
, (8a)

cos(2α1) =
1

√

1 + cos2(φ)
, (8b)

where the sign of α1 in equation (8b) is positive for φ in

the ranges [0, π/2] and [3π/2, 2π], and it is negative if φ ∈
[π/2, 3π/2]. In our particular case of φ = 135◦, we obtain

2ε1 = 30◦ and 2α1 = −35.26◦. The corresponding values for

the output SOP2 are given by equation (7), and are 2ε2 = −30◦

and 2α2 = 125.26◦. The degree of orthogonality between these

two states is τo = 0.978, much higher than the value in the

standard configuration.

5
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However, these two emerging SOPs are far from the

equator plane, and therefore they are not useful for high

contrast intensity purposes. A QWP placed behind the FLC

modulator can transform these states onto two states lying

closer to the equator. One option could be orienting the QWP

fast axis coincident with the azimuth of one of the states. This

state will be transformed onto a linear state (property IV in

section 2) and it can be fully extinguished with an analyzer

oriented crossed to it. However, the other state will not be

perfectly linear. A better option to optimize the contrast c =
|i2−i1| is to orient the QWP at −22.5◦. In this case none of the

final states is perfectly linear, but the value of c is maximized

by properly orienting the analyzer. The resulting final SOPs

behind the QWP in such optimized configuration are also

marked in figure 4(b), and their polarization parameters are

also given in table 1 (right columns). These two final SOPs

share the same ellipticity while their azimuth angles are

complementary, i.e.:

ε′
2 = ε′

1, (9a)

2α′
2 = π + 2α′

1, (9b)

where the prime symbol denotes the angles for the final SOPs

behind the QWP. The angles (ε′
1, α

′
1) of the final SOP1 can be

related to the corresponding angles behind the FLC (ε1, α1) by

means of spherical trigonometric relations. Once again, the

details are given in the appendix and here we give the results:

sin(2ε′
1) = cos(2ε1) sin

(π

4
+ 2α1

)

. (10a)

cos
(

2α′
1 +

π

4

)

=
cos(2ε1) cos(π

4
+ 2α1)

√

1 − cos2(2ε1) sin2(π
4

+ 2α1)

. (10b)

Taking into account equations (8), these values can be

related to the phase shift (φ) introduced by the FLC modulator,

and the following expressions can be derived:

sin(2ε′
1) = cos2

(

φ

2

)

. (11a)

cos
(

2α′
1 +

π

4

)

=
1 − cos φ

√

4 − (1 + cos φ)2
. (11b)

In the case where φ = 135◦, equations (11) and (9) lead

to the ellipticity ε′
1 = 4.2◦ and the azimuth 2α′

1 = −75.36◦ for

the final SOP1, while they are ε′
2 = 4.2◦ and 2α′

2 = 104.64◦

for the final SOP2. As expected, the orthogonality between

the two SOPs is maintained at τo = 0.978 after traversing the

QWP. Let us note that their azimuths are perpendicular and

their ellipticity is very small. Therefore, they are useful states

to yield a highly contrasted intensity signal, which is achieved

by orienting the analyzer with the same azimuth as one of these

output states. For instance, we oriented the analyzer parallel to

the azimuth of the second state (θP = 52.3◦).

The intensity transmitted by the analyzer is derived by

applying the generalized Malus law (property V in section 2).

The angles between the SOP fully transmitted by the analyzer

and the two final output SOPs are directly given by their

Figure 5. Theoretical contrast (c = |i2 − i1|) as a function of the
phase shift (φ) introduced by the FLC modulator in the standard
(equation (6)) and optimized (equation (14)) configurations. The
expected contrast values for the case where φ = 135◦ are indicated.

ellipticities as γ1 = 2ε′
1 and γ2 = π − 2ε′

1, respectively.

Therefore the corresponding intensities are

i1 = cos2
(γ1

2

)

= cos2(ε′
1), (12a)

i2 = cos2
(γ2

2

)

= cos2
(π

2
− ε′

1

)

= sin2(ε′
1). (12b)

These final intensities can be related to the phase shift (φ)

introduced by the FLC modulator by means of equation (11a),

and the result is

i1 =
1

2

(

1 +

√

1 − cos4

(

φ

2

)

)

, (13a)

i2 =
1

2

(

1 −

√

1 − cos4

(

φ

2

)

)

. (13b)

Therefore, the contrast in this case is given by the relation

c = |i2 − i1| =

√

1 − cos4

(

φ

2

)

. (14)

This optimized contrast function is represented in figure 5

together with that for the standard configuration (equation (6)).

It shows that the optimized configuration gives a better contrast

than the standard configuration for all values of φ. For our case

where φ = 135◦, we obtain a contrast value for the optimized

configuration of c = 0.989.

3.3. Contrast optimization with the QWP placed in front of the

modulator

Because of the symmetry properties of reciprocal polarization

devices [25], the contrast results in the optimized configuration

analyzed in figure 4(b), in which the QWP was placed

behind the FLC modulator, can be also reproduced with a

configuration in which the QWP is placed in front of the

FLC modulator. This configuration can be used to generate

an input elliptical SOP that yields two SOPs emerging from

the FLC modulator which are as close as possible to being

6
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Figure 6. Poincaré sphere analysis for the optimized configuration
proposed in [15], with input polarizer oriented at 52.3◦, and a QWP
in front of the FLC modulator oriented at −22.5◦. Symbols (•), ( )
and ( ) denote the input, output1, and output2 SOPs.

linear and orthogonal. Results with this configuration were

already presented in our previous work [15], where we merely

performed a numerical search of the orientations of the

polarization components leading to the best contrast. The

present Poincaré analysis provides the physical insights into

those results. The optimized configuration presented in [15]

had the input polarizer oriented at 52.3◦, and the QWP (in

front of the FLC modulator) at −22.5◦, and the analyzer

was oriented at 22.5◦. Let us note that this configuration

is obtained by reversing the elements in the configuration

described in section 3.2, thus providing equivalent results.

Figure 6 shows the input and output SOPs generated with this

system, and table 2 summarizes the corresponding polarization

parameters. Following similar considerations as in the previous

subsection, it can be shown that equation (14) is also valid for

the optimized configuration with the QWP placed in front of

the modulator. The theoretical curves presented in figure 5

are in perfect agreement with the equivalent ones obtained

numerically in [15], thus being a relevant result in this new

paper.

Finally, we explored the use of two QWPs, one in

front and the other behind the FLC modulator, in order to

further improve the contrast. The results showed that the

contrast cannot be enhanced because the intensity values

remain constant.

4. Experimental verification

The above analysis was verified experimentally by means of a

commercial FLC modulator from CRL-Opto, model LCS2N-

G. This is a single-pixel FLC modulator, with a squared active

area of 25.5 × 25.5 mm2, designed to operate at the green

wavelength λ = 540 nm. We show how its performance

as intensity modulator is degraded by the use of a different

wavelength (in our case λ = 633 nm from a He–Ne laser), and

Table 2. Polarization parameter values for the optimized
configuration proposed in [15] in which the input illumination is
elliptically polarized (figure 6).

Optimized configuration with input
elliptical SOP (figure 6)

Input Output1 Output2

S1 −0.610 −0.610 +0.789
S2 +0.610 −0.789 +0.610
S3 +0.506 +0.073 +0.073
α +67.5◦ −63.8◦ +18.8◦

ε +15.2 +2.1◦ +2.1◦

τo 0.978

how this effect can be compensated following the previously

described approach.

We have previously calibrated the modulator’s physical

parameters [15], including the location of the neutral axes,

its rotation with the applied voltage (which was verified

to be �θ = π/4), and the phase shift dispersion. For

our illuminating wavelength λ = 633 nm, the wavelength

deviation with respect to the ideal value of 540 nm results

in a phase shift decrease from the ideal half-wave-plate

performance. We experimentally measured a value φ =
135◦. Figure 7 shows the detected optical signal when a

bipolar 10 Vpp, DC balanced, square voltage of frequency

100 Hz is addressed to the modulator. The modulated beam

is measured with a Thorlabs detector (PDA55 model) whose

output signal is displayed on an oscilloscope. For every

detected optical signal, we also measured the complementary

signal obtained by rotating 90◦ the final analyzer. The data

are normalized by dividing each value by the sum of itself and

its corresponding complementary value. Results in figure 7

show the normalized signals corresponding to the three cases

analyzed in the previous section.

Figure 7(a) corresponds to the standard configuration

analyzed in figure 4(a), with the FLC placed between two

crossed polarizers. We can observe that the optical signal

switches every 5 ms, between a dark and a bright state.

However, the bright state does not reach 100% transmission

because of the phase shift mismatch. Figures 7(b) and (c)

show the results for the two optimized configurations described

in figures 4(b) and 6, respectively. In figure 7(b), linearly

polarized light oriented at 22.5◦ illuminates the FLC, and the

two emerging SOPs are transformed onto quasi-linear states by

a QWP placed behind the modulator and oriented at −22.5◦.

The analyzer is here oriented at 52.3◦. In figure 7(c) the

QWP is placed before the modulator to generate an input

elliptical SOP that after traversing the FLC modulator yields

two quasi-linear and orthogonal states. This is the reversed

configuration compared to the previous one, i.e. the input

polarizer is oriented at 52.3◦, the QWP is at −22.5◦, and the

analyzer is oriented at 22.5◦. The result in both cases is a high

contrasted optical signal, now reaching almost perfect 100%

intensity transmission.

7
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Figure 7. Experimental intensity signal detected when the FLC
modulator is illuminated with λ = 633 nm (phase shift φ = 135◦)
and is addressed with a bipolar 100 Hz electrical voltage (10 Vpp, DC
balanced). (a) Standard configuration analyzed in figure 4(a).
(b)–(c) Optimized configurations with elliptical polarizations
described in figures 4(b) and 6 respectively.

5. Conclusions

In summary, we have analyzed the optical performance of

an FLC modulator as a switching device for binary intensity

modulation using the Poincaré formalism. Within this

framework, we provide a description of the device performance

as a function of the phase shift, and an analytical demonstration

and physical interpretation of a previously reported numerical

technique to optimize the contrast when the phase shift differs

from the ideal value φ = π . The optimization of the optical

contrast is reduced to a geometrical problem. Using spherical

trigonometric relations we provide analytical expressions for

the intensity contrast as a function of the phase shift φ for both

the standard and the optimized configurations. Finally, the

proposed ideas have been verified with a commercial single-

pixel FLC modulator, using a He–Ne laser with wavelength

633 nm, for which the phase shift is 135◦. This technique may

be useful in enlarging the number of wavelengths for which the

FLC modulator is a useful device, or in applying its modulation

properties to polychromatic sources.
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Appendix

In this appendix we demonstrate the relations for the ellipticity

and azimuth angles for the final SOP1 as a function of the phase

shift (φ) in the optimized configuration shown in figure 4(b).

This can be done by applying trigonometric relations to the

spherical triangles defined on the surface of the Poincaré

sphere.

We start by deriving the ellipticity (ε1) and azimuth (α1)

of the output SOP1 behind the FLC modulator. In this

case, the input linear SOP is oriented at 22.5◦ (black dot in

figure 4(b)), and is transformed onto output SOP1 (purple

marker in figure 4(b)) upon a rotation by angle φ around the S1

axis. Figure A.1 shows the same transformation as figure 4(b)

(i.e., they correspond to the specific value φ = 135◦), but

with a different point of view in order to clearly visualize the

spherical triangles used in the demonstration. We consider the

triangle ABC. Point A is on the S1 axis, and point B is the

output SOP1. The angular sectors of this spherical triangle

are AB = π/4, CB = 2ε1, and AC = 2α1, as indicated

in the figure. The angles at points A and C are π − φ and

π/2, respectively. Therefore, applying the sine and cosine laws

directly leads to the two following relations:

sin
(π

4

)

=
sin(2ε1)

sin(π − φ)
, (A.1)

cos
(π

4

)

= cos(2ε1) cos(2α1). (A.2)

The derivations of equation (8) in the text are straightforward

from these two equations.

Next, this output state is transformed by a QWP oriented

with its fast axis at −22.5◦. This means that point B is

transformed onto point E (green square in figure A.1) through a

π/2-rotation around the axis defined by point F. The ellipticity

(ε′
1) and azimuth (α′

1) of the final SOP behind the QWP are

given, respectively, by segments DE = 2ε′
1 and AD = −α′

1 (let

us note that α′
1 is negative in this case). These angles (ε′

1, α
′
1)

can be related to the corresponding values (ε1,α1) for the SOP

before the QWP by analyzing trigonometric relations on the

spherical triangles CBF and FED in figure A.1. First, let us

note that the segments FB and FE are equal, and we denote

them by x . Note also that the distance FC is π/4 + 2α1, where

the negative sign of α1 in figure A.1 has been considered (the

same relation holds if α1 is positive). The application of the

cosine and sine rules to the spherical triangle CBF yields the

following relations:

cos x = cos(2ε1) cos
(π

4
+ 2α1

)

, (A.3)

cos(2ε1) = cos
(π

4
+ 2α1

)

cos x+sin
(π

4
+ 2α1

)

sin x cos β,

(A.4)

sin x =
sin(2ε1)

sin β
, (A.5)
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Figure A.1. Poincaré sphere transformations in figure 4(b) presented
with a different view for a better visualization of the spherical
triangles used in the derivations. Symbols (•), ( ) and ( ) denote the
input SOP, the output SOP1 behind the FLC modulator, and the
output SOP1 behind the QWP.

where β is the angle at point F. On the other hand, the

application of the cosine and sine laws to the spherical triangle

FED leads to the following relations:

cos x = cos(2ε′
1) cos

(

2α′
1 +

π

4

)

, (A.6)

sin x =
sin(2ε′

1)

sin σ
, (A.7)

where σ is the angle inside triangle FED at point F. Figure A.1

shows that the angles β and σ are related as σ = π/2 − β ,

which can be applied to equation (A.7) to become

sin x =
sin(2ε′

1)

cos β
. (A.8)

Combination of equations (A.8) and (A.4) directly leads to the

relation

sin(2ε′
1) = cos(2ε1) sin

(π

4
+ 2α1

)

, (A.9)

which coincides with equation (10a) in the text. Similarly,

from equations (A.3) and (A.6) we obtain

cos
(

2α′
1 +

π

4

)

=
cos(2ε1) cos

(

π
4

+ 2α1

)

√

1 − sin2(2ε′
1)

, (A.10)

which yields equation (10b) in the text when combined with

equation (A.9).

References

[1] Bougrenet de la Tocnaye J L and Dupont L 1997 Complex
amplitude modulation by use of a liquid crystal spatial light
modulators Appl. Opt. 36 1730–41

[2] Osten W, Kohler C and Liesener J 2005 Evaluation application
of spatial light modulators for optical metrology Opt. Pura
Apl. 38 71–81

[3] Yeh P and Gu C 1999 Optics of Liquid Crystal Displays
(New York: Wiley)

[4] Giallorenzi T G, Weiss J A and Sheridan J P 1976 Light
scattering from smectic liquid crystal waveguide J. Appl.
Phys. 47 1820–6

[5] Moddel G 1995 Ferroelectric liquid crystal spatial light
modulators Spatial Light Modulator Technology
ed U Efron (New York: Dekker) chapter 6, pp 287–359

[6] Underwood I 1997 Ferroelectric liquid crystal over silicon
spatial light modulators—principles practice prospects
Spatial Light Modulators (OSA Trends in Optics and
Photonics vol 14) ed G Burdge and S C Esener (Washington,
DC: Optical Society of America) pp 76–88

[7] Gros E and Dupont L 2001 Ferroelectric liquid crystal optical
waveguide switches using the double-refraction effect IEEE
Photon. Technol. Lett. 13 115–7

[8] Sirleto L, Coppola G, Breglio G, Abbate G, Righini G C and
Otón J M 2002 Electro-optical switch continuously tunable
filter based on a Bragg grating in a planar waveguide with a
liquid crystal overlayer Opt. Eng. 41 2890–8

[9] Hariharan P and Ciddor P E 1997 Achromatic switchable
polarization rotators Opt. Eng. 36 952–6

[10] Hariharan P and Ciddor P E 1999 Improved switchable
achromatic phase shifters Opt. Eng. 38 1078–80

[11] Manolis I G, Wilkinson T D, Redmond M M and
Crossland W A 2002 Reconfigurable multilevel phase
holograms for optical switches IEEE Photon. Technol. Lett.
14 801–3

[12] Hossak W J, Theofanidou E, Crain J, Heggarty K and
Birch M 2003 High-speed holographic optical tweezers
using a ferroelectric liquid crystal microdisplay Opt. Express
11 2053–9

[13] Gießelmann F, Langhoff A and Zugenmaier P 1997 Dispersion
of the optical axes in smectic C∗ liquid crystals Liq. Cryst.
23 927–31

[14] Surguy P 1998 How ferroelectric liquid-crystal devices works
Inf. Disp. 2 24–7

[15] Martı́nez A, Beaudoin N, Moreno I, Sánchez-López M M and
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of liquid crystal optics Appl. Opt. 16 2090–6
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