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Abstract

Point cloud videos exhibit irregularities and lack of or-

der along the spatial dimension where points emerge incon-

sistently across different frames. To capture the dynamics

in point cloud videos, point tracking is usually employed.

However, as points may flow in and out across frames,

computing accurate point trajectories is extremely difficult.

Moreover, tracking usually relies on point colors and thus

may fail to handle colorless point clouds. In this paper, to

avoid point tracking, we propose a novel Point 4D Trans-

former (P4Transformer) network to model raw point cloud

videos. Specifically, P4Transformer consists of (i) a point

4D convolution to embed the spatio-temporal local struc-

tures presented in a point cloud video and (ii) a transformer

to capture the appearance and motion information across

the entire video by performing self-attention on the embed-

ded local features. In this fashion, related or similar local

areas are merged with attention weight rather than by ex-

plicit tracking. Extensive experiments, including 3D action

recognition and 4D semantic segmentation, on four bench-

marks demonstrate the effectiveness of our P4Transformer

for point cloud video modeling.

1. Introduction

Point cloud videos are a rich source of visual informa-

tion and can be seen as a window into the dynamics of the

3D world we live in, showing how objects move against

backgrounds and what happens when we perform an ac-

tion. Moreover, point cloud videos provide more flexibility

for action recognition in poor visibility environments, and

covers more precise geometry dynamics than conventional

videos. Therefore, understanding point cloud videos is im-

portant for intelligent systems to interact with the world.
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Figure 1. Illustration of point cloud video modeling by our Point

4D Transformer (P4Transformer) network. Color encodes depth.

A point cloud video is a sequence of irregular and unordered 3D

coordinate sets. Points in different frames are not consistent. Our

P4Transformer consists of a point 4D convolution and a trans-

former. The convolution encodes a point cloud video (3×L×N),
where L and N denote the number of frames and the number of

points in each frame, to a coordinate tensor (3 × L′ × N ′) and

a feature tensor (C × L′ × N ′). The transformer performs self-

attention on the embedded tensors to capture the global spatio-

temporal structure across the entire point cloud video.

Essentially, a point cloud video is a sequence of 3D coordi-

nate sets. When point colors are available, they are often ap-

pended as additional features. However, because coordinate

sets are irregular and unordered, and points emerge incon-

sistently across different sets/frames, modeling the spatio-

temporal structure in point cloud videos is extremely chal-

lenging.

In order to capture the dynamics from point clouds, one

solution is to first convert a point cloud video into a se-

quence of regular and ordered voxels and then apply con-

ventional grid based convolutions to these voxels. However,

as points are usually sparse, directly performing convolu-
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tions on the entire space along the time dimension is compu-

tationally inefficient. Therefore, special engineering efforts,

e.g., sparse convolution [6], are usually needed. Moreover,

voxelization requires additional computation [59], which

restricts applications that require real-time processing. An-

other solution is to directly model raw point cloud videos

by grouping local points, in which point tracking is em-

ployed to preserve the temporal structure [36]. However, as

points may flow in and out across frames, accurately track-

ing points is extremely difficult. In particular, when videos

become long, the tracking error increases. Moreover, point

tracking usually requires point colors. It may fail to handle

colorless point clouds when point colors are not available.

In this paper, to avoid tracking points, we propose a

novel Point 4D Transformer Network (P4Transformer) to

model the spatio-temporal structure in raw point cloud

videos. First, we develop a point 4D convolution to en-

code the spatio-temporal local structures in a point cloud

video. Our point 4D convolution is directly performed on

raw points without voxelization and therefore saves compu-

tation time. Moreover, by merging local points along the

spatial and temporal dimensions, point 4D convolution re-

duces the number of points to be processed by the subse-

quent transformer. Second, instead of grouping these em-

bedded local areas with tracking [36], we propose to uti-

lize the transformer to capture the global appearance and

motion information across the entire video. By performing

self-attention [53], related local areas are adaptively merged

based on the attention weight.

We evaluate our P4Transformer on a video-level classi-

fication task, i.e., 3D action recognition, and a point-level

prediction task, i.e., 4D semantic segmentation. Experi-

ments on the MSR-Action3D [28], NTU RGB+D 60 [45],

NTU RGB+D 120 [30] and Synthia 4D [6] datasets demon-

strate the effectiveness of our method. The contributions of

this paper are threefold:

• To avoid point tracking, we propose a transformer

based network, named P4Transformer, for spatio-

temporal modeling of raw point cloud videos. To the

best of our knowledge, we are the first to apply trans-

former in point cloud video modeling.

• To embed spatio-temporal local structures and reduce

the number of points to be processed by transformers,

we propose a point 4D convolution.

• Extensive experiments on four datasets show that the

proposed P4Transformer effectively improves the ac-

curacy of 3D action recognition and 4D semantic seg-

mentation.

2. Related Work

Spatio-Temporal Modeling in Grid based Videos. Deep

neural networks have achieved excellent performance on

spatio-temporal modeling in RGB/RGBD videos. To cap-

ture the complementary information about appearance and

motion, two-stream convolutional neural networks [49, 56]

use a spatial stream and an optical flow stream for video un-

derstanding. As video is a kind of sequence, recurrent neu-

ral networks [19, 7, 65] are employed to capture the tempo-

ral dependencies [38, 13]. Similar to recurrent neural net-

works, 1D convolutional neural networks [24] can also be

used to model the temporal structure across frame features.

Besides, pooling techniques [12] are also employed to se-

lect and merge frames into a global video representation. In

addition, 3D convolutional neural networks [51, 4, 52] can

directly learn spatio-temporal representations from videos

by stacking 2D frames into 3D pixel tensors. Meanwhile,

interpretable video or action reasoning methods [66, 16]

are proposed by explicitly parsing changes in videos. For

RGBD videos, grid based methods are also widely used to

fuse RGB and depth information [30, 20].

Deep Learning on Static Point Clouds. Deep learning has

been widely used in many point cloud problems, such as

classification, object part segmentation, scene semantic seg-

mentation [42, 43, 29, 60, 50], reconstruction [8, 63, 27] and

object detection [5, 41]. Most recent works aim to process

raw point clouds without converting point clouds into regu-

lar voxels. However, these methods mainly focus on static

point clouds and do not take the temporal dynamics of point

clouds into account.

Point Cloud Video Processing. Point cloud video mod-

eling is a fairly new task but very important for intelligent

agents to understand the dynamic 3D world we live in. Two

major categories of methods have been explored. The first

one is based on voxelization. For example, Fast and Fu-

rious (FaF) [37] converts 3D point cloud frames into 2D

bird’s view voxels and then extracts features via 3D convo-

lutions. MinkowskiNet [6] uses 4D Spatio-Temporal Con-

vNets to extract appearance and motion from 4D occupancy

voxel grids. 3DV [59] first employs a temporal rank pool-

ing to merge point motion into a voxel set and then applies

PointNet++ [43] to extract the spatio-temporal representa-

tion from the set. The second category is directly performed

on raw points. For example, Fan and Yang [14] proposed a

series of point recurrent neural networks (PointRNNs) for

moving point cloud prediction. MeteorNet [36] appends a

temporal dimension to PointNet++ to process 4D points,

in which a point tracking based chained-flow grouping is

used when merging points. PSTNet [15] constructs the

spatio-temporal hierarchy to alleviate the requirement of

point tracking. Our P4Transformer belongs to the second

category, but aims to avoid point tracking when capturing

spatio-temporal correlation across entire point cloud videos.

Transformer Networks. Self-attention based architec-

tures, Transformers [53, 9] in particular, have substantially

helped advance in natural language processing. In computer
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Figure 2. Illustration of the proposed Point 4D Transformer (P4Transformer) networks. a) 3D action recognition. (1) Based on temporal

radius (rt), temporal stride (st), spatial radius (rs) and spatial subsampling rate (ss), we construct a few spatio-temporal local areas. (2) Our

point 4D convolution encodes each spatio-temporal local area to a feature vector. (3) 4D coordinates are integrated into the corresponding

local features by an embedding layer. (4) Our transformer performs self-attention on spatio-temporal local features and each local feature

is updated by adding more information from similar or related areas. (5) A max pooling merges local features to a global feature, which is

then mapped to action predictions by an MLP. b) 4D semantic segmentation. After the transformer, feature propagation layers recover the

subsampled N ′ points to the original N points by interpolating features. Finally, an MLP maps interpolated features to point predictions.

vision, the community has used self-attention to capture

non-local correlation [58, 3, 22, 10, 11] or leverage univer-

sal features [34]. Inspired by these methods, to avoid point

tracking, we employ a transformer to capture the spatio-

temporal structure of raw point cloud videos.

3. Point 4D Transformer Networks

In this section, we describe the proposed Point 4D

Transformer (P4Transformer) network in detail. Our

P4Transformer consists of a point 4D convolution and a

transformer. In Section 3.1, we present how the point

4D convolution encodes spatio-temporal local structures in

point cloud videos. In Section 3.2, we introduce the trans-

former, which aims to capture the appearance and motion

information across entire point cloud videos. Finally, we

show how to apply our P4Transformer to 3D action recog-

nition and 4D semantic segmentation in Section 3.3.

3.1. Point 4D Convolution

Let Pt ∈ R
3×N and Ft ∈ R

C×N denote the point co-

ordinates and features of the t-th frame in a point cloud

video, where N and C denote the number of points and

feature channels, respectively. Note that, because the MSR-

Action3D [28], NTU RGB+D 60 [45] and NTU RGB+D

120 [30] datasets do not provide corresponding point col-

ors, Ft is not provided. For Synthia 4D [6], the point colors

are provided and Ft is thus available. As we aim to develop

a generic network for point cloud video processing and dif-

ferent point features (e.g., color, density and remission) may

be involved, we assume that Ft is available. Given a point

cloud video
(

[P1;F1], [P2;F2], · · · , [PL;FL]
)

, where L is

the number of frames, we propose a point 4D convolution to

extract local structure and subsample points to be processed

by the subsequent transformer, generating an encoded se-

quence
(

[P ′
1;F

′
1], [P

′
2;F

′
2], · · · , [P

′
L′ ;F ′

L′ ]
)

, where P ′
t ∈

R
3×N ′

and F ′
t ∈ R

C′×N ′

. Usually, N ′ < N and L′ < L.

Conventional grid based convolutions [23, 18, 51, 4, 17]

have proven to be useful local structure modeling. The key

in convolution is to learning the kernel for all displacements

(including direction and magnitude) from a center grid to

its neighbor grids, which is then applied to grid features to

capture the local structure. For example, a 3D convolution

with a kernel size (3, 3, 3) can capture the local structure

from 3× 3× 3 = 27 displacements. Inspired by traditional

convolutions, our point 4D convolution is formulated as fol-

lows:

F
′(x,y,z)
t =

∑

(δx,δy,δz ,δt)∈G

ζ
(

δx, δy, δz, δt) · F
(x+δx,y+δy,z+δz)

t+δt

=

rt
∑

δt=−rt

∑

||(δx,δy,δz)||≤rs

ζ
(

δx, δy, δz, δt) · F
(x+δx,y+δy ,z+δz)

t+δt
,

(1)

where (x, y, z) ∈ Pt and (δx, δy, δz, δt) represents spatial-

temporal displacement and · is matrix multiplication.

F
(x,y,z)
t ∈ R

C×1 denotes the feature of point at position

(x, y, z, t) in the point cloud video. The
∑

can be imple-
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mented with different pooling methods, i.e., sum-pooling,

max-pooling and average-pooling. G is the spatio-temporal

local region around point (x, y, z, t). Note that, because

space and time are orthogonal and independent of each

other, we can split the region G into a sequence of spatial

areas, which is defined by a spatial radius rs and a temporal

radius rt.
Because displacements in grid data are discrete and reg-

ular, traditional convolutions can directly learn a kernel for

all displacements within a region. However, point coordi-

nates are continuous and irregular, and the number of poten-

tial displacements is infinite. Therefore, we propose to indi-

rectly generate a kernel by a function h, instead of directly

learning the kernel. Specifically, ζ : R1×4
→ R

C′×C is a

parameterized function of (δx, δy, δz, δt) to generate kernels

based on input displacements:

ζ
(

δx, δy, δz, δt) ·f =
(

Wd · (δx, δy, δz, δt)
T
)

⊙
(

Wf ·f
)

, (2)

where f = F
(x+δx,y+δy,z+δz)
t+δt

is the point feature, Wd ∈

R
C′×4 is to transform 4D displacements, Wf ∈ R

C′×C

aims to increase point feature dimension to improve the

feature representation ability, and ⊙ is an element-wise

operator, e.g., addition or product. In this fashion,

ζ
(

δx, δy, δz, δt) can generate kernels for all potential dis-

placements. When Ft is not available, the function is im-

plemented as ζ
(

δx, δy, δz, δt) = Wd · (δx, δy, δz, δt)
T . We

can also append a multilayer perceptron (MLP) to Eq. (2) to

enhance the modeling.

Grid based convolutions can be easily performed on reg-

ular conventional videos by sliding on grids. However, be-

cause point cloud videos are spatially irregular as well as

unordered and points emerge inconsistently across different

frames, it is challenging to perform convolution on them.

Moreover, in contrast to grid based convolutions, which are

performed on all areas, our point based convolution should

avoid empty regions. To this end, we use a method sim-

ilar to [15] to generate spatio-temporal local areas before

performing point 4D convolution. Specifically, as shown

in Fig. 2(a), we first select some frames based on the tem-

poral stride st. Second, we use the farthest point sampling

(FPS) [43] to subsample N ′ = N/ss points in each selected

frame, where ss is the spatial subsampling rate. These sub-

sampled points are then transferred to the rt nearest frames.

The original and transferred subsampled points form the

central axis of a spatio-temporal local area. Finally, spatial

neighbors are searched based on spatial radius rs for each

subsampled point in the selected or rt nearest frames.

3.2. Transformer

3.2.1 4D Coordinate and Local Feature Embedding

After point 4D convolution, the spatio-temporal local ar-

eas of the t-th frame are encoded to representations F ′
t .

Because similar local regions share similar representations,

we can merge related areas based on their similarities in-

stead of explicit tracking. Moreover, because point posi-

tions also reflect the relationship among local regions, we

can exploit them to enhance representations for performing

self-attention. Therefore, we combine anchor coordinates,

i.e., (x, y, z, t), and local area features as the input to our

transformer,

I
(x,y,z,t) = Wi · (x, y, z, t)T + F

′(x,y,z)
t , (3)

where Wi ∈ R
C′×4 is the weight to convert 4D coordinates

and I ∈ R
C′×L′N ′

is the self-attention input.

3.2.2 Self-Attention

Given I , we aim to merge related local areas based on their

similarities so that each point has a larger receptive field to

perceive what happens around it. To this end, we perform

self-attention [53] on I . Specifically, the self-attention can

be described as mapping a query and a set of key-value pairs

to an output, where the queries, keys and values are gen-

erated by the input itself and the output is computed as a

weighted sum of the values:

Q = Wq · I, K = Wk · I, V = Wv · I,

attention(Q,K) = softmax(
QT ·K
√
Ck

),

O = V · attention(Q,K),

(4)

where Wq,Wk ∈ R
Ck×C′

, Wv ∈ R
Cv×C′

and Ck

and Cv are the dimension of key and value, respectively.

First, we generate queries Q ∈ R
Ck×L′N ′

, keys K ∈

R
Ck×L′N ′

and values V ∈ R
Cv×L′N ′

based on the in-

put I . Then, we compute the dot products of the query

with all keys and apply a softmax function to obtain the

weights attention(Q,K) ∈ R
L′N ′×L′N ′

. Given a lo-

cal area, related or similar areas will have larger attention

weights than others. Finally, the output O ∈ R
Cv×L′N ′

is computed as a weighted sum of the values V . Specif-

ically, for a point (x, y, z, t), its new feature is computed

as O(x,y,z,t) =
∑

attention(Q,K)(x,y,z,t),(x
′,y′,z′,t′)

×

V (x′,y′,z′,t′), where (x′, y′, z′, t′) belongs to the set of I’s

4D coordinates.

Note that, given a query, the softmax function is per-

formed on the entire video, which is referred to as video-

level self-attention is this paper. Another option is the so-

called frame-level self-attention, which applies softmax to

each frame individually, so that the sum of weights in each

frame is 1. This option assumes that each query point ap-

pears in all frames. However, points may flow in and out

across frames, especially for long point cloud videos. Such

an assumption is not reasonable. Therefore, we employ the

video-level self-attention, which performs softmax on all

L′N ′ points.
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Figure 3. Illustration of multi-head attention.

Instead of performing a single self-attention, we employ

multi-head attention [53], which performs Eq. (4) h times

with independent Wq , Wk and Wv , to enhance the learning

ability of the transformer. The final output of the multi-head

attention is the concatenation of h individual self-attentions’

outputs. The multi-head structure is illustrated in Fig. 3.

Besides the multi-head attention mechanism, we follow [53,

10] to equip the transformer with LayerNorms [1], linear

layers, ReLUs and residual connections [18]. Like most

deep neural networks, we stack multiple (m) transformers

to improve the modeling ability.

3.3. P4Transformer Networks for 3D Action Recog­
nition and 4D Semantic Segmentation

To evaluate the ability to model point cloud videos, we

apply our P4Transformer to 3D action recognition and 4D

semantic segmentation. Action recognition is a fundamen-

tal task for video modeling, which can be seen as a video-

level classification task. As shown in Fig. 2(a), given a point

cloud video, we first use a point 4D convolution layer to en-

code spatio-temporally local areas. Second, m transformer

layers (self-attention blocks) are stacked to capture appear-

ance and motion information across all encoded local fea-

tures. Third, a max pooling merges the transformed local

features to a single global one. Finally, an MLP layer con-

verts the global feature to action predictions.

The 4D semantic segmentation can be seen as a point-

level classification task. The architecture is shown in

Fig. 2(b). Because point cloud frames for segmentation are

usually high-resolution, we stack multiple point 4D convo-

lution layers to exponentially reduce the number of points

to be processed by the transformer. After the transformer,

because the point 4D convolution layers subsample points,

we add feature propagation layers to interpolate point fea-

tures. Inspired by [43], we use inverse distance weighted

average based on k nearest neighbors:

F
′′(x,y,z)
t =

∑k

i=1 w(δx, δy, δz)O
(x+δx,y+δy ,z+δz ,t)

∑k

i=1 w(δx, δy, δz)
, (5)

where w(δx, δy, δz) = 1
‖(δx,δy,δz)‖2 . In this paper, we use

k = 3. Skip connections are added between the correspond-

ing convolution layers and propagation layers. After the last

feature interpolation layer, we add an MLP layer that con-

verts point features to point predictions.

Table 1. Action recognition accuracy (%) on MSR-Action3D [28].

Method Input # Frames Accuracy

Vieira et al. [54] depth 20 78.20

Kläser et al. [21] depth 18 81.43

Actionlet [55] skeleton all 88.21

PointNet++ [43] point 1 61.61

MeteorNet [36] point

4 78.11

8 81.14

12 86.53

16 88.21

24 88.50

P4Transformer (ours) point

4 80.13

8 83.17

12 87.54

16 89.56

20 90.24

24 90.94

4. Experiments

4.1. 3D Action Recognition

To show the effectiveness in video-level classification,

we apply P4Transformer to 3D action recognition. Follow-

ing [36, 59], we sample 2,048 points for each frame. Point

cloud videos are split into multiple clips (with a fixed num-

ber of frames) as inputs. For training, video-level labels are

used as clip-level labels. For evaluation, the mean of the

clip-level predicted probabilities is used as the video-level

prediction. Point colors are not used.

By default, the temporal radius rt is set to 1 so that point

4D convolution can capture temporal local correlation. The

temporal stride is set to 2 to subsample frames. The spa-

tial subsampling rate ss is set to 32. The spatial radius rs
is specified in different datasets. The transformer contains

5 self-attention (m = 5) blocks, with 8 heads (h = 8) per

block. We train our models for 50 epochs with the SGD op-

timizer. Learning rate is set to 0.01, and decays with a rate

of 0.1 at the 20th epoch and the 30th epoch, respectively.

We compare our P4Transformer with skeleton-based,

depth-based and point-based methods on this task. Note

that, skeleton-based methods rely on additional body key-

point detection algorithms and cannot capture other objects’

motion except for human. Moreover, only using body key-

points ignores scene information that may also provide rich

and important cues for action recognition. Depth-based

methods project 3D data to 2D depth frame and thus dis-

tort the real 3D shape [59].

4.1.1 MSR-Action3D

The MSR-Action3D [28] dataset consists of 567 Kinect

v1 depth videos, including 20 action categories and 23K

frames in total. We use the same training/test split as previ-
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Table 2. Action recognition accuracy (%) on NTU RGB+D 60 [45] and NTU RGB+D 120 [30].

Method Input
NTU RGB+D 60 NTU RGB+D 120

Subject View Subject Setup

SkeleMotion [2] skeleton 69.6 80.1 67.7 66.9

GCA-LSTM [33] skeleton 74.4 82.8 58.3 59.3

FSNet [31] skeleton - - 59.9 62.4

Two Stream Attention LSTM [32] skeleton 77.1 85.1 61.2 63.3

Body Pose Evolution Map [35] skeleton - - 64.6 66.9

AGC-LSTM [48] skeleton 89.2 95.0 - -

AS-GCN [26] skeleton 86.8 94.2 - -

VA-fusion [64] skeleton 89.4 95.0 - -

2s-AGCN [47] skeleton 88.5 95.1 - -

DGNN [46] skeleton 89.9 96.1 - -

HON4D [40] depth 30.6 7.3 - -

SNV [62] depth 31.8 13.6 - -

HOG2 [39] depth 32.2 22.3 - -

Li et al. [25] depth 68.1 83.4 - -

Wang et al. [57] depth 87.1 84.2 - -

MVDI [61] depth 84.6 87.3 - -

NTU RGB+D 120 Baseline [30] depth - - 48.7 40.1

PointNet++ (appearance) [43] point 80.1 85.1 72.1 79.4

3DV (motion) [59] voxel 84.5 95.4 76.9 92.5

3DV-PointNet++ [59] voxel + point 88.8 96.3 82.4 93.5

P4Transformer (ours) point 90.2 96.4 86.4 93.5

Figure 4. Visualization of transformer’s

attention. Input: color indicates depth.
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ous works [55, 36]. We conduct experiments with 10 times

and report the mean. As default, the spatial radius rs is set

to 0.5 for this dataset.

The performance comparisons are reported in Ta-

ble 1. Our method outperforms all the state-of-the-art

methods, demonstrating the superiority of the proposed

P4Transformer on feature extraction.

We visualize a few transformer’s attention weights in

Fig. 4. For input, color indicates depth. For attention,

brighter color indicates higher weight. As expected, the

transformer is able to pay attention to the correct regions

across the frames. This supports our intuition that the trans-

former can take the place of explicit point tracking when

capturing spatio-temporal structure of point cloud videos.

4.1.2 NTU RGB+D 60 and NTU RGB+D 120

The NTU RGB+D 60 [45] is the second largest dataset for

3D action recognition. It consists of 56K videos, with 60

action categories and 4M frames in total. The videos are

captured using Kinect v2, with 3 cameras and 40 subjects

(performers). The dataset defines two types of evaluation,

i.e., cross-subject and cross-view. The cross-subject evalu-

ation splits the 40 performers into training and test groups.

Each group consists of 20 performers. The cross-view eval-

uation uses all the samples from camera 1 for testing and

samples from cameras 2 and 3 for training.

The NTU RGB+D 120 [30] dataset, the largest dataset

for 3D action recognition, is an extension of NTU RGB+D

60. It consists of 114K videos, with 120 action categories

Table 3. Running time (ms) per video on NTU RGB+D 60 [45].

Method CPU GPU Overall

3DV-PointNet++ [59] 2295 473 2768

P4Transformer (ours) 11 854 865

and 8M frames in total. The videos are also captured by

Kinect v2, with 106 performers and 32 collection setups

(locations and backgrounds). Besides cross-subject evalua-

tion, the dataset defines a new evaluation setting, i.e., cross-

setup, where 16 setups are used for training, and the others

are used for testing. The spatial radius rs is set to 0.1 for

these two datasets.

Comparison with state-of-the-art methods. As indi-

cated in Table 2, P4Transformer outperforms all the other

approaches in all evaluation settings. Particularly, as in-

dicated by the cross-setup evaluation on NTU RGB+D

120, P4Transformer outperforms the second best 3DV-

PointNet++ [59] by 4.0%. Moreover, compared to 3DV that

extracts motion from voxels, P4Transformer directly mod-

els the dynamic information of raw point cloud sequences

and thus is efficient.

Computational efficiency. We provide a running time

comparison with the second best 3DV-PointNet++ [59].

The average running time per video is shown in Table 3.

Experiments are conducted using 1 Nvidia RTX 2080Ti

GPU on NTU RGB+D 60. Compared to 3DV-PointNet++,

P4Transformer reduces running time by 1903ms, demon-

strating that P4Transformer is very efficient.
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Table 4. 4D semantic segmentation results (mIoU %) on the Synthia 4D dataset [6].

Method Input # Frames Track Bldn Road Sdwlk Fence Vegittn Pole Car T. Sign Pedstrn Bicycl Lane T. Light mIoU

3D MinkNet14 [6] voxel 1 - 89.39 97.68 69.43 86.52 98.11 97.26 93.50 79.45 92.27 0.00 44.61 66.69 76.24

4D MinkNet14 [6] voxel 3 - 90.13 98.26 73.47 87.19 99.10 97.50 94.01 79.04 92.62 0.00 50.01 68.14 77.46

PointNet++ [43] point 1 - 96.88 97.72 86.20 92.75 97.12 97.09 90.85 66.87 78.64 0.00 72.93 75.17 79.35

MeteorNet-m [36] point 2 ✓ 98.22 97.79 90.98 93.18 98.31 97.45 94.30 76.35 81.05 0.00 74.09 75.92 81.47

MeteorNet-m [36] point 2 ✗ 97.65 97.83 90.03 94.06 97.41 97.79 94.15 82.01 79.14 0.00 72.59 77.92 81.72

MeteorNet-l [36] point 3 ✗ 98.10 97.72 88.65 94.00 97.98 97.65 93.83 84.07 80.90 0.00 71.14 77.60 81.80

P4Transformer (ours) point 1 - 96.76 98.23 92.11 95.23 98.62 97.77 95.46 80.75 85.48 0.00 74.28 74.22 82.41

P4Transformer (ours) point 3 ✗ 96.73 98.35 94.03 95.23 98.28 98.01 95.60 81.54 85.18 0.00 75.95 79.07 83.16

Figure 5. Visualization of 4D semantic segmentation. Top: inputs.

Middle: ground truth. Bottom: P4Transformer predictions.

4.2. 4D Semantic Segmentation

To demonstrate that our P4Transformer can be used for

point-level prediction tasks, we employ P4Transformer for

4D semantic segmentation. Following the works [6, 36],

we conduct experiments on video clips with length of 3

frames. Note that, although 4D semantic segmentation can

be achieved from a single frame, exploring temporal cor-

relation would help understanding the structure of scenes,

and thus improving segmentation accuracy and robustness

to noise. The mean Intersection over Union (mIoU) is used

as the evaluation metric.

Synthia 4D [6] uses the Synthia dataset [44] to create

3D videos, which includes 6 videos of driving scenarios,

where both objects and cameras are moving. Each video

consists of 4 stereo RGB-D images taken from the top of a

moving car. Following [36], we reconstruct 3D point cloud

videos from RGB and depth images, and use the same train-

ing/validation/test split, with 19,888/815/1,886 frames, re-

spectively.

As seen in Table 4, the proposed P4Transformer with 3
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Figure 6. Influence of the temporal radius rt and spatial radius rs.

The MSR-Action3D dataset is used.

frames outperforms the state-of-the-art methods. Moreover,

our method achieves seven best accuracies among them,

demonstrating the effectiveness of P4Transformer. We visu-

alize two segmentation results from the Synthia 4D dataset

in Fig. 5. Our method can accurately segment most objects.

We also observe that tracking does not always improve

accuracy. We speculate that this phenomenon might be

caused by unreliable point tracking results, which hinder

temporal modeling.

4.3. Ablation Study

The point 4D convolution and transformer are two im-

portant components of our method. In this section, we in-

vestigate the effects of the design choices in these two com-

ponents on MSR-Action3D.

4.3.1 Point 4D Convolution: Temporal Radius and

Spatial Radius

Kernel size is a basic attribute of convolutional operations,

which controls local structure modeling. To effectively

model the local structure, conventional CNNs usually use

small kernel sizes. In this paper, the kernel size of our point

4D convolution consists of a temporal radius rt and a spatial

radius rs. We investigate the influence of the two radiuses

on spatio-temporal modeling.

The temporal radius rt controls the temporal dynamics

modeling of point cloud videos. As shown in Fig. 6(a),
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Figure 7. Influence of the number of transformer layers (m) and

the number of heads (h) on 3D action recognition. Note that, when

we change the number of heads, the total feature dimension of each

transformer layer is fixed. The MSR-Action3D dataset is used.

when rt is set to 0, point 4D convolution does not capture

the temporal correlation. However, P4Transformer can still

model spatio-temporal structure by the subsequent trans-

former, and thus achieve satisfactory accuracy. When rt is

set to 1, the temporal local structure of 3 frames is captured.

In this case, our convolution has the ability to model the

spatio-temporal correlation. Compared to rt = 0, where

only spatial structure is captured, the outputs of point 4D

convolution with rt = 1 is more rich and informative, and

therefore facilitates the subsequent transformer to perform

self-attention. Consequently, the 3D action recognition ac-

curacy is improved. However, when rt > 1, the perfor-

mance gradually decreases. This is because, points flow in

and out in videos, especially for long videos. Noise is in-

evitably introduced when using long temporal radiuses.

The spatial search radius rs controls the region of the

spatial structure to be modeled. As shown in Fig. 6(b), us-

ing a too small rs cannot capture sufficient spatial structure

information. However, when using large rs, it will decrease

the discriminativeness of local structure. Therefore, the 3D

action recognition accuracy decreases.

4.3.2 Transformer: Number of Transformers, Number

of Heads and Frame-level Self-Attention

Like most deep neural networks, we can stack multiple

transformer layers to increase the learning ability of the pro-

posed P4Transformer. As shown Fig. 7(a), with more trans-

former layers, P4Transformer can achieve better accuracy.

However, too many layers decrease performance. This is

because, when networks become deeper, gradients may be

vanishing or exploding, making networks difficult to train.

To investigate the influence of the number of heads on

our transformer, we keep the total feature dimension fixed.

Specifically, the total feature dimension is fixed to 1024.

Suppose there are h heads, then the feature dimension of

each self-attention is 1024/h. As shown Fig. 7(b), using

Table 5. Influence of frame-level and video-level self-attention on

3D action recognition. The MSR-Action3D dataset is used.

Self-attention 12 16 20 24

Frame-level 70.65 76.45 78.16 79.18

Video-level 87.54 89.56 90.24 90.94

more heads can effectively increase accuracy. However, us-

ing too many heads makes the feature dimension of each

head too short. The feature of each head cannot carry

enough information for performing attention. The accuracy

therefore decreases.

Finally, we evaluate the impact of the frame-level and the

video-level self-attention on point cloud video modeling.

As shown in Table 5, the video-level self-attention achieves

much better accuracy than the frame-level one. This is be-

cause, based on the assumption that the query appears in

each frame, the frame-level attention performs the softmax

function in each individual frame. However, this does not

match the fact that points may flow in and out across frames,

especially for long videos. By contrast, the video-level self-

attention performs the softmax function across the entire

video, in which flowing-out points can be ignored with low

attention, thus facilitating temporal modeling and improv-

ing action recognition accuracy.

4.3.3 Clip Length

Because information is not equally distributed in point

cloud videos along time, short video clips may miss key

frames for action reasoning and confuse models as noise.

As shown in Table 1, increasing clip length effectively ben-

efits models for 3D action recognition.

5. Conclusion

In this paper, we propose a Point 4D Transformer

(P4Transformer) network to capture spatio-temporal corre-

lation from raw point cloud videos. P4Transformer consists

of a point 4D convolution and a transformer. The point 4D

convolution embeds the spatio-temporal local structures to

compact representations and subsamples frames and points

for the subsequent transformer processing. The transformer

captures the appearance and motion information across

the entire point cloud video by performing self-attention

on the embedded local representations. Extensive experi-

ments demonstrate the effectiveness of our P4Transformer

on point cloud video modeling.
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