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It is increasingly common for group studies in neuropsychology to report effect sizes. In contrast this is
rarely done in single-case studies (at least in those studies that employ a case-controls design). The
present paper sets out the advantages of reporting effect sizes, derives suitable effect size indexes
for use in single-case studies, and develops methods of supplementing point estimates of effect
sizes with interval estimates. Computer programs that implement existing classical and Bayesian
inferential methods for the single case (as developed by Crawford, Garthwaite, Howell, and col-
leagues) are upgraded to provide these point and interval estimates. The upgraded programs can be
downloaded from www.abdn.ac.uk/~psy086/dept/Single_Case_Effect_Sizes.htmQ2
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It is now generally recognized that, although
significance testing may have served science well
in many respects, it has been overemphasized in
psychology at the expense of attention to the size
of effects. In an attempt to redress this imbalance
a number of authorities in statistics and psychology
have made strenuous calls for research papers to
include indexes of effect size. For example, in a
report on statistical inference, the American
Psychological Association strongly endorsed the
reporting of effect sizes. The report recommends

that researchers should “always provide some
effect-size estimate when reporting a p value”
and goes on to note that “reporting and interpret-
ing effect sizes . . . is essential to good research”
(Wilkinson & The APA Task Force on
Statistical Inference, 1999, p. 599 Q3).

Advice aimed specifically at neuropsychologists
has also been offered (e.g., Bezeau & Graves,
2001; Crawford & Henry, 2004; Zakzanis,
2001), and editorial policies requiring the report-
ing of effect sizes in neuropsychology journals
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(Becker, Knowlton, & Anderson, 2005) have
provided a further impetus. Although it is true to
say that the take-up of such advice has been rela-
tively slow, reporting of effect sizes in group-
based neuropsychological research is now fairly
common.

The focus of the present paper is on single-case
studies employing the case-controls design (i.e.,
studies in which inferences concerning the cogni-
tive performance of a single case are made by com-
paring the case to a matched sample of healthy
controls). The reporting of effect sizes in such
studies is still relatively uncommon. This is unfor-
tunate as the methodological standards in single-
case studies should, where possible, be as high as
those demanded in group research. Moreover, in
contrast to the neglect of effect sizes in the case-
controls design, the issue of effect sizes has been
tackled for single-case research based solely on
intraindividual comparisons (such as studies evalu-
ating the effects of an intervention in the single
case by comparing baseline and postintervention
scores; e.g., see Parker et al. (2005)Q4 ).

In the present paper we: (a) identify suitable
indexes of effect size for the case-controls design;
(b) briefly set out the advantages of using effect
sizes; (c) derive methods of supplementing point
estimates of effect size with interval estimates;
(d) describe and make available computer pro-
grams that calculate these point and interval esti-
mates; and (e) propose a set of standards for the
reporting of statistical results in the case-controls
design.

Effect size index for comparison of a single
case to controls

In group studies the most commonly used effect
size index is Cohen’s d. This index expresses the
difference between the means of a patient sample
and control sample in standardized units by divid-
ing the difference by the pooled standard deviation
of the two samples (an alternative index is
Hedges’s g, which differs only in the method
used to estimate the pooled standard deviation;
Cohen’s d and Hedges’s g typically have similar

values, especially when the number of controls
greatly exceeds the number of patients).

The obvious, direct, analogue of Cohen’s d
when comparing a single-case’s score to a control
sample is z, computed using a single-case’s score
(x) and the controls’ sample mean (x̄) and standard
deviation (sx); we hereafter denote this quantity as
zCC. (the subscript CC representing “case-con-
trols”) to differentiate it from a further index
developed later. Thus the proposed index of
effect size when comparing a single case to controls
is simply

zCC =
x− x

sx
. 1

This index is an estimate of the average differ-
ence, measured in standard deviation units so as to
be scale independent, between a case’s score and
the score of a randomly chosen member of the
control population. Like Cohen’s d, zCC is insensi-
tive to the size of the control sample. This charac-
teristic makes it unsuitable as a significance test
(Crawford, Garthwaite, & Howell, 2009),
although regrettably it is still widely used for
such a purpose. However, in contrast, this is a
required characteristic for an index of effect size.

The case for effect sizes for cases

The main advantages of including effect sizes
when reporting the result of a single-case study
are those that also apply to the reporting of
group research. Moreover, there are characteristics
of single-case research that make the use of effect
sizes particularly compelling. Namely, (a) single-
case studies typically employ a large number of
neuropsychological measures, (b) more often
than not these measures are expressed on different
metrics, (c) there is an emphasis in neuropsycholo-
gical single-case studies on examining the profile
(i.e., the relative strengths and weaknesses) of a
patient’s performance, and (d) it is not uncommon
for single-case studies to employ more than one
control sample (so that the influence of control
sample size on p values is not necessarily constant
across measures).
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All these factors conspire to make the use of
effect sizes particularly useful in single-case
research. By expressing all of a case’s score on a
common metric, consumers of the research can
readily assimilate the pattern of relative strengths
and weaknesses in the case’s profile of scores.
This is much more satisfactory than only present-
ing p values or, even worse, simply recording
whether p values are below, say, .05. A case’s p
value for one task could be just below .05 and
just above .05 for another. In such circumstances
the relative difference in the case’s performance
on the two tasks is entirely trivial—this would be
immediately apparent from the effect sizes.
Calculation of effect sizes also allows researchers
to compare their results with those found in
studies of other single cases (even when the tasks
used to assess a function of interest in these
studies differ from the tasks employed in the
study at hand).

Reporting of effect sizes in contemporary
single-case research

It was suggested in an earlier section that effect
sizes are not commonly reported in single-case
studies that employ the case-controls design. In
order to examine this suggestion empirically we
reviewed all papers published between 2004
and 2006 in four major neuropsychology
journals (Cognitive Neuropsychology, Journal of
the International Neuropsychological Society,
Neuropsychologia, and Neuropsychology).1 Two of
these journals (Cognitive Neuropsychology and
Neuropsychologia) were chosen because they have
a history of publishing single-case research.
The other two were chosen because although,
like the others, they are major journals (i.e., they
are official journals of the International
Neuropsychological Society and American
Psychological Association, respectively), they pre-
dominantly publish group studies. That is, we felt

that single-case studies published in journals that
do not specialize in this area should also be
represented.

Papers were selected for inclusion if they were
single-case studies and involved the analysis of
cognitive/behavioural processes. Papers were
included if more than one patient was featured
(i.e., multiple single-case studies), provided that
the paper included analysis at the level of the
single case. This resulted in the identification of
219 single-case studies, 159 of which included
control samples. For present purposes attention
was then restricted to studies (k ¼ 98) that used
inferential methods to directly compare a single-
case to controls—that is, studies that used the
case-controls design.

Of these 98 studies, only 20 (20.4%) reported
any effect sizes (z), and only 13 (13.3%) presented
effect sizes to accompany all of the inferential tests
reported. A further 2 studies reported raw differ-
ences between cases and controls and explicitly
described these differences as “effect sizes”.
However, such differences are not effect sizes as
commonly defined because, crucially, they are not
standardized differences. Thus the vast majority
(79.6%) of studies using the case-controls design
did not report any effect sizes.

The number of studies credited with reporting
effect sizes (20) falls below the number of studies
(31) that used z for inferential purposes (i.e., as a
significance test). This disparity occurs because,
in many of these studies, z itself was not directly
reported. Rather, either the results were reported
in a dichotomous form (i.e., cases were classified
as exhibiting or failing to exhibit a statistically sig-
nificant deficit without reporting the z value upon
which the decisions were based), or reporting was
limited to presentation of the p values.

This pattern of reporting is particularly unfor-
tunate; z was used for a purpose to which it is
unsuited (hypothesis testing), but was not used
for a purpose to which it is suited (to record

1Papers published after 2006 were not included because the figures reported here have been extracted form a more detailed
ongoing survey of single-case research. This includes collecting data on citation impact and therefore requires a lag between
publication and measurement of impact (another factor is that coding up the attributes of these studies is more complex and time
consuming than was anticipated).

COGNITIVE NEUROPSYCHOLOGY, 0000, 00 (0) 3

SINGLE-CASE EFFECT SIZES

185

190

195

200

205

210

215

220

225

230

235

240

245

250

255

260

265

270



effect sizes). Even among the 20 studies that did
report z, in most cases it was clear that it was
being used as a significance test (i.e., cases were
described as being significantly different from con-
trols), rather than being identified as an index of
effect size.

Two of the present authors may have inadver-
tently contributed to the low rate of reporting of
effect sizes. In previous papers (e.g., Crawford &
Garthwaite, 2005b) we have shown that z is inap-
propriate as a mean of testing for a significant
difference between a single case and controls
because it is associated with inflated Type I
errors (i.e., false positives) when used with the
sample sizes that typify single-case research. The
appropriate hypothesis test is that proposed by
Crawford and Howell (1998) because, under the
null hypothesis (that the case’s score is an obser-
vation from the scores in the control population),
the difference between a case and controls
follows a t-distribution rather than a standard
normal distribution. The Crawford and Howell
method was the second most common method
used to compare a single case to controls (26
studies, compared to the 31 using z).

We suggest that single-case researchers should
employ and report both these statistics: the
t value from Crawford and Howell’s (1998) pro-
cedure to test and record whether the difference
between the single case and controls is statistically
significant; and zCC, as an effect size index for the
difference between the case and controls. (The
t value obtained from the Crawford and Howell
method is not suitable as an index of effect size
because it varies as a function of the size of the
control sample.)

Interval estimates for effect sizes in the case-
controls design

In group-based research there is an increasing rec-
ognition that point estimates of effect size should
be accompanied by interval estimates (i.e., confi-
dence intervals or credible intervals)—for
example, see Steiger (2004), Fidler and
Thompson (2001), and Thompson (2007). In
keeping with the principle alluded to earlier, that

the standards of reporting in single-case studies
should be as high as those expected in group
research, we suggest that interval estimates for
effect sizes should also be reported in single-case
research. None of the single-case studies reviewed
earlier reported such intervals. This, however,
should not be surprising as this problem has not
previously been tackled explicitly.

Fortunately, the statistical theory necessary to
form these interval estimates already exists.
Crawford and Garthwaite (2002) Q5derived a classi-
cal method of setting confidence limits on the
abnormality of a patient’s score using noncentral
t-distributions. An intermediate step in obtaining
these limits involves computing two standard
normal deviates, and these provide the required
upper and lower limits on the effect size index.
The derivation of these limits on an effect size
and the calculations required to obtain them are
set out in Appendix A. For a broader and excellent
treatment of noncentral t-distributions in psycho-
logical measurement see Cumming and Finch
(2001).

A Bayesian analysis of this problem proceeds
differently but, as will be shown, gives the same
results as the classical method (save for very
minor differences attributable to Monte Carlo
variation). The Bayesian approach that is used is
based on methods developed by Crawford and
Garthwaite (2007). The formal details are set out
in Appendix B. Informally, the method consists
of repeatedly applying Equation 1 with inputs con-
sisting of the case’s score and estimates of the
control mean and standard deviation obtained
through random draws from the posterior distri-
bution for controls (we denote the value obtained
on any one of these iterations as ẑCC). If one
million iterations are performed, then the
25,000th lowest and 25,000th highest values of
ẑCC provide the lower and upper endpoints of a
95% credible interval for the true effect size.

To illustrate the application of these intervals,
take the example of a neuropsychological task for
which the mean in a healthy control sample of
10 persons is 50, and the standard deviation is
10. Suppose a case obtains a score of 24. Then
the point estimate of the effect size, zCC, for the
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comparison of the case to controls is 22.60. Using
the classical method of obtaining an interval esti-
mate for this quantity, the 95% confidence interval
on the effect size ranges from –3.919 to –1.253
(the calculations for this example can be found at
the end of Appendix A). This interval captures
the uncertainty over the true effect size—if the
patient’s score had been referred to another
control sample the resultant point estimate
would differ from that calculated using the
sample in hand. It can be seen that, in this
example, the confidence interval on the effect
size is wide. This largely stems from the fact that
the control sample is modest in size, although an
n of this size is not atypical in single-case
studies; indeed the sample size used in this
example (n ¼ 10) corresponds to the median n
for the 98 single-case studies reviewed earlier
that directly compared a single case to controls;
the mean n was slightly higher at 11.69 (SD ¼

10.66).
With larger n the limits are narrower but there

will still be considerable uncertainty unless the
control sample n is very much larger than the ns
typically found in single-case studies. For
example, if all other quantities were the same as
those in the previous example but the control
sample n was 40, the 95% confidence interval on
the effect size ranges from –3.249 to –1.943; for
a sample size of 150 the interval is from –2.934
to –2.263.

Because the intervals follow a noncentral t-dis-
tribution, their width will also be affected by the
extremity of the patient’s score: The more
extreme the score, the wider the interval. In
addition, the end points (i.e., the upper and
lower limits) of the interval will also be more
asymmetrical around the point estimate of the
effect size (zCC) when scores are extreme: For
scores below the mean the lower limit will be
further from the point estimate (the converse will
occur for scores above the mean). This latter
characteristic will be attenuated when the control
sample n is large (noncentral t-distributions
become less skew as sample size increases).

As noted, the Bayesian credible intervals will
give the same results as the classical limits and

therefore possess the same characteristics as those
described above. The Bayesian 95% interval for
the original worked example (n ¼ 10) is
(23.918, 21.254), and it can be seen that this
corresponds very closely to the interval obtained
using the classical method (23.919, 21.253).
The difference arises from Monte Carlo variation.

The fact that the two methods yield equivalent
intervals means that we can apply a Bayesian
interpretation to either set of limits. Thus, even
if a single-case researcher chose to use the classical
method for this problem, they can legitimately
avoid the convoluted classical (i.e., frequentist)
interpretation of these limits. As Antelman
(1997) notes, the frequentist conception of a con-
fidence interval is that, “It is one interval generated
by a procedure that will give correct intervals 95%
of the time. Whether or not the one (and only)
interval you happened to get is correct or not is
unknown” (p. 375).

Thus, in the present context, the frequentist
interpretation is as follows, “if we could compute
confidence intervals from a large number of
control samples collected in the same way as the
present control sample, about 95% of them
would contain the true effect size”. In contrast,
the Bayesian analysis gives the conclusion, “there
is a 95% probability that the effect size lies
within the stated limits”. This statement is not
only less convoluted but, we suggest, it also cap-
tures what a single-case researcher would wish to
conclude from an interval estimate. It is likely
that most psychologists who use frequentist confi-
dence intervals in fact construe these in what are
essentially Bayesian terms (Crawford &
Garthwaite, 2007).

An empirical test of the method of setting
limits on effect sizes using Monte Carlo
simulation

The statistical theory set out in Appendix A
implies that, if the control data are drawn from a
normal distribution, then the confidence intervals
should capture individuals’ true effect sizes 95%
of the time (the true effect sizes are the z scores
the individuals would obtain were they computed
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using the mean and standard deviation of the
control population rather than a control sample).
To confirm this empirically a Monte Carlo simu-
lation was performed. This simulation should
help inform those neuropsychologists who have
either little interest in or little knowledge of the
underlying statistical theory.

Four population values of zCC were selected
ranging from 20.674 (representing a score only
slightly below the population mean, i.e., 25% of
the control population would obtain a lower
score) through values of 21.282 (10%), 21.960
(2.5%), to a value of 22.326 (representing a very
low score; only 1% of the control population
would obtain a lower score). These represent indi-
viduals’ true z scores—that is, the z scores they
would obtain had we access to the entire popu-
lation of controls and therefore knew the popu-
lation mean and standard deviation (hereafter
denoted z∗CC to differentiate it from zCC computed
using sample statistics). For each of these z∗CC, one
hundred thousand Monte Carlo trials were run in
which a sample of controls of size n were drawn
from the control distribution (a standard normal
distribution); on each trial the sample mean was
subtracted from z∗CC, and the result was divided
by the sample standard deviation. This created a
z based on the sample statistics on that trial. The
method set out in Appendix A was then applied
to calculate a 95% confidence interval on z∗CC.
The number of trials in which these confidence
intervals captured z∗CC was recorded. If the
method is valid then the percentage of trials on
which this occurred should be 95%, save for
Monte Carlo variation.

Five different control ns were used ranging
from 5 through 10, 20, and 50, to 100. Thus, in
total, 2.5 million trials were performed—that is,
100,000 trials times 5 levels of z∗CC, times 5 levels
of the control sample n.

The results of the simulation are set out in
Table 1. It can be seen that the percentage of
trials in which the limits captured the true effect
size is very close to 95%, regardless of both the
size of the control sample and the extremity of
the individuals’ scores (the small departures from
95% are within the range expected from Monte

Carlo variation). Thus, these results provide
empirical support for the statistical theory set out
in Appendix A of the present paper. In other
words, these results confirm the veracity of the
method derived here for confidence limits on an
effect size for the difference between a single
case and controls. Moreover, as the Bayesian
equivalent of these classical methods gives the
same interval estimates, the simulation simul-
taneously confirms the veracity of the Bayesian
approach to this problem.

Recommendations for the analysis and
reporting of statistical results involving basic
comparisons of a single case to controls

The foregoing analysis and discussion suggests
that the following information should be provided
in single-case studies when comparing a case to
controls: the mean and standard deviation for con-
trols on the task (and control n), the raw score of
the single case, the point estimate of the effect
size (zCC) for the difference between the case and
controls accompanied by its 95% confidence inter-
val (or credible interval), as set out in the present
paper; the t-value and its associated probability
obtained from application of Crawford and
Howell’s (1998) test or its Bayesian equivalent

Table 1. Monte Carlo simulation

z∗CC (%)

95% interval estimate of effect size (zCC)

N ¼ 5 N ¼ 10 N ¼ 20 N ¼ 50 N ¼ 100

20.253 (40) 94.94 94.93 94.96 94.95 95.00
20.675 (25) 94.97 94.99 95.00 95.00 95.09
21.036 (15) 94.99 94.89 94.95 95.01 94.92
21.282 (10) 94.89 95.00 94.95 94.95 95.02
21.645 (5) 95.04 94.96 94.92 95.01 95.06
21.960 (2.5) 94.95 95.03 95.04 95.01 94.98
22.326 (1) 94.98 94.94 95.02 95.05 95.02

Note: Results of a Monte Carlo simulation to verify that the
proposed method of forming interval estimates of the
effect size for the difference between a single case and
control captures the true effect size (z∗CC) 95% of the time;
the size of the control sample is varied (from 5 to 100) as
is the size of the true effect size (z∗CC). Percentages shown
in parentheses.

6 COGNITIVE NEUROPSYCHOLOGY, 0000, 00 (0)

CRAWFORD, GARTHWAITE, PORTER

455

460

465

470

475

480

485

490

495

500

505

510

515

520

525

530

535

540



(Crawford & Garthwaite, 2007); and finally, the
point estimate and 95% confidence interval (or
credible interval) for the abnormality of the case’s
score; these latter statisticsQ6 are obtained by the
classical methods developed by Crawford and
Garthwaite (2002)Q5 , or in the case of their
Bayesian equivalent, by Crawford and
Garthwaite (2007). The point estimate of the
abnormality of the patient’s score is the estimated
percentage of the control population that would
obtain a score lower than the case and the interval
estimate quantifies the uncertainty over this
percentage.

Provision of this information would, we
suggest, provide the consumer of single-case
studies with all the pertinent information required
to come to an informed judgement concerning a
single case’s performance on the tasks in question.
All of the aforementioned results can be obtained
by use of computer programs described in a later
section: These programs require only that the
researcher enters the control n, the control mean
and standard deviation for the task, and the
case’s score.

Given the amount of information to be
reported, we recommend presenting it in a table
along with the equivalent analysis performed on
other tasks. An illustration of how this could be
laid out is given in Table 2. This table sets out a
hypothetical example of a single case administered
four tasks where performance was compared to a

matched sample of 16 healthy controls. Note
that the means and standard deviations for the
controls on these four tasks are very different (as
they often are in single-case studies given that
fully normed and standardized tasks are rarely
available to assess the constructs of interest). By
expressing the differences between the case and
controls case as effect sizes (zCC) the patient’s rela-
tive standing on the four tasks can readily be
assimilated by the reader.

In this example there are clear deficits on Tasks
A and B: The case’s scores are significantly poorer
than those of the controls, the effect sizes are very
large, and the case’s score are highly abnormal—
that is, a very small percentage of the control
population are expected to exhibit scores as low
as these. It can also be seen from the effect sizes
that the deficit on Task B is markedly larger
than that exhibited on Task A. In contrast, there
is little or no evidence for a deficit on Tasks C
and D: The case’s scores do not differ significantly
from controls, the effect sizes are fairly modest,
and it is estimated that a large percentage of the
control population would obtain scores lower
than that observed for the patient.

The results for Task C were chosen intention-
ally to illustrate a feature of the interval on the
effect size: The value 0 (zero) may be outside the
95% confidence interval for the effect size (in
this example the interval is from –1.106 to
–0.043) while the two-tailed t test is not

Table 2. An example table of results comparing a single case to controls in which the current proposals are implemented

Task

Control sample

Case’s score

Significance
testa

Estimated percentage of the
control population

obtaining a lower score
than the caseb Estimated effect size (zCC)

n Mean SD t p Point (95% CI) Point (95% CI)

Task A 16 12.78 3.45 4.0 22.47 .013 1.30 (0.02 to 6.56) 22.545 (23.561 to 21.509)
Task B 16 46.3 8.20 19.0 23.23 .003 0.28 (0.00 to 2.05) 23.329 (24.597 to 22.044)
Task C 16 30.4 14.42 22.0 20.57 .290 29.0 (13.43 to 48.30) 20.583 (21.106 to 20.043)
Task D 16 22.2 6.20 21.0 20.19 .427 42.7 (24.66 to 61.96) 20.188 (20.685 to 0.304)

Note: Includes reporting point and interval estimates of the effect size (zCC) for the differences between case and controls using the
method set out in the present paper.

aCrawford & Howell (1998); the results are for a one-tailed test. bCrawford & Garthwaite (2002) Q5.
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significant (Table 2 reports one-tailed p values; the
two-tailed p value for this example is .580).
Consequently, finding that the effect size interval
does not contain 0 should not be taken as evidence
that the case differs from controls. This situation
cannot arise in group studies (see Appendix C
for a brief explanation).

Returning to the general issue of how the
results of single-case study should be reported:
One of the advantages of setting out the results
in a table, rather than in the text of a paper, is
that the reader can immediately compare the
patient’s performance across the range of tasks
administered. In reviewing the sample of single-
case studies referred to earlier we found that
many studies did provide at least some of the rec-
ommended information in table form for the
results of background neuropsychological testing
(where the need for effect sizes is perhaps not so
pressing as the tests are often on a standard
metric) but often abandoned this in favour of
setting out the results from the experimental sec-
tions of the study entirely in the text.

Moreover, many single-case reports contain
multiple studies of the single case and controls.
In such circumstances the benefits of systemati-
cally setting out results in one large master table,
or at least in a series of tables, are even more appar-
ent—trying to obtain an overview of a patient’s
relative strengths and weaknesses across multiple
studies is either time-consuming and frustrating
(in cases where the results are distributed through-
out the text of the relevant results section) or
impossible (when the necessary information
required to construct such a profile is omitted).

A further serendipitous advantage of setting out
results in a table is that it prevents the practice of
only reporting effect sizes for results that are stat-
istically significant. In group studies such a prac-
tice is surprisingly common but has been rightly
criticized because it flies in the face of the rationale
underlying the reporting of effect sizes
(Thompson, 2007). The statistical significance
and the likely practical significance of results (the
latter addressed by the effect sizes) are two differ-
ent issues, and therefore the decision to report the
latter should not be contingent on the former.

A decision to report effect sizes only for statisti-
cally significant results would also be particularly
unfortunate and potentially misleading in single-
case research where much emphasis is placed on
a case’s profile of performance across cognitive
tasks. Where a case is found to have a statistically
significant difference on one task but not on
another, the difference in the case’s relative level
of performance can still be very trivial (Crawford,
Garthwaite, & Gray, 2003); reporting of the
effect sizes for both tasks allows an assessment of
this possibility (where such a comparison is of
central theoretical interest further formal testing
of the difference between tasks is indicated; see
the next section of the present paper).

Finally, Table 2 may also prove useful to those
readers wishing to familiarize themselves with the
use of the recommended methods and the accom-
panying computer programs that implement them:
The table includes all the required inputs for the
programs (i.e., the control means and standard
deviations, the control sample size, and the case’s
scores), and all outputs. The data provided thus
allow researchers to conduct a dry run ahead of
applying the methods to their own data.

It may be that some readers consider the
amount of information provided in Table 2 to be
overkill. In contrast, in the course of reviewing
the single-case literature for this paper, we were
continually struck by what we see as an imbalance
in the coverage of the different aspects of such
studies. That is, much space was often devoted
to a detailed review of the previous empirical lit-
erature and to the theory that motivated a given
study, the Method sections also often presented
very detailed descriptions of the design, materials,
and administration of the tasks of interest, and
Discussion sections provided in-depth consider-
ations of the implications of the results obtained.
That is all as it should be. However, set against
this level of detail, the information provided on
the inferential statistical methods employed was
often very sparse. For example, it was not
unusual for the reporting of results to be limited
solely to p values (that is, the corresponding test
statistics were omitted, as were the summary stat-
istics for the control samples). An illustration of
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this was provided in an earlier section by the dis-
parity in the number of cases using z for signifi-
cance testing and the number actually reporting
the z value itself.

Testing for differences (dissociations) in a
case’s performance across tasks

Although the detection of deficits is a fundamental
feature of single-case studies, evidence of an
impairment on a given task usually only becomes
of theoretical interest if it is observed in the
context of less impaired or normal performance
on other tasks (Crawford & Garthwaite, 2005b).
That is, much of the focus in single-case studies
is on establishing dissociations of function
(Caramazza & McCloskey, 1988; Coltheart,
2001; Crawford et al., 2003; Ellis & Young,
1996; Shallice, 1988).

The conventional criteria for a classical dis-
sociation requires a researcher to demonstrate
that a case is “impaired” (significantly different
from controls) on task X and “unimpaired” (not
significantly different from controls) on task Y
(Crawford et al., 2003). Crawford et al. (2003)
have argued that these criteria for a dissociation
are insufficiently rigorous: for example, a case
could be just below a designated cut-off for
impairment on task X and just above the cut-off
on task Y so that the difference in the case’s relative
standing on the two tasks is trivial. Subsequent
Monte Carlo simulation studies have supported
this position. When a Type I error was defined
as misclassifying a healthy control as exhibiting a
dissociation, the conventional criteria generated
very high error rates (Crawford & Garthwaite,
2005a); the rates were even higher (they
approached 50% in some scenarios) when a Type
I error was defined as misclassifying a patient
with strictly equivalent deficits on both tasks as
exhibiting a dissociation (Crawford &
Garthwaite, 2006).

The solution to these problems is to test for a
difference between a case’s scores on the two
tasks. This deals with the issue of trivial differences
referred to earlier and, unlike the conventional cri-
teria (which rely on attempting to establish an

absence of a difference between case and controls
on one of the tasks), it also provides us with a posi-
tive test for a dissociation. A complication in
testing for a difference between a case’s scores on
two tasks is that the tasks in question are usually
expressed on different metrics—that is, they
differ in their means and standard deviations.
Therefore, there is a need to standardize a case’s
scores on each of the two tasks before they can
be meaningfully compared; see Crawford et al.
(2009) for a demonstration of the problems that
can ensue when there is a failure to standardize a
case’s scores.

We consider two methods of testing for a
difference between a case’s scores: one based on
classical statistics, the other on a Bayesian
approach. Considering the classical solution first:
Following standardization, the patient’s scores on
the two tasks are both t-variates. Therefore a
method is required that tests for a difference
between two t-variates. This was the approach
adopted by Crawford and Garthwaite (2005) Q7in
developing the Revised Standardized Difference
Test (RSDT). The test is based on asymptotic
expansions performed to obtain the standard
error for such differences (Garthwaite &
Crawford, 2004). However, an even better sol-
ution is to use a Bayesian method developed by
Crawford and Garthwaite (2007), the Bayesian
Standardized Difference Test (BSDT). Among
the advantages of this latter test is that it provides
not just a hypothesis test, but also a point and
interval estimate of the abnormality of the differ-
ence between the case’s scores; see Crawford and
Garthwaite (2007) and Crawford et al. (2009)
for a discussion of its other advantages.

In summary: Methods are available to test for a
difference between a case’s scores on two tasks,
and, in the case of the BSDT, it is also possible
to obtain a point and interval estimates of the
abnormality of the case’s difference. The aim in
the present paper is to supplement these methods
by providing point and interval estimates of the
effect size for the difference between case and con-
trols (that is, we require an index that compares the
difference between tasks observed for the single
case with the differences observed in controls).
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Point and interval estimates of effect size
when testing for dissociations

The point estimate of the effect size for this
problem is easily obtained. The case’s scores on
the two tasks are converted to z scores based on
the control means and standard deviations for
the two tasks and their difference divided by the
standard deviation of the difference between two
nonindependent z scores; this produces a z score
for the difference. We denote this index as zDCC

(the “D” suffix in the subscript differentiates it
from the index presented earlier and identifies
that here we are concerned with the difference
between tasks). The formula for the index is

zDCC =
[(x− x)/SX ] − [(y − y)/SY ]

����������

2− 2rXY
√

=
zX − zY
����������

2− 2rXY
√ , 2

where rXY ¼ the correlation between the two
tasks in the control sample, and all other terms
are obviousQ8 . Note that the sign of zDCC is essentially
arbitrary as it depends on which task a researcher
designates as task X and which as task Y. For
example, if the case’s standardized score on task X
is higher than the standardized score on task Y,
then zDCC will be positive. Note also that the
mean difference between standardized scores in
controls is necessarily zero.

In passing, the statistic is used here as an effect
size index but it could also be used as an approxi-
mate hypothesis test for a difference between case
and controls when the control statistics have been
obtained from a large normative sample (Payne &
Jones, 1957). However, it is decidedly not suitable
for this latter purpose with the modest control
samples that typify single-case research. In
contrast to the hypothesis tests reviewed earlier
(i.e., the RSDT and BSDT), the Type I error
rate is very inflated: In simulations conducted by
Crawford and Garthwaite (2005)Q7 rates as high as
25% were observed for a nominal error rate of 5%.

Having specified a point estimate of effect size
for the difference between a case’s scores versus

those of controls it only remains to supplement
this with an interval estimate for this quantity.
This can be achieved using a Bayesian approach.
En route to obtaining an interval estimate for the
abnormality of a cases difference, the Bayesian
Monte Carlo method used in the BSDT repeat-
edly applies Equation 2 using the case’s scores
and random draws from the posterior distri-
bution for controls as inputs (we denote the
values obtained from these iterations as ẑDCC).
If, say, one million Monte Carlo iterations are
performed, then the 25,000th lowest and
25,000th highest values of ẑDCC provide the
lower and upper end points for a 95% credible
interval for the true effect size. The formal pro-
cedure for obtaining this interval is set out in
Appendix D.

To illustrate, take the scores of the single case
recorded in Table 2 and suppose that we are
interested in the difference between the case’s
performance on Tasks B and D. All the data
required to calculate the point estimate of the
effect size for this difference can be obtained
from Table 2 except for the correlation between
the two tasks in the control sample; let us
suppose that this correlation is .65. Dividing the
difference between the case’s z scores on these
two tasks, (23.329) 2 (20.188) ¼ 23.517, by
the standard deviation of the difference (0.837)
yields the point estimate of the effect size, zDCC

¼ 23.748.
It can be seen that the effect size for the case’s

difference is very large—that is, the case’s differ-
ence is well over three standard deviations from
the mean difference in controls (the mean differ-
ence in controls is of course zero). The 95% inter-
val for the effect size is (25.496, 22.244). Using
the Bayesian interpretation of this interval, we can
be 95% confident that the true effect size lies in
this interval. This interval is wide (not surprising
given that control sample size is modest) but, in
this example, it can be seen that even the upper
limit is very extreme. It is therefore clear that
the case shows a very large and striking dis-
sociation between her/his performance on the
two tasks.
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Computer programs that incorporate point
and interval estimates of effect sizes for the
case-controls design

The point estimates for the effect size indexes pre-
sented in the present paper could easily be calcu-
lated by hand. However, both the classical and
Bayesian methods for obtaining interval estimates
of effect sizes require a computer. We have there-
fore implemented the point and interval estimates
in a series of six computer programs. These pro-
grams are all upgraded versions of earlier programs
developed by two of the present authors and their
colleagues. In the interests of clarity and continuity
the upgraded programs retain the same names as
the originals but are given an “ES” (effect size)
suffix. Table 3 lists the upgraded programs and
provides a short description of their purpose.

As an example, the original program
Singlims.exe Q9provides a classical hypothesis test
when comparing a case to controls (i.e., it applies
Crawford & Howell’s, 1998, method) and also a
point and interval estimate of the abnormality of
the case’s test score (Crawford & Garthwaite,
2002 Q5). The upgraded version, Singlims_ES.exe,
provides the same results but supplements them
with a point estimate and 95% interval estimate
of the effect size for the difference between the
case and controls. To illustrate the general features
of these programs Figure 1 contains screen cap-
tures of the input form and output form for
Singlims_ES.exe. The input data (control mean,
control SD, control n, and score for the case) and
the results (hypothesis test results, i.e., t and its
associated one- and two-tailed probabilities;
point and interval estimates of the effect size for

Table 3. Computer programs incorporating point and interval estimates of effect sizes

Computer program Description

Singlims_ES.exe This program is an upgraded version of the program Singlims.exe (Crawford & Garthwaite, 2002 Q5). It
implements classical methods for comparison of a single case’s score to scores obtained in a control
sample. The interval estimate of the effect size for the difference between case and controls is obtained
using classical methods.

SingleBayes_ES.exe This program is an upgraded version of the program SingleBayes.exe (Crawford & Garthwaite, 2007). It
implements Bayesian methods for comparison of a single case’s score to scores obtained in a control
sample. The interval estimate of the effect size for the difference between case and controls is obtained
using Bayesian methods.

RSDT_ES.exe This program is an upgraded version of the program RSDT.exe (Crawford & Garthwaite, 2005 Q7). It
implements classical methods to test for a difference between a single case’s scores on two tasks by
comparing the difference against differences observed in a control sample. Note that, although the
hypothesis test is a classical test, the interval estimate of the effect size is obtained using Bayesian
methods.

DiffBayes_ES.exe This program is an upgraded version of the program DiffBayes.exe (Crawford & Garthwaite, 2007). It
implements Bayesian methods to test for a difference between a single case’s scores on two tasks by
comparing the difference against differences observed in a control sample. The interval estimate of the
effect size is obtained using Bayesian methods.

Dissocs_ES.exe This program is an upgraded version of Dissocs.exe (Crawford & Garthwaite, 2005 Q7). It tests whether a
single case meets criteria for a dissociation using classical statistical methods. The interval estimates of the
effect size for the difference between the case’s score and controls on each of the two tasks is obtained
using classical methods; the interval estimate of the effect size for the difference between tasks is obtained
using Bayesian methods. Note also that the upgraded version now offers the option of using a one-tailed
test when testing for a difference between a case’sX and Y scores (a two-tailed test remains as the default).

DissocsBayes_ES.exe This program is an upgraded version of Bayes_Dissocs.exe (Crawford & Garthwaite, 2007). It tests whether
a single case meets criteria for a dissociation using Bayesian statistical methods. All interval estimates of
effect size are obtained using Bayesian methods. Note also that the upgraded version now offers the
option of using a one-tailed test when testing for a difference between a case’sX and Y scores (a two-tailed
test remains as the default).
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Figure 1. Screen captures of input form (a) and results form (b) for the program Singlims_ES.exe: The data are those recorded in Table 2 Q11for
Task A.
12 COGNITIVE NEUROPSYCHOLOGY, 0000, 00 (0)

CRAWFORD, GARTHWAITE, PORTER

995

1000

1005

1010

1015

1020

1025

1030

1035

1040

1045

1050

1055

1060

1065

1070

1075

1080



the difference between case and controls, and
point and interval estimate of the abnormality of
the case’s score) are those given in Table 1Q10 for
Task A.Q11

Some of the original programs use classical stat-
istical methods (Singlims.exe, RSDT.exe, and
Dissocs.exeQ9 ); the remainder use Bayesian
methods. In the upgraded versions the methods
used to obtain the interval estimates are matched
(i.e., Bayesian hypothesis test with Bayesian inter-
val estimate, etc.). The exception to this occurs for
programs that test for a difference between a case’s
scores on two tasks. Classical statistical methods
cannot capture the uncertainties involved in this
problem, and so the Bayesian method is
implemented, regardless of whether the other
results reported are based on a classical or
Bayesian analysis (the output of these programs
clearly identifies the interval estimate as a
Bayesian estimate). In all programs that use the
Bayesian method one million iterations are per-
formed (hence there is a short delay before the
results are obtained). Compiled versions of the
modified programs, written for PCs (in the
Delphi programming language), can be down-
loaded individually, or as a single zip file, from
the following web page: www.psyc.abdn.ac.uk/~
psy086/dept/Single_Case_Effect_Sizes.htmQ12

Conclusion

It is to be hoped that the present paper will encou-
rage single-case researchers to report point and
interval estimates of effect size in their studies.
Such a move would be in keeping with the
general principle that standards of reporting in
single-case research should be as stringent as
those demanded in group-based research. The
computer programs written to accompany this
paper provide a convenient and reliable means of
obtaining the effect size statistics.
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APPENDIX A

Derivation of classical confidence intervals
on the effect size (zCC) for the difference
between a single-case’s score and a control
sample

The confidence intervals given in this paper are derived from a
noncentral t-distribution and are based on theory given in
Crawford and Garthwaite (2002)Q5 . The noncentral t-distri-
bution is defined by

Tv(d) = (Z + d)/
�����

Y /v
√

,

where Z has a normal distribution with a mean of zero and
variance 1, and Y is independent of Z with a chi-square distri-
bution on v degrees of freedom. d is referred to as the noncen-
trality parameter.

For a specified value x0, we require a 100 (1 2 a)% confi-
dence interval on the effect size index, zCC, based on sample
data x̄ and s2, where x̄ ≏ N (m, s2/n)Q13 and vs2/s2 ≏ x2(v).
(In the present case v ¼ n 2 1). Put

zCC =
(x0 − x)

s
. 3

Let z∗CC ¼ (x0 2 m)/s. Then zCC is an estimate of z ∗
CC.

That is, zCC computed using the sample mean and standard

deviation is an estimate of the z, here denoted z∗CC, that we
would obtain were the mean and standard deviation of the
control population known. Now

zCC
��

n
√

=
(m− x)

��

n
√

s
+
(x0 − m)

��

n
√

s

( )

/

���

s2

s2

√

,

so zCC
��

n
√

has a noncentral t-distribution with noncentrality
parameter d = z∗CC

��

n
√

and v degrees of freedom. The 100(a/
2)% and 100(1 2 a/2)% points of this distribution will
depend on the value of d. Let dL denote the value of d for
which the 100(1 2 a/2)% point is zCC

��

n
√

. (The value of d is
obtained by a search algorithm that finds the noncentrality par-
ameter of a noncentral t-distribution from a quantile, its associ-
ated probability, and a specified degree of freedom). Similarly,
let dU denote the value of d for which the 100(a/2)% point
is*** zCC

��

n
√

. Then (dL/
��

n
√

,dU/
��

n
√

) is a 100(1 2 a)% confi-
dence interval for z∗CC.

As a fully worked example of finding the 95% two-sided
confidence interval on the effect size for the difference
between a case and controls, take the first example given in
the text, where x̄ was 50, s was 10, n was 10, and x0 was 24.
Then zCC ¼ 22.600, and zCC

��

n
√

¼ 28.2219. Then, to
obtain the lower limit, we find the noncentrality parameter
for the noncentral t-distribution on v ¼ n 2 1 ¼ 9 df that
has 28.2219 as its 0.975th percentile point. The noncentrality
parameter is 212.3933, and dividing this by

��

n
√

gives
23.9191. To find the upper limit we find the noncentrality par-
ameter for the noncentral t-distribution on v ¼ n 2 1 ¼ 9 df
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that has 28.2219 as its 0.025th percentile point. The noncen-
trality parameter is 23.9632, and dividing this by

��

n
√

gives
21.2533. Thus, for this example, the 95% confidence interval
on the effect size for the difference between the case and con-
trols is from 23.9191 to 21.2533.

APPENDIX B

Obtaining a Bayesian credible interval on the
effect size (zCC) for the difference between a
single-case’s score and a control sample

The Bayesian credible interval on the effect size is obtained by a
simple extension of methods developed by Crawford and
Garthwaite (2007) for comparison of a case to controls. We
measure the value of x on a sample of n controls. Let x̄
denote the sample mean and s2 denote the sample variance.
We assume each x comes from a normal distribution with
unknown mean m and unknown variance u (u ¼ s2 in standard
notation). A single case has a value of x∗.

We start with a noninformative prior distribution.
Specifically, we suppose the prior conditional distribution of
m given u is m|u ≏ N(0,1), and the prior marginal distribution
of u is proportional to u21. This is the standard noninformative
prior distribution when data are from a normal distribution.
The posterior distribution is obtained by combining the prior
distribution with the data, and inferences and estimates are
based on the posterior distribution. The posterior distribution
states that the marginal distribution of (n 2 1)s2/u is a chi-
squared distribution on n 2 1 degrees of freedom, and, given
u, the conditional posterior distribution of m is a normal distri-
bution with mean x̄ and variance u/n (see, for example,
DeGroot & Schervish, 2001). The following iterative pro-
cedure is then followed to obtain an interval estimate of zCC:

1. Generate a random value from a chi-square distribution on
n 2 1 df. Let c denote the generated value. Put û ¼ (n 2
1)s2/c. Then û is the estimate of u for this iteration.

2. Generate an observation from a standard normal distri-
bution. Call this generated value z. Put

m̂ = x+ z

����

û/n

√

. 4

Then m̄ is the estimate of m for this iteration.
3. We have estimates of m and u. We calculate the value of zCC

conditional on these being the correct values of m and u.
That is, we put

ẑCC = (x∗ − m̂)/
��

û
√

. 5

4. We repeat Steps 1 to 3 a large number of times; in the
present case we will perform one million iterations. To
obtain a 95% Bayesian credible interval on the effect size,

we take the 25,000th smallest ẑCC and the 25,000th largest
ẑCC. Note that if a one-sided 95% credible limit is required
then (again assuming one million iterations have been per-
formed) we simply take the 50,000th smallest ẑCC to obtain
the lower limit, or the 50,000th largest ẑCC for the upper limit.

APPENDIX C

Relationship between interval estimate of the
effect size and significance test results in
single-case studies versus group studies

As noted in the text, the value 0 (zero) will very occasionally be
outside the 95% confidence interval for the effect size while the
t test is not significant (two-tailed). This situation cannot arise
in group studies. That is, an interval for Cohen’s d or Hedges’s g
that excludes zero cannot occur in combination with a non-
significant t test. To see this, suppose that mx and my are the
population means for the controls and the patients, respectively.
Then, as is well known, a 95% confidence interval for mx 2 my

will not contain the value 0 if and only if the hypothesis that mx

¼ my is rejected at the .05 significance level in favour of the
two-tailed alternative hypothesis. Scaling the end points of a
confidence interval by a nonzero quantity will not influence
whether the interval contains 0. Hence, a 95% confidence inter-
val for (mx 2 my) / s will have the same property.

In single-case studies, this equivalence between hypothesis
tests and confidence intervals does not hold. The reason is
that the hypothesis test and confidence interval relate to differ-
ent random variables. The hypothesis test concerns the question
“Could the cases score, x0, be the score of a control”, and in this
test both x0 and the mean of the controls, x̄, are treated as
random variables. In contrast, the confidence interval for (x0
2 mx) / s treats mx as a quantity that must be estimated (x̄ is
the estimate) but it treats x0 as a fixed, known quantity.

APPENDIX D

Obtaining a Bayesian credible interval on the
effect size (zDCC) for a single-case’s
difference between two tasks

We assume the two tasks (x and y) follow a bivariate normal dis-
tribution in the control population.We have a control sample of
n individuals from whom to estimate m, the vector of popu-
lation means, and S, the variance-covariance matrix of the
control population. The control sample data are combined
with a noninformative prior distribution (i.e., a prior distri-
bution that assumes no prior knowledge or data) to obtain
the posterior distribution of S. For this problem we use f
(m,S21)1|S| as the prior. The posterior distribution of S
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takes the form of a Wishart distribution, and the conditional
distribution of m given S follows a bivariate normal distri-
bution. The following procedure yields the statistics required:

1. Generate estimates ofm andS. The estimates ofS are obtained
by random sampling from an inverseWishart distribution, and
in turn these estimates (in combination with random draws
from a standard normal distribution) are then used to obtain
estimates of m; for procedural details see Crawford and
Garthwaite (2007). Let m̂i and Ŝi identify these estimates.

2. Convert the case’s scores (x∗ and y∗) on the two tasks to z
scores using the estimated means (m̂xi and m̂yi) and standard
deviations (ŝxi and ŝyi). Then divide the difference between
these z scores by the estimated standard deviation of their
difference, and denote the result as ẑDCCi

. That is, put

ẑDCCi =
[(x∗ − m̂xi )/ŝxi ] − [(y∗ − m̂yi )/ŝyi ]

����������

2− 2r̂xyi

√ . 6

Note that the denominator requires the estimated corre-
lation between tasks X and Y (r̂xyi). This is obtained from
the estimated variances and covariances—that is,

r̂xyi =
ŝxyi
�������

ŝ2
xi
ŝ2
yi

√ =
Ŝ12i
���������

Ŝ11i Ŝ22i

√ 7

3. Repeat Steps 1 to 2 a large number of times; for the present
problem we chose to perform one million iterations. To
obtain a 95% Bayesian credible interval on the effect size,
we take the 25,000th smallest ẑDCCi

and the 25,000th
largest ẑDCCi

. If a one-sided 95% credible limit is required
then (again assuming one million iterations have been per-
formed) we take the 50,000th smallest ẑDCCi

to obtain the
lower limit, or the 50,000th largest ẑDCCi

for the upper
limit.
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PCGN513967
Queries

John R. Crawford, Paul H. Garthwaite and Sara Porter

Dear Author
Please address all the numbered queries on this page which are clearly identified on the proof for your
convenience.

Thank you for your cooperation

Q1 Address OK as inserted?

Q2 For internet sources, full ref. needed in ref. list, including at a minimum the doi, date of publi-
cation or update, or date of retrieval (APA 5: “ElectronicMedia”, pp. 268–271; see also Examples
71–95, pp. 271–281, and Section 4.15, p. 231).

Q3 Wilkinson and The APA Task Force on Statistical Inference, 1999. Not in refs. Please provide
full reference.

Q4 Parker (2005) changed to Parker et al. (2005), OK?

Q5 Crawford and Garthwaite (2002). Not in refs. Please provide full reference.

Q6 Which statistics are meant by "latter statistics"?

Q7 Crawford and Garthwaite (2005). Is this 2005a or 2005b?

Q8 Replace "all other terms are obvious" with "all other terms are as before" plus an explanation of
any terms not defined previously?

Q9 Entry needed in reference list for specialized software or computer programs with limited distri-
bution (APA 5: 4.16, p. 280).

Q10 Should reference to Table 1 be to Table 2 here?

Q11 Reference to Table 1 changed to Table 2 here, OK?

Q12 For internet sources, full ref. needed in ref. list.

Q13 Symbol corrupted here? - Please insert correct symbol.


