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Research Article

Point and interval forecasts of age-specific life expectancies:
A model averaging approach

Han Lin Shang1

Abstract

BACKGROUND
Any improvement in the forecast accuracy of life expectancy would be beneficial for
policy decision regarding the allocation of current and future resources. In this paper, I
revisit some methods for forecasting age-specific life expectancies.

OBJECTIVE
This paper proposes a model averaging approach to produce accurate point forecasts of
age-specific life expectancies.

METHODS
Illustrated by data from fourteen developed countries, we compare point and interval fore-
casts among ten principal component methods, two random walk methods, and two uni-
variate time-series methods.

RESULTS
Based on averaged one-step-ahead and ten-step-ahead forecast errors, random walk with
drift and Lee-Miller methods are the two most accurate methods for producing point fore-
casts. By combining their forecasts, point forecast accuracy is improved. As measured by
averaged coverage probability deviance, the Hyndman-Ullah methods generally provide
more accurate interval forecasts than the Lee-Carter methods. However, the Hyndman-
Ullah methods produce wider half-widths of prediction interval than the Lee-Carter meth-
ods.

CONCLUSIONS
Model averaging approach should be considered to produce more accurate point forecasts.

COMMENTS
This study is a sequel to another Demographic Research paper by Shang, Booth and
Hyndman (2011), in which the authors compared the principal component methods for
forecasting age-specific mortality rates and life expectancy at birth.

1 Department of Econometrics & Business Statistics, Monash University, Caulfield East, Melbourne, Victoria
3145, Australia. Tel: 61-3-99034346; Fax: 61-3-99032007. E-mail: HanLin.Shang@monash.edu.au.
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1. Introduction

In many developed countries, concerns of population aging are concentrated on the sus-
tainability of pensions, health and age care systems. These concerns have resulted in
a surge of interest among government policy makers and planners in accurately model-
ing and forecasting age-specific mortality rates and age-specific life expectancies. Any
improvement in the forecast accuracy of life expectancy would be beneficial for policy
decision regarding the allocation of current and future resources. In particular, future life
expectancy is of great interest to the health care, age care, life insurance, superannua-
tion and pensions industries. In these industries, the viability of financial arrangements
depends on knowing the likelihood that clients will live to older ages.

In the demographic literature, a number of parametric and nonparametric methods
have been put forward for forecasting age-specific mortality rates and life expectancy at
birth (see for example, Preston, Heuveline, and Guillot 2001; Rowland 2003; Alho and
Spencer 2005; Hyndman and Ullah 2007; Torri and Vaupel 2012). In a recent paper
by Shang, Booth, and Hyndman (2011), they compared the point and interval forecast
accuracy for forecasting age-specific mortality rates and life expectancy at birth, among
ten principal component approaches. Differing from Shang, Booth, and Hyndman (2011),
this paper serves two purposes. First, we compare the point and interval forecast accuracy
of age-specific life expectancies, instead of the life expectancy at birth. We argue that the
prediction of life expectancy at birth is of limited use in some situations. For instance,
given a person aged 60, the pension industry would like to know his/her remaining life
expectancy. Such information can be adequately supplied by forecasting age-specific
life expectancies. Second, we put forward the idea of model averaging to improve point
forecast accuracy. We hope that this paper will motivate the readers to consider the model
averaging approach in the context of demographic forecasting.

The structure of this article is given as follows. In Section 2., we briefly revisit the ten
principal component approaches for forecasting age-specific mortality rates (see Shang,
Booth, and Hyndman 2011, for more details). Of these methods, Lee and Carter (1992);
Lee and Miller (2001) and Booth, Maindonald, and Smith (2002) used principal compo-
nent analysis to extract a single time-varying index of the level of mortality rates, from
which the forecasts are obtained by random walk with drift. Despite the simplicity and
wide applicability, the Lee-Carter method and its variants consider only the first principal
component, which may not be adequate to capture the underlying patterns of data. To
address this problem, Bozik and Bell (1987), Bell and Monsell (1991) and Bell (1997)
put forward a principal component method that utilized second or higher order of prin-
cipal components. As emphasized by Bell (1997), it is desirable to use modeling and
forecasting methods that capture a smooth shape over age for producing consistent fore-
casts and improving the accuracy of short-term forecasts. To solve this issue, Hyndman
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and Ullah (2007) combined the ideas of nonparametric penalized regression spline and
functional principal component analysis using second or higher order functional principal
components.

In Section 3., we introduce a model averaging approach by combining forecasts from
different models. We explore four ways of combining forecasts:

(1) assigning weights equally to all 14 models investigated in this paper;
(2) assigning weights to all 14 models based on their forecast accuracy in the validation

data set;
(3) assigning weights to the best two models based on their forecast accuracy in the

validation data set; and
(4) assigning weights using the notion of Bayesian model averaging (BMA), with

Akaike’s (1974) weights.

Illustrated by the fourteen developed countries’ data sets described in Section 4., we cal-
culate the point and interval forecasts of ten principal component methods, two naïve
random walk methods, and two univariate time-series models for forecasting age-specific
life expectancies. In Section 5., the criteria used to measure point and interval forecast
accuracy are discussed. We evaluate and compare the point and interval forecast accu-
racy among fourteen methods for forecasting age-specific life expectancies in Sections 6.
and 7., respectively. In Section 8., we demonstrate the improvement of point forecast
accuracy by combining forecasts with different weights. Conclusions are presented in
Section 9., along with some thoughts on how the methods developed here might be fur-
ther extended.

2. Revisiting the ten principal component approaches

The next subsections specify the principal component models and notations, and describe
the calculations of their point and interval forecasts of mortality rates. To start, let mx,t

be the log transformation of the mortality rate at age x in year t. For forecasting mortal-
ity rates, we are interested in obtaining estimates of age-specific mortality rates for one
or more years of t > n (where n is the last observed year) as well as their associated
measures of uncertainty.

2.1 Lee-Carter (LC) method

The LC model is given by

mx,t = ax + bxkt + ϵx,t, t = 1, 2, . . . , n, x = 0, 1, . . . , p, (1)

http://www.demographic-research.org 595
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where
1. ax is the age pattern of the log mortality rates averaged across years;
2. bx is the first principal component capturing relative change in the log mortality

rate at each age x, and
∑p

x=0 bx = 1;
3. kt is the first set of principal component scores measuring general level of the log

mortality rate at year t;
4. ϵx,t is the model residual at age x and year t, and

∑n
t=1 kt = 0.

The LC model adjusts kt by refitting to the total number of deaths. The adjusted kt are
then extrapolated by a random walk with drift method, from which point forecasts are
obtained by (1) with the fixed ax and bx.

Two sources of uncertainty should be considered: errors in the parameter estimation
of the LC model and forecast errors in the forecast principal component scores. Because
of the orthogonality2 between the first principal component and the error term in (1), the
overall forecast variance can be approximated by the sum of the two variances. Condi-
tioning on the past data points I and the first principal component bx, we obtained the
overall forecast variance of mx,n+h,

var [mx,n+h|I, bx] ≈ b2xun+h|n + vx, (2)

where b2x is the variance of the first principal component, calculated as the square of
the bx in (1); un+h|n = var(kn+h|k1, . . . , kn) can be obtained from the time-series
model; and the model residual variance vx is estimated by averaging the residual squares
{ϵ2x,1, . . . , ϵ2x,n} for each x in (1).

There are two other methods that are closely related to the LC method. The first one
is the LC method without adjustment of kt, labeled as LCnone. The second one is the
Tuljapurkar, Li, and Boe’s (2000) method, labeled as TLB. The TLB method is the LC
method without adjustment, and it also restricts the fitting period to 1950 onward.

2.2 Lee-Miller (LM) method

The LM method adjusts kt so as to obtain the best forecasts of life expectancy at birth. It
differs from the LC method in three ways:

1. The jump-off rates are the actual rates in the jump-off year instead of the fitted rates
for all other methods studied in this paper;

2. The fitting period begins in 1950;
3. The adjustment of kt involves fitting life expectancy at birth in year t.

2 Because the error term in (1) contains the second and higher order principal components, they are orthogonal
to (or vary independently of) the first principal component by construction.
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2.3 Booth-Maindonald-Smith (BMS) method

As a variant of the LC method, the BMS method differs from the LC method in three
ways:

1. The fitting period is determined by a statistical “goodness of fit" criterion, under
the assumption that kt is linear;

2. The adjustment of kt involves fitting to the age distribution of deaths rather than to
the total number of deaths;

3. The jump-off rates are the fitting rates under the fitting regime.

2.4 Hyndman-Ullah (HU) method

A possible weakness of the LC method and its variants is that they attempt to capture the
patterns of age-specific mortality rates using only the first principal component and its
associated scores. In addition, they do not implement a smoothing technique to smooth
the mortality rates associated with old ages. To address this problem, Hyndman and
Ullah (2007) proposed a functional data model that utilizes second and higher order ones
to capture additional variation in mortality rates.

The method proposed by Hyndman and Ullah (2007) combines the nonparametric pe-
nalized regression spline of Ramsay (1988) with functional principal component analysis
of Ramsay and Dalzell (1991) for forecasting mortality rates. The HU method differs
from the LC method in three ways:

1. The log mortality rates are first smoothed using a penalized regression spline with
a partial monotonic constraint (see Ramsay 1988, for detail). We assume that there
is an underlying continuous and smooth function ft(x) that is observed with errors
at discrete ages. Expressed mathematically,

mt(xi) = ft(xi) + σt(xi)ϵt,i, i = 1, . . . , p, t = 1, . . . , n, (3)

where mt(xi) represents the log transformation of the observed mortality rate for
age xi in year t, σt(xi) allows the noise component to vary with xi in year t, and
ϵt,i is independent and identically distributed standard random variable.

2. More than one principal component is used. By functional principal component
analysis, a set of continuous functions is decomposed into functional principal com-
ponents and their associated scores. That is,

ft(x) = a(x) +
J∑

j=1

bj(x)kt,j + et(x), t = 1, . . . , n, (4)

http://www.demographic-research.org 597
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where
(1) a(x) is the mean function estimated by empirical mean â(x) = 1

n

∑n
t=1 ft(x);

(2) {b1(x), . . . , bJ (x)} represents a set of the first J functional principal compo-
nents;

(3) {kt,1, . . . , kt,J} represents a set of uncorrelated principal component scores;
(4) et(x) is the residual function with mean zero and variance v(x) estimated by

averaging {e21(x), . . . , e2n(x)};
(5) J < n is the optimal number of functional principal components used. Fol-

lowing Hyndman and Booth (2008) and Shang, Booth, and Hyndman (2011),
we chose J = 6 which should be larger than any of the components required.

3. A broader range of univariate time-series models may be used to forecast the princi-
pal component scores. By conditioning on the past smooth curves I =
{m1(x), . . . ,mn(x)} and the set of functional principal components B =
{b1(x), . . . , bJ (x)}, the h-step-ahead point forecast of mn+h(x) can be obtained
by

m̂n+h|n(x) = E[mn+h(x)|I,B] = â(x) +
J∑

j=1

bj(x)k̂n+h|n,j ,

where k̂n+h|n,j denotes the h-step-ahead forecast of kn+h,j using a univariate time-
series model, such as the ARIMA model (Box, Jenkins, and Reinsel 2008) used in
this paper. The optimal order of an ARIMA model is automatically selected using
an algorithm of Hyndman and Khandakar (2008), which minimizes the Akaike
information criterion (Akaike 1974) by default.

The forecast variance follows from (3) and (4). Due to the orthogonality3 between the
functional principal components and the error term, the overall forecast variance can be
approximated by the sum of four individual variances. Conditioning on the past smooth
curves I and the set of fixed principal components B = {b1(x), . . . , bJ(x)}, we obtained
the overall forecast variance of mn+h(x),

var[mn+h(x)|I,B] ≈ σ̂2
a(x) +

J∑
j=1

b2j (x)un+h|n,j + v(x) + σ2
n+h(x), (5)

where
3 Since the HU method first smooths the data for each year separately, the smoothing error in (3) does not corre-

late with the modeling error. Because the error term in (4) contains J + 1 and higher order functional principal
components, they are orthogonal to (or vary independently of) the first J functional principal components by
construction.
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(1) σ̂2
a(x) is the variance of the smooth estimate â(x) that can be obtained from the

smoothing method.
(2) b2j (x) is the variance of the jth principal component;

un+h|n,j = var(kn+h,j |k1,j , . . . , kn,j) can be obtained from the time-series model.
(3) the model residual variance v(x) is estimated by averaging {e21(x), . . . , e2n(x)} for

each x;
(4) the observational error variance σ2

n+h(x) is estimated by averaging {σ̂2
1(x), . . . , σ̂

2
n(x)}

for each x (Hyndman and Ullah 2007).

By assuming that each of the four sources of uncertainty have a normal distribution and
that they are uncorrelated, the 100(1−α)% prediction interval of mn+h(x) is constructed
as m̂n+h|n(x) ± zα

√
var[mn+h(x)|I,B], where zα is the (1 − α/2) standard normal

quantile.

2.5 Robust Hyndman-Ullah (HUrob) method

Because the presence of outliers can seriously affect the performance of modeling and
forecasting, it is important to eliminate the effect of outliers where possible. The HUrob
method calculates the integrated squared error for each year,

∫ xp

x1

(
ft(x)− a(x)−

J∑
j=1

bj(x)kt,j

)2

dx,

as this provides a measure of estimation accuracy for the functional principal compo-
nent approximation of the functional data. Note that the continuous functional curves are
bounded between x1 and xp. Outliers are those years that have a larger integrated squared
error than the critical value calculated from a χ2 distribution (see Hyndman and Ullah
2007, for detail). By assigning zero weight to outliers, we can apply the HU method to
model and forecast mortality rates, from which forecasts of age-specific life expectancies
are calculated without influence of possible outliers.

2.6 Weighted Hyndman-Ullah (HUw) method

The HUw method uses geometrically decaying weights in the estimation of a(x) and
bj(x), thus allowing the estimation of these quantities to be based more on recent data than
on data from the distant past (Hyndman and Shang 2009; Shang, Booth, and Hyndman
2011).

The HUw method differs from the HU method in three ways:

http://www.demographic-research.org 599
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1. The weighted functional mean a∗(x) is estimated by

â∗(x) =

n∑
t=1

wtft(x),

n∑
t=1

wt = 1,

where {wt = κ(1− κ)n−t, t = 1, . . . , n} denotes a set of weights, and 0 < κ < 1
denotes a geometrically decaying weight parameter. Hyndman and Shang (2009)
describe how to estimate the optimal value of κ empirically from data. In short,
the optimal value of κ ∈ (0, 1) is chosen by minimizing an overall forecast error
measure within the validation data set among a set of possible candidates. In this
paper, we utilize a one-dimensional optimization algorithm of Nelder and Mead
(1965) to minimize the objective function and to find its corresponding optimal
(exact) value of κ.

2. By functional principal component analysis, a set of weighted functions {wt[ft(x)−
â∗(x)]; t = 1, . . . , n} is decomposed into weighted functional principal compo-
nents and their uncorrelated principal component scores. That is,

ft(x) = â∗(x) +
J∑

j=1

b∗j (x)kt,j + et(x),

where {b∗1(x), . . . , b∗J(x)} is a set of weighted functional principal components.
3. Conditioning on the past smooth curves I = {m1(x), . . . ,mn(x)} and the set of

weighted functional principal components B∗ = {b∗1(x), . . . , b∗J(x)}, the h-step-
ahead forecast of mn+h(x) is obtained by

m̂n+h|n(x) = E[mn+h(x)|I,B] = â∗(x) +
J∑

j=1

b∗j (x)kn+h|n,j .

From the variance expression given by (5), the 100(1− α)% prediction interval of future
mortality rates at year n+ h is constructed parametrically.

2.7 Random walk with drift (RWD) method

While Sections 2.1-2.6 introduce various principal component methods to forecast age-
specific mortality rates and calculate survival probabilities, from which we can derive
remaining life expectancy by age. In this subsection, we revisit two naïve random walk
methods that are able to forecast the life expectancy for each age.

Given findings of linear life expectancy (White 2002; Oeppen and Vaupel 2002) and
debate about its continuation (Bengtsson 2003; Lee 2003), it is pertinent to compare the
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point forecast accuracy of the principal component methods with linear extrapolation of
life expectancy (see Alho and Spencer 2005, pp.274-276 for an introduction). The linear
extrapolation of age-specific life expectancies was achieved by applying the random walk
with drift (RWD) model for each age:

yx,t+1 = d+ yx,t + ex,t+1, t = 1, 2, . . . , n− 1, x = 0, 1, . . . , p. (6)

where yx,t represents the life expectancy at age x in year t. The h-step-ahead point and
interval forecasts are given by

ŷx,n+h|n = E[yx,n+h|yx,1, . . . , yx,n] = dh+ yx,n,

var(ŷx,n+h|n) = var[yx,n+h|yx,1, . . . , yxn ] = var(yx,n) + var(ex,n+h). (7)

Based on (6) to (7), the random walk without drift, labeled as RW, can be obtained simply
by omitting the drift term. Computationally, the forecasts of RW and RWD methods
are obtained by the rwf function in the forecast package (Hyndman 2012b) in R (R
Development Core Team 2012).

2.8 Univariate time-series method

One popular approach to forecasting age-specific life expectancies involves the use of
univariate time-series models. In this approach, we select a particular time-series model
for the series to be forecasted, and use the fitted model to produce point and interval
forecasts for each age. The ARIMA model discussed by Box, Jenkins, and Reinsel (2008)
comprises one popular class of models (see also its equivalent exponential smoothing
(ETS) state-space model of Hyndman, Koehler, Ord, and Snyder 2008). The ARIMA
model has been applied to forecast life expectancy and its related problems by Torri and
Vaupel (2012) for example.

The ARIMA model is designed to handle stationary and non-stationary stochastic
processes. In general notation, we have an ARIMA(p, d, q) model, where p is the order
of the autoregressive component, d indicates the order of integration, that is, how many
times the series must be differenced in order to achieve the stationarity, and q is the order
of the moving average component. For simplicity, we consider a stationary time series.
The ARMA(p, q) model for a univariate time series (yx,1, yx,2, . . . , yx,n) is given by

yx,t − µ =

p∑
i=1

ϕi(yx,t−i − µ)︸ ︷︷ ︸
AR(p)

+ϵx,t +

q∑
j=1

θjϵx,t−j︸ ︷︷ ︸
MA(q)

, max(p, q) + 1 ≤ t ≤ n
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where the constant parameter µ is the drift term, representing the average change in the se-
ries over time; ϕi are the parameters of the autoregressive component, and likewise θj are
the parameters of the moving average component, and ϵx,t is a sequence of independent
and identically distributed random variables with mean zero and variance σ2

w.
Following the early work by Box, Jenkins, and Reinsel (2008, p.218), the one-step-

ahead point forecasts and overall variance are given by

ŷx,n+1|n = E[yx,n+1|yx,1, yx,2, . . . , yx,n] = µ̂+

p∑
i=1

ϕ̂i (yx,n+1−i − µ̂) , (8)

var[yx,n+1|yx,1, yx,2, . . . , yx,n] = σ̂2
w

(
1 + θ̂21 + θ̂22 + · · ·+ θ̂2q

)
, (9)

from the overall variance, a 100(1−α)% prediction interval of yx,n+1 can be constructed
parametrically for each age. The parameters are commonly estimated by the maximum
likelihood criterion. For the h-step-ahead forecasts, (8) and (9) can be applied iteratively.

A difficulty associated with the use of ARIMA model is the order selection. Hynd-
man and Khandakar (2008) developed an algorithm, named auto.arima in the forecast
package in R, for automatically selecting the optimal orders based on a statistical criterion,
such as Akaike’s (1974) information criterion.

3. Model averaging approach

3.1 Literature review

Suppose a decision maker is forecasting the values of some variables, such as mn+h|n(x).
He is given L different forecasts of the values m̂n+h|n(x), namely m̂

(1)
n+h|n(x), . . . ,

m̂
(L)
n+h|n(x). Because these L different forecasts may reflect different assumptions, model

structures and degree of model complexity, he does not want to simply choose the best
one and discard the rest. Instead, he would like to combine these forecasts to get a better
forecast accuracy.

This is the problem of model averaging, which has been studied intensively in statis-
tics. The idea dates back to the work by Bates and Granger (1969) and Dickinson (1975),
which stimulated a flurry of articles about combining predictions from different forecast-
ing methods. See Clemen (1989) for a detailed review and annotated bibliography. In
the seminal paper by Bates and Granger (1969), two separate sets of forecasts of airline
passenger data have been combined to form a combined set of forecasts. They found
that the combined forecasts can yield lower mean square error than either of the two
original forecasts. Past errors of each of the two forecasts are used to determine the opti-
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mal weights to attach to these two original forecasts in forming the combined forecasts4.
The review paper by Clemen (1989) collected a number of contributions on the idea of
combining forecasts in the fields of forecasting, psychology, statistics, and management
science. While Bates and Granger (1969) and Dickinson (1975) discussed a way of se-
lecting optimal weights from a frequentist viewpoint, Bunn (1975) and Bordley (1982)
provided an alternative Bayesian derivation of optimal weights, and showed the similarity
with the frequentist viewpoint. An excellent review article on BMA is given by Hoeting
et al. (1999).

By using the model averaging approach, one can obtain a better accuracy than any
method alone, when the forecasts combined use different methods that capture different
information, different specifications or different assumptions. Because the underlying
data generating process is often unknown, combined forecasts are more robust toward
model mis-specification and are more likely to produce accurate point forecasts. In the
demographic literature, there has been little interest in combining forecasts from different
models. Nonetheless, some notable exceptions include Smith and Shahidullah (1995);
Ahlburg (1998, 2001) and Sanderson (1998), whose pioneering work, particularly in the
context of census tract forecast, have done much to awaken others, including the present
author. The contribution of this article is to apply the notion of model averaging to the
problem of forecasting age-specific life expectancies.

In the work by Smith and Shahidullah (1995), it was found that a forecast of cen-
sus tract population based on simple average of forecasts from four extrapolation tech-
niques5 was as accurate as the single most accurate method. By combining forecasts
from two methods that were found to predict accurately for particular types of tracts, they
asserted that using knowledge of historical forecast performance can further reduce fore-
cast error when combined. Ahlburg (1998) also demonstrated that combined forecasts of
births from an economic demographic model and from the U.S. Bureau of census’ cohort-
component model produced more accurate forecast than the official cohort-component
forecasts alone, indeed with a 15% decrease in the mean absolute percentage error. Fur-
thermore, Sanderson (1998) stated that combining casual economic-demographic models
for developing countries produced better forecasts than demographic cohort-component
forecasts. With a 21% reduction in the mean absolute percentage error, the combined
forecasts produced better results than does reliance on only one forecast method.

4 See also Section 3.2.1.
5 linear, exponential, shift-share and share-of-growth
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3.2 Weight selection

3.2.1 A frequentist viewpoint

There are two common questions raised from the model averaging approach, which may
be of interest to demographers and statisticians. The first one is: how many models
should be included in the combination? From the frequentist viewpoint, Schmittlein, Kim,
and Morrison (1990) used the Akaike’s (1974) information criterion to decide. From the
Bayesian viewpoint, Madigan and Raftery (1994) suggested that if a model predicts the
data far less well than the model which provides the best predictions, then it should be
omitted from model combination. In what follows, we consider two situations, namely
combining two best approaches and combining all approaches. The optimal weights are
selected by their past forecast errors in the validation data set.

Two best models: Following the work of Bates and Granger (1969), our initial model
averaging approach combines forecasts from two models given as follows:

ŷn+h|n,combo = λŷn+h|n,M1
+ (1− λ)ŷn+h|n,M2

,

where ŷn+h|n,M1
and ŷn+h|n,M2

represent the point forecasts obtained from two models,
labeled as M1 and M2 respectively; ŷn+h|n,combo represents the combined forecasts; and
0 < λ < 1 is the weight parameter that needs to be estimated in light of data. As λ → 0,
ŷn+h|n,combo → ŷn+h|n,M2

, as λ → 1, ŷn+h|n,combo → ŷn+h|n,M1
.

Libby and Blashfield (1978) reported that the majority of the improvement in accuracy
was achieved with the combination of the top two forecasts. By combining forecasts
from two methods, we have only one parameter λ to be determined from data, and this
simplifies the optimization procedure in determining the value of λ.

Between the two best approaches, we calculate the point forecast accuracy as mea-
sured by the MAFEs in the validation set, and assign the weights to be the inverse of their
MAFEs (that is 1

MAFE ). To avoid the possible model identification, the sum of the weights

must be equal to 1, therefore, we normalize the weights
(

each weight
sum of weights

)
.

Conceptually, the method that performs better in the validation set receives a higher
weight in the combined forecasts. Note that one can also iteratively update the optimal
weights successively by taking into account the most recent data. Here, we implicitly
assume that future age-specific life expectancies do not change significantly over years,
which is a reasonable assumption (see also White 2002; Oeppen and Vaupel 2002).

All models: As suggested by a referee, combining only two models is quite restrictive.
Therefore, we also combine the point forecasts from the 14 models investigated. The
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model averaging approach combines forecasts from 14 models given as follows:

ŷn+h|n,combo =

η1ŷn+h|n,M1
+ η2ŷn+h|n,M2

+ η3ŷn+h|n,M3
+ η4ŷn+h|n,M4

+ η5ŷn+h|n,M5

+ η6ŷn+h|n,M6
+ η7ŷn+h|n,M7

+ η8ŷn+h|n,M8
+ η9ŷn+h|n,M9

+ η10ŷn+h|n,M10

+ η11ŷn+h|n,M11
+ η12ŷn+h|n,M12

+ η13ŷn+h|n,M13
+ (1− η1 − η2 − η3 − η4

− η5 − η6 − η7 − η8 − η9 − η10 − η11 − η12 − η13)ŷn+h|n,M14
,

where ŷn+h|n,M1
, ŷn+h|n,M2

, . . . , ŷn+h|n,M14
represent the point forecasts obtained from

the 14 models, labeled as M1,M2, . . . ,M14 respectively, (η1, η2, . . . , η13) represents a
set of weights.

For all approaches, we calculate the point forecast accuracy as measured by the MAFEs
in the validation set, and assign the weights to be the inverse of their MAFEs (that is

1
MAFE ). To avoid the possible model identification, the sum of the weights must be equal

to 1, therefore, we normalize the weights
(

each weight
sum of weights

)
.

3.2.2 A Bayesian viewpoint

The second question is: what is the best way of selecting optimal weights? While Sec-
tion 3.2.1 presents a frequentist way of selecting optimal weights, in this subsection we
discuss a Bayesian means of determining optimal weights. From the Bayesian viewpoint,
BMA is another solution to the model uncertainty problem (see, for example, Wright
2008; Geweke and Amisano 2012). Let M1,M2, . . . ,MK be a set of K possible models
and one of the models is the true model. Let θ1, θ2, . . . , θK be the vector of parameters
associated with each model. Denote ∆ as the quantity of interest, such as a combined
forecast of age-specific life expectancies, then its posterior distribution given data D is

Pr(∆|D) =

K∑
k=1

Pr(∆|Mk, D)Pr(Mk|D),

=

K∑
k=1

Pr(∆|Mk, D)
Pr(D|Mk)∑K

l=1 Pr(D|Ml)Pr(Ml)︸ ︷︷ ︸
weights

, (10)

where Pr(D|Mk) =
∫

Pr(D|θk,Mk)Pr(θk|Mk)dθk. Pr(θk|Mk) is the prior density of θk
under model Mk, Pr(D|θk,Mk) is the likelihood, Pr(Mk) is the prior probability that Mk

is the true model. Equation (10) is an average of the posterior distributions under each
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of the models considered, weighted by their posterior model probability (Hoeting et al.
1999).

Given diffuse priors and equal model prior probabilities, the BMA weights are approx-
imately

wk =
exp

(
− 1

2BICk

)∑K
k=1 exp

(
−1

2BICk

) ,
where

BICk = 2Lk + log(n)λk,

where Lk is the negative log-likelihood, λk is the number of parameters in model k, BICk

is the Bayesian information criterion for model k (see also Burnham and Anderson 2004).
The BMA estimator has a nice interpretation from a Bayesian viewpoint. The down-

side is that the “true" model must be in the set of K possible models. To remedy this
situation, Burnham and Anderson (2002) suggested replacing BIC with AIC, and we fol-
low this idea in this paper. The weights are given by

wk =
exp(−1

2AICk)∑K
k=1 exp(−

1
2AICk)

, (11)

where

AICk = 2Lk + 2λk,

= n log

(
RSSk

n

)
+ 2λk,

where n is the sample size, and RSS is the residual sum of squares for each model (Burn-
ham and Anderson 2004).

The individual AIC values are not interpretable, as they contain arbitrary constants
and are much affected by sample size. Here, it is imperative to rescale AIC to

AICdiff,k = AICk − AICmin, (12)

where AICmin is the minimum of the K different AICk values. Plugging (12) into (11),
we obtain the so-called Akaike’s weight (Burnham and Anderson 2004).
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4. Data set

The data sets used in this study were taken from the Human Mortality Database (2012).
Note that in the Human Mortality Database (2012), a full-fledged life table is calculated
systematically and age-specific life expectancies are presented in the last column for each
gender and country. Fourteen developed countries were selected, and thus 28 sex-specific
populations were obtained for all analyses. The selected fourteen countries all have reli-
able data series commencing before 1950, which is the starting year of the fitting period
for the LM method. The selected countries are presented in Table 1, along with their
initial fitting period.

Table 1: Commencing years of the initial fitting period for different methods
and countries

Country LC LCnone TLB LM BMS[f] BMS[m] RWD RW

Australia 1921 1921 1950 1950 1962 1958 1921 1921
Canada 1921 1921 1950 1950 1954 1954 1921 1921
Denmark 1835 1835 1950 1950 1948 1948 1835 1835
England 1841 1841 1950 1950 1952 1953 1841 1841
Finland 1878 1878 1950 1950 1962 1956 1878 1878
France 1816 1816 1950 1950 1946 1946 1816 1816
Iceland 1838 1838 1950 1950 1946 1947 1838 1838
Italy 1872 1872 1950 1950 1962 1958 1872 1872
Netherlands 1850 1850 1950 1950 1947 1947 1850 1850
Norway 1846 1846 1950 1950 1948 1948 1846 1846
Scotland 1855 1855 1950 1950 1960 1970 1855 1855
Spain 1908 1908 1950 1950 1952 1953 1908 1908
Sweden 1751 1751 1950 1950 1932 1953 1751 1751
Switzerland 1876 1876 1950 1950 1968 1948 1876 1876
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Table 1: (Continued)

Country HU HU50 HUrob HUrob50 HUw ETS ARIMA

Australia 1921 1950 1921 1950 1921 1921 1921
Canada 1921 1950 1921 1950 1921 1921 1921
Denmark 1835 1950 1835 1950 1835 1835 1835
England 1841 1950 1841 1950 1841 1841 1841
Finland 1878 1950 1878 1950 1878 1878 1878
France 1816 1950 1816 1950 1816 1816 1816
Iceland 1838 1950 1838 1950 1838 1838 1838
Italy 1872 1950 1872 1950 1872 1872 1872
Netherlands 1850 1950 1850 1950 1850 1850 1850
Norway 1846 1950 1846 1950 1846 1846 1846
Scotland 1855 1950 1855 1950 1855 1855 1855
Spain 1908 1950 1908 1950 1908 1908 1908
Sweden 1751 1950 1751 1950 1751 1751 1751
Switzerland 1876 1950 1876 1950 1876 1876 1876

Notes: Although the RW model depends only on the previous year, the variance of the RW model requires all data.

4.1 Training, validation, and forecasting data sets

We divide each data set into a fitting period (1 : n−20) and a forecasting period (n−19 :
n), where n denotes the last year of observations in a data set. The commencing year of
the fitting period differs by method, as seen in Table 1. We implement a rolling origin
regime as follows: the forecasting period is set to be the last 20 years, all ending in 2007,
while the remaining data are in the initial fitting period. Using the data in the fitting
period, we compute the one-step-ahead and ten-step-ahead point and interval forecasts,
and determine the forecast accuracy by comparing the forecasts with the holdout data in
the forecasting period. Then, we increase the fitting period by one year, and compute the
one-step-ahead and ten-step-ahead point and interval forecasts, and calculate the point
and interval forecast accuracy. This process is repeated until the forecasts reach the last
year of available data.

Within the fitting period, we further split the data into a training period (1 : n − 40)
and a validation period (n − 39 : n − 20). Using the data in the training period, we
implement the rolling origin regime again to compute the one-step-ahead and ten-step-
ahead point and interval forecasts, and calculate the forecast errors for all of the methods
considered.
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5. Measures of point and interval forecast accuracy

There exist a number of criteria for measuring point and interval forecast accuracy. In
Sections 5.1 and 5.2, we present two criteria each for measuring the point and interval
forecast accuracy.

5.1 Mean absolute forecast error and mean forecast error

By using the demographic package (Hyndman 2012a) in R, we calculate the point and
interval forecasts for each method, and evaluate and compare their forecast accuracy. To
measure point forecast accuracy and bias, we utilize the mean absolute forecast error and
mean forecast error, labeled as MAFE and MFE. These two criteria have previously been
implemented in Shang, Booth, and Hyndman (2011) and Booth et al. (2006), although one
can also use mean absolute percentage forecast error and mean algebraic percentage fore-
cast error to measure the accuracy and bias, respectively. The MAFE criterion measures
how close the forecasts come to the actual values of the variable being forecast, regardless
of the sign of error. In contrast, the MFE is the average of errors, (actual - forecast), and
is a measure of bias. These measures can be expressed mathematically as

MAFE =
1

(p+ 1)× q

q∑
j=1

p∑
x=0

∣∣yx,j − ŷx,j|j−h

∣∣ , j = (n− 20 + h), . . . , n

MFE =
1

(p+ 1)× q

q∑
j=1

p∑
x=0

(
yx,j − ŷx,j|j−h

)
,

where q represents the number of years in the forecasting period, yx,j represents the actual
holdout sample for age x in year j, and ŷx,j represents the forecasts for the holdout sample.
We consider the one-step-ahead and ten-step-ahead forecasts in this paper.

5.2 Coverage probability deviance and half-width

The evaluation of interval forecast accuracy is described as follows: variances for the
LC method and its variants were calculated in (2); variances for the HU method and
its variants were calculated in (5). Based on the normality assumption, we construct
prediction interval of mortality rates, and thereby prediction interval of life expectancies
(see Rowland 2003, Chapter 8). For each year in the forecasting period, the one-step-
ahead prediction intervals were calculated at the customarily 0.8 (80%) nominal coverage
probability, and were then tested against the empirical coverage probability (Swanson
and Beck 1994; Tayman, Smith, and Lin 2007; Shang, Booth, and Hyndman 2011). The
empirical coverage probability is defined as the actual proportion of out-of-sample data
that fall into the calculated prediction intervals. To measure interval forecast accuracy, we
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calculated the coverage probability deviance, which is the absolute difference between the
nominal coverage probability and the empirical coverage probability. With the nominal
coverage probability of 0.8, the maximum coverage probability deviance is 0.8 when the
empirical coverage probability is 0; while the minimum coverage probability deviance is
0 when the empirical coverage probability is 0.8.

Apart from the coverage probability deviance, we also calculate the size of the pre-
diction interval. Following the early work by Lee and Tuljapurkar (1994) and Tayman,
Smith, and Lin (2007), the size of the prediction interval is defined as half-width by divid-
ing one-half of the difference between the upper and lower bounds of the interval forecasts.
For the symmetric interval, the half-width reflects the distance between the point forecast
(center) and the lower and upper bounds of the prediction interval.

6. Comparisons of the point forecasts

For simplicity, we will refer to the LC method and its variants6 as the LC methods, and
refer to the HU method and its variants7 as the HU methods. Results are presented by
country and for two averages: the simple average and a weighted average using weights
based on population size in 2007. For each country, the weight is calculated as the coun-
try’s population size in 2007 divided by the sum of each country’s population size and
scaled to sum to 14. For females, the weights are 0.87, 1.36, 0.23, 2.55, 0.21, 2.63, 0.01,
2.50, 0.68, 0.19, 0.22, 1.86, 0.38, 0.32 in the country order of Table 1. For males, the
weights are 0.89, 1.39, 0.23, 2.55, 0.23, 2.56, 0.01, 2.46, 0.69, 0.20, 0.21, 1.88, 0.39, 0.31.
Hereafter, the simple average is labeled by Mean, while the weighted average is labeled
by Mean(w).

6 all based on a single principal component
7 all using a nonparametric smoothing technique and several principal components
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Table 2: Point forecast accuracy of the female life expectancies by method
and country, as measured by the MAFEs for the one-step-ahead
forecasts

Country LC LCnone TLB LM BMS RWD RW

Australia 0.2323 1.1877 0.2465 0.1621 0.1608 0.1586 0.1904
Canada 0.1395 0.6716 0.1978 0.0787 0.1169 0.0782 0.1155
Denmark 0.6228 0.7931 0.4014 0.1990 0.2846 0.1838 0.1886
England 0.2162 1.0086 0.2957 0.1374 0.1595 0.1370 0.1659
Finland 0.4093 1.7736 0.5839 0.1564 0.1952 0.1480 0.1741
France 0.5748 1.7898 0.2302 0.1366 0.1760 0.1357 0.1696
Iceland 0.4348 1.4165 1.2098 0.5037 1.3602 0.3804 0.3885
Italy 0.4032 1.4470 0.6114 0.1440 0.1540 0.1442 0.1855
Netherlands 0.3269 0.9000 0.2891 0.1251 0.1831 0.1184 0.1351
Norway 0.5514 1.1796 0.3364 0.1630 0.1852 0.1533 0.1666
Scotland 0.6219 1.3552 0.5605 0.1790 0.2309 0.1738 0.1986
Spain 0.4828 1.3948 0.7689 0.1612 0.2127 0.1534 0.1621
Sweden 0.5071 1.0276 0.2086 0.1421 0.2049 0.1309 0.1440
Switzerland 0.3530 1.3063 0.2485 0.1276 0.1492 0.1158 0.1496
Mean 0.4197 1.2322 0.4420 0.1726 0.2695 0.1580 0.1810
Mean(w) 0.3831 1.2821 0.3979 0.1394 0.1718 0.1363 0.1651

Country HU HUrob HU50 HUrob50 HUw ETS ARIMA

Australia 0.2163 0.4880 0.1997 0.3074 0.2028 0.1449 0.1493
Canada 0.1068 0.1367 0.1137 0.1210 0.0995 0.0987 0.0896
Denmark 0.2278 0.5572 0.2227 0.2427 0.2315 0.2184 0.1967
England 0.2150 0.2848 0.1784 0.3173 0.1369 0.1433 0.1412
Finland 0.4767 1.4649 0.3559 0.5272 0.1823 0.1430 0.1610
France 0.5452 0.7534 0.1771 0.1918 0.1322 0.1478 0.1707
Iceland 0.4557 0.6922 0.5402 1.0132 0.4183 0.3415 0.3400
Italy 0.5265 0.7780 0.1535 0.2693 0.1486 0.1504 0.1899
Netherlands 0.1798 0.3873 0.2618 0.2085 0.1417 0.1466 0.1938
Norway 0.6440 0.6547 0.2870 0.4187 0.1955 0.1493 0.1614
Scotland 0.4560 1.0595 0.4033 0.3977 0.3137 0.1601 0.1906
Spain 0.2578 0.2695 0.1550 0.4092 0.1633 0.1439 0.1502
Sweden 0.4139 1.8243 0.1550 0.1816 0.1501 0.1688 0.1260
Switzerland 0.3233 0.6789 0.1480 0.2939 0.3370 0.1279 0.1319
Mean 0.3603 0.7164 0.2394 0.3500 0.2038 0.1632 0.1709
Mean(w) 0.3481 0.5527 0.1771 0.2735 0.1533 0.1436 0.1566
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Table 3: Point forecast accuracy of the male life expectancies by method
and country, as measured by the MAFEs for the one-step-ahead
forecasts

Country LC LCnone TLB LM BMS RWD RW

Australia 0.4412 1.6429 0.4716 0.1881 0.1746 0.1798 0.2254
Canada 0.3289 1.1484 0.4520 0.1243 0.2017 0.1219 0.1672
Denmark 0.3177 0.4883 0.6738 0.1983 0.3922 0.1613 0.1787
England 0.3300 1.6489 0.5275 0.1497 0.1542 0.1377 0.1995
Finland 0.4467 1.7786 0.6151 0.1793 0.2481 0.1520 0.1924
France 0.5316 1.8475 0.2457 0.1187 0.2248 0.1340 0.1724
Iceland 0.4693 0.6900 1.7789 0.1682 1.4659 0.4099 0.4173
Italy 0.3407 1.3609 0.8669 0.1468 0.2356 0.1331 0.1876
Netherlands 0.1995 0.4344 0.7279 0.1721 0.4500 0.1463 0.1814
Norway 0.3000 0.7189 0.8999 0.2205 0.3990 0.1887 0.2179
Scotland 0.7917 1.7288 0.6525 0.2252 0.2727 0.1890 0.2094
Spain 0.5477 0.9855 0.4276 0.1531 0.2153 0.1467 0.1502
Sweden 0.2409 0.4707 0.6778 0.1583 0.2511 0.1381 0.1681
Switzerland 0.3144 1.0141 0.3085 0.1518 0.1964 0.1361 0.1930
Mean 0.4000 1.1399 0.6661 0.1682 0.3487 0.1696 0.2043
Mean(w) 0.4040 1.3590 0.5323 0.1487 0.2255 0.1412 0.1825

Country HU HUrob HU50 HUrob50 HUw ETS ARIMA

Australia 0.3478 0.6315 0.3054 0.5288 0.3050 0.1508 0.1636
Canada 0.3324 0.6582 0.3258 0.5517 0.1515 0.1080 0.1086
Denmark 0.4513 0.5524 0.5071 0.6019 0.3952 0.2331 0.2374
England 0.4508 0.5918 0.3079 0.5353 0.1684 0.1631 0.1966
Finland 0.9619 1.7533 0.5072 0.8587 0.2392 0.2875 0.3284
France 0.8984 1.2460 0.2685 0.3679 0.2888 0.1340 0.3174
Iceland 0.5048 0.7086 0.6526 1.0345 0.5376 0.5313 0.4443
Italy 0.8043 1.2068 0.3661 0.5797 0.2772 0.2130 0.3343
Netherlands 0.4320 0.3337 0.5156 0.5521 0.1786 0.2676 0.2197
Norway 0.4169 0.4796 0.3140 0.8530 0.4196 0.2510 0.2331
Scotland 0.7227 0.9819 0.6266 0.7011 0.5822 0.2187 0.2357
Spain 0.3512 0.3285 0.3165 0.3493 0.1636 0.1628 0.1437
Sweden 0.5420 0.7789 0.4691 0.6572 0.3945 0.2350 0.3957
Switzerland 0.6003 1.1496 0.3517 0.3479 0.4686 0.2210 0.2416
Mean 0.5583 0.8143 0.4167 0.6085 0.3264 0.2269 0.2571
Mean(w) 0.5800 0.8209 0.3411 0.5026 0.2443 0.1742 0.2367
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Tables 2 and 3 provide summaries of the point forecast accuracy based on the MAFEs
for the one-step-ahead forecasts of life expectancies. The summaries given in Tables 2
and 3 are averaged over different ages from 0 to 104, and years in the forecasting period
for female and male data, respectively. As measured by the simple and weighted averages
of MAFEs over the fourteen countries, the RWD method produces the most accurate point
forecasts in both female and male data. The performance of RWD method is followed
closely by the LM method.

Tables 4 and 5 show the corresponding MFEs for the one-step-ahead point forecasts.
For the female data, the LCnone, HU, HUrob and RW methods consistently underesti-
mate8 the life expectancies for all countries, while the other methods exhibit a mixture
of overestimation and underestimation for various countries. Of all the methods, the LM
method performs the best as measured by both the simple and weighted averages. The
performance of the LM method is followed by the BMS and RWD methods. For the male
data, all methods consistently underestimate the life expectancies except the LC method.
Cancelation of MFEs from different countries leads to the most superior performance of
the LC method, which is followed by the RWD and LM methods. In contrast to the LC
method, the MFEs of the RWD and LM methods are more centered around zero at all
ages.

Table 4: Forecast bias of the female life expectancies by method and country,
as measured by the MFEs for the one-step-ahead forecasts

Country LC LCnone TLB LM BMS RWD RW
Australia 0.0533 1.1562 0.1714 0.0281 -0.0226 0.0460 0.1399
Canada 0.0026 0.6471 -0.1666 -0.0092 0.0090 -0.0129 0.0922
Denmark -0.3730 0.7930 -0.3620 0.0022 0.0599 0.0126 0.0749
England -0.0352 1.0084 0.2673 0.0369 0.0741 0.0169 0.1196
Finland -0.1378 1.7457 0.4936 -0.0001 -0.0453 0.0472 0.1426
France -0.2436 1.7898 0.1183 -0.0089 0.0154 0.0643 0.1384
Iceland 0.2496 1.3925 1.1813 0.2797 1.3262 0.0000 0.0876
Italy -0.1577 1.4352 0.6083 0.0167 0.0135 0.0297 0.1439
Netherlands -0.1329 0.8848 -0.2780 -0.0271 -0.0374 -0.0143 0.0657
Norway -0.3223 1.1683 0.2193 0.0107 -0.0080 0.0402 0.1020
Scotland -0.2684 1.3552 0.4348 0.0196 0.0852 0.0383 0.1063
Spain -0.2360 1.3167 0.7206 -0.0208 0.1102 -0.0145 0.1204

8 actual > forecast
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Table 4: (Continued)

Country LC LCnone TLB LM BMS RWD RW
Sweden -0.3017 1.0144 -0.1267 -0.0064 -0.0254 0.0363 0.0870
Switzerland -0.1650 1.2868 -0.0239 -0.0323 -0.0490 -0.0032 0.1129
Mean -0.1477 1.2139 0.2327 0.0204 0.1076 0.0205 0.1095
Mean(w) -0.1431 1.2631 0.2644 0.0046 0.0318 0.0224 0.1217

Australia 0.1467 0.4563 0.1393 0.2633 0.0128 0.0493 0.0660
Canada 0.0080 0.0760 -0.0091 -0.0233 -0.0013 -0.0159 -0.0154
Denmark 0.0667 0.5339 -0.0777 -0.0753 0.1722 0.0062 0.0196
England 0.1632 0.2577 0.1189 0.2742 0.0784 0.0788 0.0814
Finland 0.4319 1.4370 0.2610 0.4631 0.0332 0.0641 0.0837
France 0.5290 0.7473 0.0801 0.1528 0.0041 0.0643 0.1173
Iceland 0.0068 0.5514 0.4013 0.9595 0.2352 0.0619 0.0176
Italy 0.5189 0.7585 0.0619 0.2261 0.0867 0.0722 0.0944
Netherlands 0.0622 0.3352 -0.1936 -0.1417 0.0538 -0.0331 -0.1026
Norway 0.6257 0.5736 0.1882 0.3672 0.1287 0.0723 0.0791
Scotland 0.4352 1.0481 0.3214 0.2523 0.2674 0.0489 0.1110
Spain 0.1855 0.2229 0.0831 0.3268 0.0639 -0.0350 -0.0364
Sweden 0.3888 1.7578 -0.0842 0.0701 0.0834 0.1450 0.0456
Switzerland 0.2955 0.6572 0.0020 0.2429 0.3133 -0.0698 -0.0358
Mean 0.2760 0.6724 0.0923 0.2399 0.1094 0.0364 0.0375
Mean(w) 0.2995 0.5221 0.0655 0.1925 0.0612 0.0398 0.0513

Table 5: Forecast bias of the male life expectancies by method and country,
as measured by the MFEs for the one-step-ahead forecasts

Country LC LCnone TLB LM BMS RWD RW
Australia 0.0873 1.5445 0.4189 0.0956 0.0633 0.1212 0.1953
Canada 0.1906 1.0953 0.4129 0.0903 0.1656 0.0899 0.1501
Denmark -0.0175 0.1804 0.6120 0.1042 0.3456 0.0679 0.1203
England 0.1309 1.6489 0.5142 0.1093 0.1054 0.0931 0.1733
Finland 0.1704 1.7777 0.5628 0.0474 0.0262 0.0945 0.1628
France 0.0847 1.8459 0.1907 0.0578 0.1805 0.1113 0.1605
Iceland 0.1855 0.4087 1.6180 0.0931 0.1801 0.0472 0.9256
Italy 0.0743 1.3601 0.8478 0.1015 0.1954 0.0894 0.1714
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Table 5: (Continued)

Country LC LCnone TLB LM BMS RWD RW
Netherlands 0.1024 0.2380 0.6596 0.1149 0.3958 0.0746 0.1320
Norway 0.0974 0.5883 0.8718 0.1370 0.3628 0.1143 0.1618
Scotland -0.0669 1.7288 0.6016 0.0768 0.0072 0.0990 0.1513
Spain -0.2013 0.7655 0.3979 0.0211 0.0909 0.0152 0.1121
Sweden 0.0205 0.3208 0.6333 0.1028 0.1913 0.1037 0.1458
Switzerland 0.0383 0.9659 0.2400 0.0650 0.1023 0.0674 0.1608
Mean 0.0640 1.0335 0.6130 0.0869 0.1723 0.0849 0.2088
Mean(w) 0.0593 1.2954 0.4960 0.0818 0.1578 0.0856 0.1574

Australia 0.2925 0.5529 0.2630 0.4874 0.2655 0.0658 0.0988
Canada 0.3015 0.6108 0.3006 0.5290 0.1248 0.0686 0.0651
Denmark 0.4062 0.4418 0.4728 0.5828 0.3808 0.1696 0.1750
England 0.4166 0.5624 0.2904 0.5245 0.1437 0.1413 0.1814
Finland 0.9540 1.6841 0.4719 0.8105 0.1963 0.2752 0.3122
France 0.8806 1.2440 0.2498 0.3446 0.2781 0.1113 0.3137
Iceland 1.3971 0.0830 0.3859 0.4743 0.3869 0.4389 0.2552
Italy 0.7981 1.2011 0.3426 0.5630 0.2620 0.2038 0.3013
Netherlands 0.3945 0.2734 0.4793 0.5208 0.1489 0.2366 0.0976
Norway 0.3755 0.2943 0.2609 0.8025 0.3837 0.2245 0.2037
Scotland 0.7215 0.9755 0.5885 0.6677 0.5747 0.1734 0.1863
Spain 0.3164 0.2993 0.2659 0.3077 0.0903 0.1230 0.0788
Sweden 0.5374 0.7665 0.4387 0.6183 0.3865 0.2292 0.3876
Switzerland 0.5779 1.1113 0.3067 0.3140 0.4566 0.1639 0.1956
Mean 0.5978 0.7215 0.3655 0.5391 0.2913 0.1875 0.2037
Mean(w) 0.5549 0.7902 0.3120 0.4769 0.2165 0.1445 0.2005

Figures 1a and 1b show the MAFEs of the one-step-ahead point forecasts for different
methods. The MAFEs are averaged over countries and years in the forecasting period for
the female and male life expectancies. Large errors occur at younger ages9 for all methods,
reflecting the difficulty in capturing the nadir of the mortality rates; errors from the LC,
LCnone and HUrob methods are particularly large at these ages. At older ages10, the
MAFEs of all methods with exceptions of the RW and RWD methods display a kink. This
reflects the difficulty in forecasting the mortality rates at old ages because of excessive
variability.

Figures 1c and 1d show the MFEs of the one-step-ahead point forecasts for different
methods. The MFEs are averaged over countries and years in the forecasting period for

9 between age 0 and 5
10 above age 95
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the female and male life expectancies. Apart from the LC method, all other methods un-
derestimate life expectancies. The LCnone method performs the least accurately, while
the LC method has minimal MFEs. In the LC method, the overestimation of life ex-
pectancies at younger ages is counterbalanced by the underestimation of life expectancies
at older ages. Although the overall MFEs of the RWD and LM methods are not as small
as the LC method, they remain constant across all ages.

In demography, mortality rate forecasts are primarily of value for a much longer hori-
zon, since the modeling error becomes the dominant error source. Therefore, we also
consider ten-step-ahead forecasts. Tables 6 and 7 provide summaries of the point forecast
accuracy based on the MAFEs for the ten-step-ahead forecasts of life expectancies. The
summaries given in Tables 6 and 7 are averaged over different ages from 0 to 104, and
years in the forecasting period (that is 11 years) for female and male data, respectively.
As measured by the weighted averages of MAFEs over the fourteen countries, the LM
method produces the most accurate point forecasts for both female and male data. The
performance of the LM method is followed closely by the RWD method.

Tables 8 and 9 show the corresponding MFEs for the ten-step-ahead point forecasts.
For the female data, the LCnone, RW and ETS methods consistently underestimate the life
expectancies for all countries, while the other methods exhibit a mixture of overestimation
and underestimation for various countries. Among all methods, the LM method performs
the best as measured by both the simple and weighted averages. The performance of the
LM method is followed by the BMS, RWD and ARIMA methods. For the male data, all
methods consistently underestimate the life expectancies, including the LC method.
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Figure 1: MAFEs and MFEs for the one-step-ahead point forecasts of the
life expectancies by sex and method

(a) MAFEs averaged over years in the
forecasting period and
countries
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(b) MAFEs averaged over years in the
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countries

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

Male

Age

M
A

F
E

LC
LCnone
TLB
LM
BMS
HU
HUrob

HU50
HUrob50
HUw
RWD
ETS
ARIMA
RW

(c) MFEs averaged over years in the
forecasting period and
countries
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(d) MFEs averaged over years in the
forecasting period and
countries
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Table 6: Point forecast accuracy of the female life expectancies by method
and country, as measured by the MAFEs for the ten-step-ahead
forecasts

Country LC LCnone TLB LM BMS RWD RW

Australia 0.8427 1.8795 0.6292 0.5351 0.2651 0.6278 1.5353
Canada 0.2740 0.7256 0.4788 0.3443 0.3404 0.3759 0.8764
Denmark 0.6133 1.2505 0.4661 0.4974 0.7114 0.4774 0.9272
England 0.3261 1.2874 0.4208 0.3283 0.3688 0.2883 1.1776
Finland 0.8040 2.4584 0.7116 0.3054 0.4603 0.6086 1.4833
France 0.5462 2.5393 0.2329 0.1994 0.2438 0.4963 1.2108
Iceland 0.7602 1.7770 2.2061 1.5307 2.0093 0.4306 1.0592
Italy 0.6072 2.1367 1.0866 0.3418 0.2224 0.4772 1.4581
Netherlands 0.4699 1.0033 0.6664 0.5635 0.6355 0.4822 0.5167
Norway 0.4717 1.6456 0.4603 0.3443 0.3636 0.4714 1.0508
Scotland 0.5283 1.8137 0.6524 0.3426 0.5321 0.5071 1.1398
Spain 0.4893 1.8884 0.9988 0.1738 0.3368 0.4404 1.1942
Sweden 0.3924 1.5559 0.3319 0.2298 0.2492 0.4319 0.9243
Switzerland 0.3724 1.8210 0.2657 0.2294 0.4028 0.2915 1.1443
Mean 0.5355 1.6987 0.6863 0.4261 0.5101 0.4576 1.1213
Mean(w) 0.4938 1.7734 0.6166 0.3108 0.3271 0.4384 1.1883

Country HU HUrob HU50 HUrob50 HUw ETS ARIMA

Australia 1.0660 1.1911 0.5653 0.6006 0.5479 0.4665 0.6333
Canada 0.4622 0.3644 0.4562 0.4017 0.2820 0.4520 0.3825
Denmark 0.5741 1.1164 0.4180 0.4361 0.9005 0.5788 0.4448
England 0.9411 0.5005 0.4028 0.4317 0.3193 0.3462 0.3291
Finland 1.5539 2.3415 0.7603 0.7301 0.8253 0.5277 0.6582
France 1.8639 1.4266 0.4099 0.2171 0.4559 0.2511 0.4609
Iceland 0.5534 1.3926 1.2019 1.7684 1.1044 0.6355 0.5732
Italy 1.5976 1.4109 0.4649 0.5231 0.5463 0.5155 0.6599
Netherlands 0.3907 0.5530 0.6753 0.5700 0.4534 0.5378 0.6759
Norway 1.4951 1.1619 0.5021 0.8119 0.7560 0.4478 0.4552
Scotland 1.3979 1.5942 0.6322 0.6563 0.4707 0.3487 0.5731
Spain 1.0624 0.4387 0.2806 0.7619 0.3511 0.4942 0.5231
Sweden 1.0899 2.2663 0.2335 0.1900 0.5762 0.9749 0.2712
Switzerland 0.8316 0.9954 0.1447 0.4171 0.2595 0.3988 0.3542
Mean 1.0628 1.1967 0.5105 0.6083 0.5606 0.4983 0.4996
Mean(w) 1.2021 0.9852 0.4284 0.4735 0.4387 0.4320 0.4914
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Table 7: Point forecast accuracy of the male life expectancies by method
and country, as measured by the MAFEs for the ten-step-ahead
forecasts

Country LC LCnone TLB LM BMS RWD RWF

Australia 1.8568 3.0607 1.5374 1.2816 0.7977 1.4248 2.0912
Canada 1.3030 2.0440 1.1402 0.9144 0.8892 1.0226 1.5626
Denmark 0.8934 0.8200 1.6648 1.3428 1.6628 0.8759 1.3720
England 1.2279 2.5789 1.3863 1.0453 0.9813 1.0087 1.7481
Finland 1.4577 2.7815 1.2983 0.8331 1.1146 1.1318 1.7642
France 1.1499 2.8576 0.7895 0.5431 0.7693 1.0279 1.4964
Iceland 1.0845 1.0328 3.0191 0.9953 0.9953 0.7207 1.2171
Italy 1.2242 2.3058 1.9448 1.1021 1.1920 0.9783 1.7411
Netherlands 0.8755 0.7205 1.5911 1.0862 1.5768 0.7231 1.2554
Norway 1.3272 1.3658 2.1399 1.5580 1.8345 1.1879 1.6232
Scotland 1.1739 2.5241 1.4807 0.9696 1.3663 1.0562 1.5450
Spain 0.7054 1.5419 0.6608 0.3387 0.4310 0.3573 1.1902
Sweden 1.0893 1.0777 1.5519 0.9964 1.1885 1.0618 1.4630
Switzerland 1.1130 1.9875 1.1393 0.9278 0.8564 0.8531 1.7434
Mean 1.1773 1.9071 1.5246 0.9953 1.1183 0.9593 1.5581
Mean(w) 1.1653 2.2288 1.2888 0.8762 0.9486 0.9341 1.5859

Country HU HUrob HU50 HUrob50 HUw ETS ARIMA

Australia 1.9652 2.4552 1.4055 1.5633 1.4487 0.8326 1.1702
Canada 0.9607 1.3871 1.0250 1.3290 0.9288 0.7481 0.7653
Denmark 1.0828 1.0858 1.6215 1.6030 1.4323 0.9687 0.8955
England 2.0794 1.3845 0.7991 1.3378 1.0314 0.9339 1.1342
Finland 2.6584 2.7545 1.3637 1.7096 1.3455 1.8616 1.7526
France 2.4812 2.8125 0.8560 1.0015 1.4291 1.5060 1.5251
Iceland 0.9953 2.5549 1.4513 1.1907 1.5717 1.6221 1.1523
Italy 2.2943 2.1435 1.3565 1.5986 1.6813 1.6645 1.9527
Netherlands 0.9503 0.9904 1.4583 1.5820 1.1502 1.3367 0.7339
Norway 1.4540 1.2805 1.4270 1.9955 1.5826 1.6695 1.2252
Scotland 2.0713 2.1025 1.6112 1.6043 1.7636 1.2111 1.2059
Spain 1.1940 0.5767 0.7037 0.8567 0.4680 1.0242 0.7571
Sweden 1.6559 1.5496 1.4764 1.6733 1.4919 1.5196 1.4889
Switzerland 1.5367 1.9608 1.2052 1.2995 1.1070 0.7689 0.9480
Mean 1.6700 1.7885 1.2686 1.4532 1.3166 1.2620 1.1933
Mean(w) 1.8573 1.7645 1.0604 1.3153 1.2104 1.2176 1.2592
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Table 8: Forecast bias of the female life expectancies by method and country,
as measured by the MFEs for the ten-step-ahead forecasts

Country LC LCnone TLB LM BMS RWD RW

Australia 0.7461 1.8297 0.5354 0.4789 0.0745 0.6231 1.5257
Canada -0.0022 0.6818 -0.4709 -0.2244 -0.1916 -0.2125 0.8516
Denmark 0.0600 1.2505 -0.2649 0.0717 0.2539 0.3115 0.9262
England 0.2704 1.2870 0.3737 0.2627 0.2957 0.1555 1.1742
Finland 0.6991 2.4227 0.5530 0.1690 0.0914 0.5394 1.4740
France 0.4506 2.5393 0.1419 -0.1025 -0.0215 0.4800 1.2101
Iceland 0.7201 1.7502 2.1932 1.4099 1.9936 0.1450 1.0164
Italy 0.5788 2.1247 1.0859 0.3239 0.1747 0.3267 1.4574
Netherlands -0.1837 0.9809 -0.6664 -0.4914 -0.5953 -0.3166 0.4947
Norway 0.3034 1.6309 0.3886 0.2220 0.2424 0.4194 1.0254
Scotland 0.3762 1.8137 0.3408 0.1059 0.3288 0.4652 1.1312
Spain 0.2796 1.7999 0.9533 0.0586 0.2310 -0.1648 1.1925
Sweden 0.2604 1.5438 -0.3160 -0.1833 -0.0537 0.4240 0.9233
Switzerland 0.1466 1.7982 -0.0046 -0.1222 -0.2915 -0.0235 1.1388
Mean 0.3361 1.6752 0.3459 0.1413 0.1809 0.2266 1.1101
Mean(w) 0.3441 1.7493 0.3779 0.0799 0.0761 0.1949 1.1823

Country HU HUrob HU50 HUrob50 HUw ETS ARIMA

Australia 0.9872 1.1629 0.4613 0.5290 0.5229 0.4665 0.6256
Canada -0.3297 -0.1349 -0.4199 -0.2882 -0.1078 0.4520 -0.2493
Denmark 0.5704 1.1032 -0.0748 0.2442 0.8964 0.5788 0.1803
England 0.9256 0.4594 0.1718 0.3208 0.2123 0.3462 0.2373
Finland 1.5070 2.2997 0.6055 0.6481 0.7753 0.5277 0.5569
France 1.8415 1.4219 -0.1972 -0.0513 0.4271 0.2511 0.3894
Iceland 0.3473 1.3218 1.1449 1.7500 1.0699 0.6355 0.2124
Italy 1.5930 1.4079 0.1318 0.3938 0.5167 0.5155 0.4323
Netherlands 0.3356 0.4204 -0.6649 -0.5309 -0.1154 0.5378 -0.5382
Norway 1.4469 1.0662 0.4369 0.7788 0.6955 0.4478 0.3881
Scotland 1.3923 1.5872 0.3941 0.3051 0.3567 0.3487 0.5378
Spain 0.9856 0.4067 0.1763 0.6476 0.2069 0.4942 -0.1940
Sweden 1.0752 2.1968 -0.2323 0.0510 0.5627 0.9749 0.2355
Switzerland 0.8144 0.9586 -0.0436 0.3457 0.1308 0.3988 -0.1595
Mean 0.9637 1.1198 0.1350 0.3674 0.4393 0.4983 0.1896
Mean(w) 1.0971 0.9103 0.0103 0.2239 0.3155 0.4320 0.1842
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Table 9: Forecast bias of the male life expectancies by method and country,
as measured by the MFEs for the ten-step-ahead forecasts

Country LC LCnone TLB LM BMS RWD RWF

Australia 1.3904 2.9052 1.4429 1.2240 0.6932 1.4222 2.0825
Canada 1.1552 1.9571 1.0852 0.8829 0.8262 0.9950 1.5425
Denmark 0.8934 0.8121 1.5553 1.1867 1.6276 0.8551 1.3569
England 1.2279 2.5789 1.3648 1.0268 0.9388 0.9965 1.7432
Finland 1.4131 2.7807 1.1515 0.6600 0.4264 1.1086 1.7515
France 1.1428 2.8564 0.7538 0.5087 0.7241 1.0278 1.4947
Iceland 0.9191 0.8624 2.4072 2.5259 1.2828 0.5849 0.9191
Italy 1.2157 2.3049 1.9108 1.0595 1.1492 0.9497 1.7365
Netherlands 0.8609 0.6971 1.4517 1.0030 1.4563 0.6703 1.2255
Norway 1.3011 1.3428 2.1088 1.4685 1.8153 1.1418 1.5836
Scotland 1.1585 2.5241 1.3961 0.8820 -0.0818 1.0537 1.5445
Spain 0.1861 1.2384 0.6478 0.2853 0.4140 0.2250 1.1847
Sweden 1.0862 1.0747 1.4730 0.9248 1.0749 1.0536 1.4557
Switzerland 1.0088 1.9324 1.0902 0.8707 0.7514 0.8272 1.7318
Mean 1.0685 1.8477 1.4171 1.0363 0.9356 0.9222 1.5252
Mean(w) 1.0439 2.1661 1.2426 0.8297 0.8645 0.9012 1.5775

Country HU HUrob HU50 HUrob50 HUw ETS ARIMA

Australia 1.7630 2.4491 1.3151 1.4997 1.4056 0.8326 1.1602
Canada 0.8888 1.3001 0.9715 1.2835 0.8884 0.7481 0.7297
Denmark 1.0816 1.0647 1.5559 1.5659 1.4253 0.9687 0.8585
England 2.0634 1.3287 0.7883 1.3095 0.9811 0.9339 1.1254
Finland 2.6579 2.6568 1.2331 1.5355 1.3272 1.8616 1.7372
France 2.4310 2.8095 0.8343 0.9658 1.4220 1.5060 1.5236
Iceland 1.0756 1.0646 2.0222 1.3571 1.4979 1.6221 1.0992
Italy 2.2758 2.1431 1.3270 1.5572 1.6715 1.6645 1.8509
Netherlands 0.9432 0.9121 1.3293 1.5016 1.1315 1.3367 0.5153
Norway 1.4192 1.1604 1.3888 1.9328 1.5347 1.6695 1.2007
Scotland 2.0713 2.0972 1.5541 1.5741 1.7622 1.2111 1.2023
Spain 1.0824 0.5506 0.6500 0.7439 0.3435 1.0242 0.6774
Sweden 1.6555 1.5401 1.3986 1.5825 1.4764 1.5196 1.4823
Switzerland 1.5106 1.9238 1.1533 1.2370 1.0544 0.7689 0.9257
Mean 1.6371 1.6429 1.2515 1.4033 1.2801 1.2620 1.1492
Mean(w) 1.8055 1.7325 1.0166 1.2598 1.1710 1.2176 1.2118

http://www.demographic-research.org 621



Shang: Point and interval forecasts of age-specific life expectancies: A model averaging approach

Figures 2a and 2b show the MAFEs of the ten-step-ahead point forecasts for different
methods. The MAFEs are averaged over countries and years in the forecasting period
for the female and male life expectancies. Large errors occur between ages 0 and 60
for most of the methods, and errors from the LCnone, HU, HUrob and RW methods are
particularly large at these ages. At older ages11, the MAFEs of all methods decrease
gradually. For ages above 100, there is a sharp increase in MAFEs, which reflects the
difficulty in forecasting the mortality rates at old ages because of excessive variability.

Figure 2: MAFEs and MFEs for the ten-step-ahead point forecasts of the life
expectancies by sex and method

(a) MAFEs averaged over years in the
forecasting period and
countries
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(b) MAFEs averaged over years in the
forecasting period and
countries
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Figures 1c and 1d show the MFEs of the ten-step-ahead point forecasts for different
methods. The MFEs are averaged over countries and years in the forecasting period for
the female and male life expectancies. In the female data, apart from the LC, RW and
two univariate time-series methods, all other methods underestimate life expectancies
from ages 0 to 65, and the degree of underestimation becomes smaller and smaller as age
increases. The LM and RWD methods perform similarly, but they are both more superior
to the LC method.

11 between 66 and 100
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Figure 2: (Continued)

(c) MFEs averaged over years in the
forecasting period and
countries
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(d) MFEs averaged over years in the
forecasting period and
countries
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7. Comparisons of the interval forecasts

As was emphasized by Chatfield (1993, 2000), it is important to provide interval forecasts
as well as point forecasts, so as to (1) assess future uncertainty level, (2) enable differ-
ent strategies to be planned for the range of possible outcomes indicated by the interval
forecasts, (3) compare forecasts from different methods more thoroughly, and (4) explore
different scenarios based on different assumptions.

In recent years, many authors have provided interval forecasts to measure the uncer-
tainty associated with the point forecasts; see for example, Lutz and Scherbov (1998) for
Austria, Alho (1998) for Finland, Keilman and Pham (2000) for Norway, and Tayman,
Smith, and Lin (2007) for the United States. These methods have been motivated by
earlier work on stochastic forecasts, by for instance, Lee (1974), Stoto (1983), Alho and
Spencer (1985), Alho (1990) and Lee and Tuljapurkar (1994). The current paper is a
contribution to the literature in this area.

To obtain prediction intervals for the future life expectancies, we utilize a simulation
approach of Shang, Booth, and Hyndman (2011). In short, the simulated forecasts of log
mortality rates were obtained by adding disturbances to the forecast principal component
scores, which were then multiplied by the fixed functional principal components. Life
expectancies were then calculated for each set of the simulated log mortality rates (see
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Rowland 2003, Chapter 8 for detail). Prediction interval was customarily constructed by
80% percentile of the simulated sets of the life expectancies.

Table 10: Coverage probability deviances of the one-step-ahead forecast
female life expectancies by method and country. Minus sign indi-
cates that the empirical coverage probability is less than the nomi-
nal coverage probability

Country LC LCnone TLB LM BMS RWD RW
Australia 0.2500( – ) 0.7929( – ) 0.4048( – ) 0.1243( – ) 0.0324( – ) 0.1790(+) 0.1162(+)
Canada 0.2624( – ) 0.7881( – ) 0.4800( – ) 0.0714( – ) 0.3081( – ) 0.1929(+) 0.1648(+)
Denmark 0.6519( – ) 0.7595( – ) 0.2648( – ) 0.2519( – ) 0.5181( – ) 0.2000(+) 0.1995(+)
England 0.1086( – ) 0.7929( – ) 0.5086( – ) 0.1805( – ) 0.1957( – ) 0.1890(+) 0.1805(+)
Finland 0.5433( – ) 0.7881( – ) 0.6390( – ) 0.0443( – ) 0.1267( – ) 0.1819(+) 0.1667(+)
France 0.5824( – ) 0.8000( – ) 0.3167( – ) 0.0824( – ) 0.1333( – ) 0.1752(+) 0.1729(+)
Iceland 0.0629( – ) 0.6476( – ) 0.6776( – ) 0.5843( – ) 0.7248( – ) 0.2000(+) 0.2000(+)
Italy 0.4319( – ) 0.7943( – ) 0.7648( – ) 0.1300( – ) 0.1243( – ) 0.1757(+) 0.1729(+)
Netherlands 0.3414( – ) 0.7514( – ) 0.3938( – ) 0.1457( – ) 0.2595( – ) 0.2000(+) 0.2000(+)
Norway 0.6881( – ) 0.7890( – ) 0.3481( – ) 0.2505( – ) 0.2924( – ) 0.1938(+) 0.1900(+)
Scotland 0.6238( – ) 0.7890( – ) 0.4395( – ) 0.1576( – ) 0.1519( – ) 0.1648(+) 0.1643(+)
Spain 0.5390( – ) 0.7981( – ) 0.7981( – ) 0.2362( – ) 0.3700( – ) 0.1971(+) 0.1924(+)
Sweden 0.5667( – ) 0.7824( – ) 0.2471( – ) 0.1810( – ) 0.2419( – ) 0.2000(+) 0.2000(+)
Switzerland 0.4100( – ) 0.7795( – ) 0.0919( – ) 0.1095( – ) 0.1648( – ) 0.1948(+) 0.1810(+)
Mean 0.4330( – ) 0.7752( – ) 0.4553( – ) 0.1821( – ) 0.2603( – ) 0.1889(+) 0.1787(+)
Mean(w) 0.3983( – ) 0.7918( – ) 0.5205( – ) 0.1432( – ) 0.2042( – ) 0.1858(+) 0.1754(+)

Country HU HUrob HU50 HUrob50 HUw ETS ARIMA
Australia 0.2000(+) 0.0119( – ) 0.1981(+) 0.0152(+) 0.2000(+) 0.1867(+) 0.1767(+)
Canada 0.2000(+) 0.2000(+) 0.2000(+) 0.1990(+) 0.2000(+) 0.1667(+) 0.1433(+)
Denmark 0.2000(+) 0.1343(+) 0.1890(+) 0.1819(+) 0.2000(+) 0.1757(+) 0.1857(+)
England 0.1981(+) 0.1538(+) 0.1362(+) 0.0548( – ) 0.2000(+) 0.1490(+) 0.1562(+)
Finland 0.2000(+) 0.2614( – ) 0.1557(+) 0.0962(+) 0.2000(+) 0.1795(+) 0.1681(+)
France 0.0395(+) 0.1143( – ) 0.1476(+) 0.1343(+) 0.2000(+) 0.1776(+) 0.1710(+)
Iceland 0.2000(+) 0.2000(+) 0.2000(+) 0.2000(+) 0.2000(+) 0.2000(+) 0.2000(+)
Italy 0.1438(+) 0.0590(+) 0.1500(+) 0.0700(+) 0.2000(+) 0.1795(+) 0.1743(+)
Netherlands 0.2000(+) 0.2000(+) 0.1110(+) 0.1948(+) 0.2000(+) 0.1995(+) 0.1971(+)
Norway 0.0671( – ) 0.0919(+) 0.1667(+) 0.1038(+) 0.2000(+) 0.1548(+) 0.1471(+)
Scotland 0.1129(+) 0.3705( – ) 0.1200(+) 0.1643(+) 0.2000(+) 0.1714(+) 0.1886(+)
Spain 0.1976(+) 0.2000(+) 0.1719(+) 0.0300( – ) 0.2000(+) 0.1952(+) 0.1938(+)
Sweden 0.2000(+) 0.5748( – ) 0.1976(+) 0.1862(+) 0.2000(+) 0.2000(+) 0.2000(+)
Switzerland 0.2000(+) 0.1576(+) 0.2000(+) 0.1767(+) 0.2000(+) 0.1548(+) 0.1790(+)
Mean 0.1685(+) 0.1950(+) 0.1674(+) 0.1291(+) 0.2000(+) 0.1779(+) 0.1772(+)
Mean(w) 0.1561(+) 0.1590(+) 0.1490(+) 0.0991(+) 0.2001(+) 0.1755(+) 0.1721(+)
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Table 11: Coverage probability deviance of the one-step-ahead forecast male
life expectancies by method and country. Minus sign indicates that
the empirical coverage probability is less than the nominal coverage
probability

Country LC LCnone TLB LM BMS RWD RW
Australia 0.4329( – ) 0.7929( – ) 0.6867( – ) 0.2305( – ) 0.1886( – ) 0.1457(+) 0.0824(+)
Canada 0.6452( – ) 0.7805( – ) 0.7629( – ) 0.4471( – ) 0.6957( – ) 0.1267(+) 0.0533(+)
Denmark 0.4886( – ) 0.6138( – ) 0.6433( – ) 0.4943( – ) 0.6471( – ) 0.2000(+) 0.1995(+)
England 0.4219( – ) 0.8000( – ) 0.7400( – ) 0.2271( – ) 0.2610( – ) 0.1724(+) 0.1348(+)
Finland 0.3605( – ) 0.7686( – ) 0.5333( – ) 0.0767( – ) 0.2171( – ) 0.1910(+) 0.1862(+)
France 0.5086( – ) 0.7933( – ) 0.3367( – ) 0.0714( – ) 0.3681( – ) 0.1824(+) 0.1800(+)
Iceland 0.0981( – ) 0.2081( – ) 0.6410( – ) 0.3011( – ) 0.7257( – ) 0.2000(+) 0.2000(+)
Italy 0.4419( – ) 0.7895( – ) 0.7552( – ) 0.2876( – ) 0.4752( – ) 0.1857(+) 0.1833(+)
Netherlands 0.0690( – ) 0.2676( – ) 0.7729( – ) 0.5052( – ) 0.7524( – ) 0.1981(+) 0.1981(+)
Norway 0.4738( – ) 0.6490( – ) 0.7771( – ) 0.5357( – ) 0.5419( – ) 0.1467(+) 0.1395(+)
Scotland 0.7248( – ) 0.7995( – ) 0.5852( – ) 0.3195( – ) 0.3119( – ) 0.1562(+) 0.1452(+)
Spain 0.4771( – ) 0.7500( – ) 0.6086( – ) 0.1767( – ) 0.4595( – ) 0.1943(+) 0.1919(+)
Sweden 0.1571( – ) 0.3500( – ) 0.7329( – ) 0.3062( – ) 0.4600( – ) 0.2000(+) 0.2000(+)
Switzerland 0.3057( – ) 0.7248( – ) 0.3329( – ) 0.2367( – ) 0.3105( – ) 0.1714(+) 0.1671(+)
Mean 0.4004( – ) 0.6491( – ) 0.6363( – ) 0.3011( – ) 0.4582( – ) 0.1765(+) 0.1615(+)
Mean(w) 0.4494( – ) 0.7412( – ) 0.6357( – ) 0.2485( – ) 0.4250( – ) 0.1754(+) 0.1557(+)

Country HU HUrob HU50 HUrob50 HUw ETS ARIMA
Australia 0.1286(+) 0.0881( – ) 0.1133(+) 0.1581( – ) 0.2000(+) 0.1462(+) 0.1110(+)
Canada 0.0429( – ) 0.3033( – ) 0.0295( – ) 0.2205( – ) 0.2000(+) 0.1200(+) 0.1276(+)
Denmark 0.0967(+) 0.0638(+) 0.0300( – ) 0.0757( – ) 0.2000(+) 0.1029(+) 0.1162(+)
England 0.0786( – ) 0.2043( – ) 0.0724( – ) 0.3738( – ) 0.2000(+) 0.1352(+) 0.0814(+)
Finland 0.0700(+) 0.2781( – ) 0.1386(+) 0.0871( – ) 0.2000(+) 0.1738(+) 0.1695(+)
France 0.1881( – ) 0.3529( – ) 0.0733(+) 0.0129( – ) 0.2000(+) 0.1805(+) 0.1738(+)
Iceland 0.1995(+) 0.2000(+) 0.2000(+) 0.2000(+) 0.2000(+) 0.1967(+) 0.2000(+)
Italy 0.0205(+) 0.2729( – ) 0.0305(+) 0.1176( – ) 0.2000(+) 0.1848(+) 0.1629(+)
Netherlands 0.0662(+) 0.2000(+) 0.2305( – ) 0.2657( – ) 0.1971(+) 0.1800(+) 0.1810(+)
Norway 0.1171(+) 0.1205(+) 0.0238(+) 0.3157( – ) 0.2000(+) 0.0929(+) 0.0729(+)
Scotland 0.1576( – ) 0.3081( – ) 0.1686( – ) 0.1867( – ) 0.2000(+) 0.1176(+) 0.0467(+)
Spain 0.1905(+) 0.2000(+) 0.0495(+) 0.1157(+) 0.2000(+) 0.1914(+) 0.1910(+)
Sweden 0.2000(+) 0.0281( – ) 0.1495( – ) 0.3300( – ) 0.1990(+) 0.1986(+) 0.1900(+)
Switzerland 0.1119(+) 0.2738( – ) 0.1776(+) 0.1695(+) 0.2000(+) 0.1419(+) 0.1257(+)
Mean 0.1191(+) 0.2067(-) 0.1062(+) 0.1878(-) 0.1997(+) 0.1545(+) 0.1393(+)
Mean(w) 0.1085(+) 0.2411(-) 0.0740(+) 0.1748(-) 0.1998(+) 0.1623(+) 0.1442(+)
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The average coverage probability deviances for the one-step-ahead forecasts of the
female and male life expectancies are shown in Tables 10 and 11, respectively. The
HUrob50 method performs the best with the minimum average coverage probability de-
viance, followed by the HU method. These results show that the prediction intervals of
the LC methods are too narrow, which lead to underestimate12 the coverage probability.
In contrast, the HUw, RW and RWD methods tend to overestimate the coverage probabil-
ity, since their prediction intervals are too wide in both female and male data. With the
exception of the LM method, the HU methods generally provide more accurate interval
forecasts than the LC methods.

For the one-step-ahead forecasts, Tables 12 and 13 show that the HUw method has a
larger half-width of the prediction interval than the others. The better coverage probability
of the HUw method may due to a larger half-width of the prediction interval. By contrast,
the RW, RWD, ETS and ARIMA methods have slightly large half-widths than the LC
methods, but with much smaller coverage probability deviance. This indicates that the
simple method tends to work quite well for short-term interval forecasts.

The average coverage probability deviances for the ten-step-ahead forecasts of the fe-
male and male life expectancies are shown in Tables 14 and 15, respectively. In the female
data, the ARIMA model performs the best, with the minimum overall coverage probabil-
ity deviance. Moreover, the HUw and RWD methods tend to overestimate the coverage
probability deviance for each country, since their prediction intervals are too wide. In
the male data, the RWD model performs the best, with the minimum overall coverage
probability deviance. In addition, the LC methods tend to underestimate the coverage
probability deviance for each country except Iceland, since their prediction intervals are
too narrow (see also Lee and Carter 1992).

For the ten-step-ahead forecasts, Tables 16 and 17 show that the HUw method has a
larger half-width than the others for both females and males. Among all the methods, the
LM method produces the narrowest half-widths for both female and male data. Such a
narrower half-width of prediction interval is informative, but could be at the cost of larger
coverage probability deviance, especially for the male data. Again, the simple methods
like the ARIMA and RWD methods tend to perform well for long-term interval forecasts.

12 nominal coverage probability > empirical coverage probability
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Table 12: Averaged half-width of the one-step-ahead forecast female life
expectancies by method and country

Country LC LCnone TLB LM BMS RWD RW
Australia 0.25 0.16 0.21 0.23 0.26 0.40 0.40
Canada 0.14 0.14 0.15 0.11 0.09 0.30 0.30
Denmark 0.23 0.22 0.51 0.20 0.16 0.80 0.80
England 0.33 0.18 0.18 0.18 0.20 0.53 0.52
Finland 0.23 0.24 0.33 0.21 0.22 0.73 0.72
France 0.31 0.35 0.24 0.19 0.24 1.02 1.01
Iceland 0.85 0.98 0.07 0.05 0.20 3.49 3.48
Italy 0.31 0.39 0.19 0.17 0.20 1.16 1.16
Netherlands 0.31 0.35 0.27 0.17 0.18 0.92 0.91
Norway 0.18 0.18 0.29 0.16 0.18 0.68 0.68
Scotland 0.23 0.19 0.43 0.24 0.29 0.70 0.70
Spain 0.23 0.30 0.19 0.18 0.16 1.08 1.07
Sweden 0.32 0.40 0.25 0.16 0.20 1.35 1.35
Switzerland 0.28 0.34 0.37 0.18 0.18 0.66 0.66
Mean 0.30 0.32 0.26 0.17 0.20 0.99 0.98
Mean(w) 0.28 0.28 0.22 0.18 0.19 0.84 0.83

Australia 0.61 0.69 0.53 0.56 3.65 0.36 0.36
Canada 0.56 0.60 0.46 0.51 3.96 0.27 0.26
Denmark 1.11 1.38 0.96 1.01 4.44 0.67 0.67
England 0.58 0.62 0.39 0.43 2.40 0.41 0.41
Finland 1.29 1.52 0.97 1.00 7.62 0.67 0.65
France 0.79 0.87 0.45 0.50 4.17 0.92 0.90
Iceland 3.85 4.31 2.74 2.89 10.26 2.73 2.68
Italy 0.96 1.11 0.50 0.52 5.29 1.00 0.99
Netherlands 1.11 1.22 0.55 0.57 6.28 0.83 0.80
Norway 0.95 1.27 0.68 0.74 4.04 0.63 0.61
Scotland 0.87 1.04 0.79 0.87 6.16 0.57 0.58
Spain 0.89 1.00 0.53 0.60 0.96 0.95 0.95
Sweden 1.26 1.56 0.60 0.65 8.88 1.30 1.21
Switzerland 1.09 1.26 0.80 0.85 7.31 0.57 0.56
Mean 1.14 1.32 0.78 0.84 5.39 0.85 0.83
Mean(w) 0.82 0.92 0.51 0.55 3.96 0.73 0.72
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Table 13: Averaged half-width of the one-step-ahead forecast male life
expectancies by method and country

Country LC LCnone TLB LM BMS RWD RW
Australia 0.24 0.13 0.20 0.21 0.21 0.40 0.40
Canada 0.11 0.10 0.11 0.08 0.06 0.27 0.27
Denmark 0.22 0.22 0.11 0.09 0.07 0.74 0.74
England 0.24 0.15 0.15 0.15 0.16 0.48 0.48
Finland 0.35 0.35 0.35 0.22 0.22 1.82 1.81
France 0.41 0.43 0.19 0.18 0.17 1.64 1.63
Iceland 0.82 0.97 1.16 1.16 0.32 3.33 3.32
Italy 0.27 0.33 0.12 0.13 0.13 1.27 1.27
Netherlands 0.38 0.38 0.07 0.09 0.07 1.15 1.14
Norway 0.17 0.17 0.08 0.07 0.09 0.70 0.70
Scotland 0.15 0.13 0.40 0.15 0.23 0.64 0.64
Spain 0.33 0.37 0.20 0.19 0.13 1.12 1.12
Sweden 0.35 0.42 0.17 0.12 0.14 1.42 1.42
Switzerland 0.31 0.40 0.29 0.16 0.17 0.77 0.76
Mean 0.31 0.32 0.26 0.21 0.16 1.12 1.12
Mean(w) 0.29 0.29 0.16 0.15 0.14 0.99 0.99

Australia 0.64 0.77 0.59 0.64 2.15 0.36 0.36
Canada 0.54 0.65 0.47 0.54 2.13 0.25 0.25
Denmark 1.04 1.22 0.83 0.85 2.29 0.63 0.62
England 0.63 0.68 0.42 0.49 2.39 0.42 0.42
Finland 1.46 2.05 1.12 1.30 5.33 1.67 1.64
France 1.05 1.13 0.55 0.60 3.69 1.57 1.52
Iceland 4.37 4.26 2.96 3.16 9.99 2.66 2.63
Italy 1.10 1.30 0.60 0.67 3.55 1.24 1.14
Netherlands 1.06 1.22 0.56 0.58 4.00 1.04 1.01
Norway 0.97 1.32 0.63 0.82 2.56 0.67 0.65
Scotland 0.90 1.06 0.87 0.89 3.80 0.58 0.58
Spain 1.12 1.23 0.64 0.78 4.73 1.06 1.06
Sweden 1.28 1.35 0.62 0.70 6.60 1.37 1.26
Switzerland 1.12 1.33 0.80 0.84 4.59 0.62 0.63
Mean 1.23 1.40 0.83 0.92 4.13 1.01 0.98
Mean(w) 0.93 1.06 0.57 0.65 3.43 0.93 0.90
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Table 14: Coverage probability deviance of the ten-step-ahead forecast female
life expectancies by method and country. Minus sign indicates that
the empirical coverage probability is less than the nominal coverage
probability

Country LC LCnone TLB LM BMS RWD RW

Australia 0.3775( – ) 0.7818( – ) 0.1567( – ) 0.0346(+) 0.0771(+) 0.1931(+) 0.5264( – )
Canada 0.0251( – ) 0.6952( – ) 0.2398( – ) 0.3541( – ) 0.2225( – ) 0.1991(+) 0.1229( – )
Denmark 0.2026( – ) 0.7126( – ) 0.1853(+) 0.0606( – ) 0.2571( – ) 0.2000(+) 0.2000(+)
England 0.1723(+) 0.7706( – ) 0.0398( – ) 0.0667(+) 0.0857(+) 0.2000(+) 0.1498(+)
Finland 0.3654( – ) 0.7645( – ) 0.0251( – ) 0.0130(+) 0.0519( – ) 0.2000(+) 0.0918(+)
France 0.1879( – ) 0.8000( – ) 0.0900(+) 0.0961(+) 0.1056(+) 0.2000(+) 0.2000(+)
Iceland 0.1126(+) 0.0519(+) 0.7463( – ) 0.7463( – ) 0.7610( – ) 0.2000(+) 0.2000(+)
Italy 0.1706( – ) 0.7784( – ) 0.7489( – ) 0.0035(+) 0.1143(+) 0.2000(+) 0.1775(+)
Netherlands 0.0684(+) 0.2684( – ) 0.1152( – ) 0.3749( – ) 0.2926( – ) 0.2000(+) 0.2000(+)
Norway 0.2597( – ) 0.7697( – ) 0.0944(+) 0.0433(+) 0.0156( – ) 0.2000(+) 0.2000(+)
Scotland 0.2390( – ) 0.8000( – ) 0.1368(+) 0.1238(+) 0.1160(+) 0.2000(+) 0.2000(+)
Spain 0.2052( – ) 0.7905( – ) 0.7662( – ) 0.0095( – ) 0.1818( – ) 0.2000(+) 0.2000(+)
Sweden 0.1108( – ) 0.6797( – ) 0.0632(+) 0.0987(+) 0.0545(+) 0.2000(+) 0.2000(+)
Switzerland 0.0173( – ) 0.7368( – ) 0.1342(+) 0.0649(+) 0.0684( – ) 0.2000(+) 0.1359(+)
Mean 0.1796( – ) 0.6714( – ) 0.2530( – ) 0.1493( – ) 0.1717( – ) 0.1994(+) 0.2003(+)
Mean(w) 0.1732( – ) 0.7453( – ) 0.3105( – ) 0.0953( – ) 0.1313( – ) 0.1996(+) 0.1967(+)

Country HU HUrob HU50 HUrob50 HUw ETS ARIMA

Australia 0.2026( – ) 0.3645( – ) 0.1498( – ) 0.1429( – ) 0.2000(+) 0.1307(+) 0.1931( – )
Canada 0.1784(+) 0.2000(+) 0.1290( – ) 0.0147(+) 0.2000(+) 0.0701( – ) 0.0000( – )
Denmark 0.1896(+) 0.0779( – ) 0.1680(+) 0.1931(+) 0.2000(+) 0.0139( – ) 0.0771(+)
England 0.2398( – ) 0.1887(+) 0.1714(+) 0.2000(+) 0.2000(+) 0.0260( – ) 0.0052(+)
Finland 0.3567( – ) 0.5074( – ) 0.1524(+) 0.0771(+) 0.2000(+) 0.1004(+) 0.0459( – )
France 0.6589( – ) 0.3039( – ) 0.0961(+) 0.1939(+) 0.2000(+) 0.1887(+) 0.1056(+)
Iceland 0.2000(+) 0.2000(+) 0.2000(+) 0.2000(+) 0.2000(+) 0.2000(+) 0.2000(+)
Italy 0.5584( – ) 0.1351( – ) 0.0710( – ) 0.0502( – ) 0.2000(+) 0.1238(+) 0.0675( – )
Netherlands 0.2000(+) 0.1723(+) 0.3455( – ) 0.2641( – ) 0.2000(+) 0.1931(+) 0.1489(+)
Norway 0.5584( – ) 0.0727(+) 0.0675(+) 0.3177( – ) 0.2000(+) 0.0338(+) 0.0675( – )
Scotland 0.5905( – ) 0.5100( – ) 0.1680(+) 0.1117(+) 0.2000(+) 0.0909(+) 0.0745( – )
Spain 0.0623( – ) 0.2000(+) 0.1861(+) 0.1671(+) 0.2000(+) 0.1645(+) 0.1100(+)
Sweden 0.1576(+) 0.6563( – ) 0.1835(+) 0.1957(+) 0.2000(+) 0.1913(+) 0.1931(+)
Switzerland 0.1463(+) 0.0866(+) 0.2000(+) 0.1827(+) 0.2000(+) 0.0597( – ) 0.1048(+)
Mean 0.3071( – ) 0.2625( – ) 0.1635(+) 0.1651(+) 0.2000(+) 0.1134(+) 0.0995(+)
Mean(w) 0.3482( – ) 0.2304( – ) 0.1436(+) 0.1472(+) 0.2001(+) 0.1188(+) 0.0785(+)
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Table 15: Coverage probability deviance of the ten-step-ahead forecast male
life expectancies by method and country. Minus sign indicates that
the empirical coverage probability is less than the nominal coverage
probability

Country LC LCnone TLB LM BMS RWD RW

Australia 0.7481( – ) 0.7818( – ) 0.7662( – ) 0.7515( – ) 0.2952( – ) 0.3879( – ) 0.5619( – )
Canada 0.7385( – ) 0.7749( – ) 0.7532( – ) 0.7584( – ) 0.7775( – ) 0.3801( – ) 0.5619( – )
Denmark 0.5074( – ) 0.4615( – ) 0.5229( – ) 0.5229( – ) 0.6294( – ) 0.1879(+) 0.1195(+)
England 0.5887( – ) 0.8000( – ) 0.6892( – ) 0.7039( – ) 0.7203( – ) 0.0762(+) 0.4078( – )
Finland 0.4407( – ) 0.7169( – ) 0.3446( – ) 0.3152( – ) 0.4208( – ) 0.1758(+) 0.0571(+)
France 0.3818( – ) 0.7844( – ) 0.4433( – ) 0.0961( – ) 0.5264( – ) 0.2000(+) 0.1662(+)
Iceland 0.0623(+) 0.0926(+) 0.0528( – ) 0.5510( – ) 0.6182( – ) 0.2000(+) 0.2000(+)
Italy 0.6104( – ) 0.7714( – ) 0.7169( – ) 0.6848( – ) 0.7108( – ) 0.2000(+) 0.1048(+)
Netherlands 0.0771( – ) 0.0485( – ) 0.7550( – ) 0.6381( – ) 0.7654( – ) 0.2000(+) 0.2000(+)
Norway 0.7489( – ) 0.7472( – ) 0.7403( – ) 0.6926( – ) 0.7550( – ) 0.0139(+) 0.1377( – )
Scotland 0.5515( – ) 0.7991( – ) 0.3429( – ) 0.6727( – ) 0.3030( – ) 0.1030(+) 0.0372( – )
Spain 0.1887( – ) 0.5662( – ) 0.3169( – ) 0.0052( – ) 0.3065( – ) 0.2000(+) 0.2000(+)
Sweden 0.2874( – ) 0.2026( – ) 0.6589( – ) 0.6675( – ) 0.6918( – ) 0.2000(+) 0.2000(+)
Switzerland 0.4848( – ) 0.6494( – ) 0.3420( – ) 0.6537( – ) 0.5100( – ) 0.1273(+) 0.1801( – )
Mean 0.4583( – ) 0.5855( – ) 0.5318( – ) 0.5510( – ) 0.5736( – ) 0.1894(+) 0.2239( – )
Mean(w) 0.4877( – ) 0.6919( – ) 0.5917( – ) 0.4886( – ) 0.5908( – ) 0.2010(+) 0.2664( – )

Country HU HUrob HU50 HUrob50 HUw ETS ARIMA

Australia 0.5870( – ) 0.5342( – ) 0.6061( – ) 0.5870( – ) 0.2762( – ) 0.1022( – ) 0.4303( – )
Canada 0.5446( – ) 0.5463( – ) 0.5974( – ) 0.5913( – ) 0.1593(+) 0.2918( – ) 0.2996( – )
Denmark 0.2788( – ) 0.2485( – ) 0.5238( – ) 0.5195( – ) 0.0156(+) 0.3065( – ) 0.2987( – )
England 0.6372( – ) 0.4970( – ) 0.5861( – ) 0.6061( – ) 0.0736( – ) 0.3965( – ) 0.4909( – )
Finland 0.5385( – ) 0.4442( – ) 0.4874( – ) 0.4485( – ) 0.1957(+) 0.2199( – ) 0.2104( – )
France 0.6390( – ) 0.6511( – ) 0.4182( – ) 0.4147( – ) 0.2000(+) 0.1273( – ) 0.2277( – )
Iceland 0.2000(+) 0.2000(+) 0.2000(+) 0.1654(+) 0.2000(+) 0.1991(+) 0.2000(+)
Italy 0.5680( – ) 0.3879( – ) 0.3905( – ) 0.5957( – ) 0.2000(+) 0.1801( – ) 0.2996( – )
Netherlands 0.0814( – ) 0.0294( – ) 0.5896( – ) 0.5558( – ) 0.1775(+) 0.0641( – ) 0.0190( – )
Norway 0.4502( – ) 0.1541( – ) 0.4234( – ) 0.5688( – ) 0.0424( – ) 0.3602( – ) 0.3489( – )
Scotland 0.6571( – ) 0.6641( – ) 0.6035( – ) 0.5853( – ) 0.2000(+) 0.3368( – ) 0.3351( – )
Spain 0.0571( – ) 0.2000(+) 0.2000(+) 0.1333(+) 0.2000(+) 0.1905(+) 0.1835(+)
Sweden 0.4182( – ) 0.3411( – ) 0.5905( – ) 0.5792( – ) 0.1983(+) 0.0450( – ) 0.2320( – )
Switzerland 0.5437( – ) 0.5619( – ) 0.5342( – ) 0.5316( – ) 0.2000(+) 0.3472( – ) 0.4225( – )
Mean 0.4429( – ) 0.3900( – ) 0.4822( – ) 0.4916( – ) 0.1670(+) 0.2262( – ) 0.2856( – )
Mean(w) 0.4893( – ) 0.4399( – ) 0.4657( – ) 0.4931( – ) 0.1713(+) 0.2193( – ) 0.3007( – )
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Table 16: Averaged half-width of the ten-step-ahead forecast female life ex-
pectancies by method and country

Country LC LCnone TLB LM BMS RWD RW
Australia 0.84 0.51 0.74 0.82 1.04 1.38 1.30
Canada 0.46 0.46 0.54 0.38 0.36 1.05 0.98
Denmark 0.72 0.69 2.20 0.73 0.59 2.64 2.56
England 1.07 0.58 0.61 0.64 0.74 1.81 1.69
Finland 0.73 0.73 1.11 0.73 0.82 2.43 2.33
France 0.98 1.12 0.81 0.65 0.87 3.34 3.25
Iceland 2.80 3.16 1.51 0.24 1.10 11.50 11.14
Italy 1.00 1.25 0.63 0.58 0.70 3.88 3.72
Netherlands 0.98 1.13 0.95 0.60 0.78 3.03 2.93
Norway 0.56 0.56 0.96 0.57 0.60 2.25 2.18
Scotland 0.73 0.56 1.56 0.89 1.08 2.32 2.24
Spain 0.70 0.94 0.62 0.57 0.52 3.68 3.48
Sweden 1.02 1.27 0.91 0.57 0.66 4.39 4.30
Switzerland 0.90 1.10 1.29 0.60 0.69 2.21 2.12
Mean 0.96 1.00 1.03 0.61 0.75 3.28 3.16
Mean(w) 0.89 0.89 0.75 0.61 0.71 2.80 2.68

Country HU HUrob HU50 HUrob50 HUw ETS ARIMA
Australia 1.13 1.14 0.74 0.78 1.73 0.82 0.74
Canada 0.93 1.05 0.63 0.70 2.89 0.63 0.60
Denmark 1.37 1.52 1.34 1.17 7.41 1.06 0.95
England 0.99 1.11 1.13 1.06 2.37 0.73 0.60
Finland 1.63 1.88 1.44 1.39 7.50 1.42 1.29
France 1.25 1.36 0.75 0.88 4.40 1.57 1.40
Iceland 4.46 4.90 3.58 3.20 6.27 3.36 3.58
Italy 1.31 1.57 0.81 0.80 7.36 1.55 1.37
Netherlands 1.62 1.75 0.68 0.71 7.41 1.58 1.29
Norway 1.26 1.81 0.80 0.84 4.17 1.14 0.98
Scotland 1.06 1.25 1.24 1.56 4.39 0.90 0.92
Spain 1.25 1.43 1.42 1.46 5.30 1.65 1.65
Sweden 1.63 1.86 0.69 0.77 8.80 2.64 1.63
Switzerland 1.33 1.55 0.92 1.09 7.70 0.88 0.85
Mean 1.52 1.73 1.16 1.17 5.55 1.42 1.27
Mean(w) 1.21 1.37 0.94 0.97 4.80 1.28 1.13
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Table 17: Averaged half-width of the ten-step-ahead forecast male life ex-
pectancies by method and country

Country LC LCnone TLB LM BMS RWD RW
Australia 0.81 0.40 0.71 0.73 0.81 1.36 1.27
Canada 0.33 0.29 0.35 0.27 0.22 0.91 0.86
Denmark 0.73 0.71 0.25 0.31 0.07 2.44 2.36
England 0.77 0.44 0.51 0.52 0.56 1.66 1.55
Finland 1.11 1.10 1.26 0.76 1.02 6.07 5.82
France 1.29 1.37 0.67 0.63 0.62 5.37 5.22
Iceland 2.77 3.18 3.18 3.18 3.18 10.99 10.65
Italy 0.88 1.05 0.34 0.43 0.41 4.25 4.08
Netherlands 1.27 1.26 0.18 0.27 0.14 3.80 3.67
Norway 0.58 0.54 0.09 0.10 0.14 2.30 2.23
Scotland 0.46 0.38 1.47 0.49 2.66 2.12 2.04
Spain 1.11 1.24 0.71 0.65 0.45 3.83 3.62
Sweden 1.16 1.38 0.53 0.42 0.49 4.63 4.54
Switzerland 1.00 1.33 1.00 0.53 0.60 2.56 2.46
Mean 1.02 1.05 0.80 0.66 0.81 3.73 3.60
Mean(w) 0.93 0.91 0.55 0.51 0.52 3.31 3.17

Country HU HUrob HU50 HUrob50 HUw ETS ARIMA
Australia 1.26 1.36 0.85 0.93 1.96 1.07 0.92
Canada 0.69 0.82 0.64 0.67 1.83 0.72 0.73
Denmark 1.18 1.33 0.92 0.94 2.31 0.99 0.87
England 0.94 1.19 0.59 0.66 2.00 0.82 0.78
Finland 1.94 2.73 1.34 1.90 4.35 3.24 2.70
France 1.54 1.75 0.72 0.77 5.05 3.86 2.53
Iceland 6.36 6.37 6.36 6.37 9.69 3.53 3.73
Italy 1.78 2.12 0.92 0.79 4.46 3.58 2.56
Netherlands 1.28 1.55 0.73 0.77 2.57 1.94 1.41
Norway 1.32 1.96 0.77 0.85 2.37 1.53 1.17
Scotland 1.03 1.16 0.93 1.05 3.35 1.21 1.26
Spain 1.69 1.81 1.61 2.17 5.92 2.51 2.49
Sweden 1.66 1.53 0.70 0.83 2.48 2.90 1.68
Switzerland 1.24 1.38 0.87 1.01 4.82 0.80 0.80
Mean 1.71 1.93 1.28 1.41 3.80 2.05 1.69
Mean(w) 1.37 1.59 0.88 0.98 3.68 2.27 1.75
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8. Result of the model averaging approach

In the demographic literature, methods have been developed to combine forecasts from
different approaches. For example, the forecasts from time-series models have been com-
bined with expert opinions (Lee and Tuljapurkar 1994) or combined with target levels and
age distribution of fertility and mortality (Lutz, Sanderson, and Scherbov 2001). In Sec-
tion 3., we introduce a model averaging approach to combine point forecasts, in which
the optimal weights are determined by past forecast error in the validation set or BMA
or equal weighting. Table 18 presents the MAFEs of the one-step-ahead combined point
forecast accuracy. As expected, the equal weighting performs poorly, whereas the com-
bination of two best models weighted by their past forecast accuracy performs the best,
followed closely by the weighting based on the notion of BMA.

Table 18: Point forecast accuracy of the combined female and male life
expectancies by country, as measured by the MAFEs for the one-
step-ahead forecasts

Equal Frequentistall Frequentist2 BMA
Country Female Male Female Male Female Male Female Male

Australia 0.2314 0.3762 0.1912 0.2967 0.1588 0.1796 0.1489 0.1846
Canada 0.0934 0.3231 0.0817 0.2262 0.0773 0.1211 0.0777 0.1224
Denmark 0.1708 0.3132 0.1639 0.3147 0.1838 0.1613 0.1808 0.1760
England 0.2112 0.3674 0.1850 0.2914 0.1362 0.1377 0.2052 0.1636
Finland 0.3965 0.5837 0.2291 0.2824 0.1473 0.1511 0.1486 0.1661
France 0.2666 0.4446 0.1613 0.2880 0.1327 0.1187 0.1324 0.1428
Iceland 0.5382 0.8412 0.4320 0.5609 0.3802 0.4058 0.3829 0.4002
Italy 0.2891 0.4687 0.2312 0.4065 0.1420 0.1330 0.1411 0.1573
Netherlands 0.1482 0.3039 0.1309 0.2568 0.1184 0.1463 0.1181 0.1799
Norway 0.2713 0.3799 0.1943 0.3253 0.1533 0.1887 0.1551 0.2176
Scotland 0.3527 0.4772 0.2883 0.4176 0.1730 0.1890 0.1762 0.2082
Spain 0.2452 0.2462 0.1803 0.1989 0.1531 0.1467 0.1421 0.1400
Sweden 0.2486 0.3550 0.1393 0.3124 0.1309 0.1381 0.1314 0.1513
Switzerland 0.2131 0.3684 0.1298 0.2851 0.1157 0.1359 0.1143 0.1374
Mean 0.2626 0.4178 0.1956 0.3188 0.1573 0.1681 0.1611 0.1820
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The advantage of the model averaging approach becomes more apparent as the fore-
cast horizon increases to h = 10. In Table 19, we again found improvement of the point
forecast accuracy produced by the model averaging approach, in comparison to the naïve
random walk methods.

Table 19: Point forecast accuracy of the combined female and male life
expectancies by country, as measured by the MAFEs for the ten-
step-ahead forecasts

Equal Frequentistall Frequentist2 BMA
Country Female Male Female Male Female Male Female Male

Australia 0.7983 1.6240 0.7363 1.6282 0.5384 1.2863 0.6189 1.5798
Canada 0.2914 1.1317 0.3240 1.1126 0.3408 0.9144 0.3639 1.0296
Denmark 0.4637 1.2100 0.4571 1.3177 0.4442 0.8759 0.6337 1.2713
England 0.4773 1.3261 0.4195 1.2772 0.2722 1.0087 0.3712 1.1853
Finland 0.9738 1.6643 0.8602 1.6135 0.3054 0.8331 0.6924 1.1119
France 0.6238 1.4360 0.3216 1.2323 0.1842 0.5432 0.2010 1.1331
Iceland 1.1282 1.5610 1.1235 1.2613 0.4306 0.7208 0.7718 1.2259
Italy 0.7817 1.6360 0.6248 1.6320 0.3400 0.9783 0.3468 1.3412
Netherlands 0.3759 1.1204 0.4275 1.0502 0.4822 0.7231 0.4540 1.1087
Norway 0.7178 1.5352 0.6377 1.4943 0.3443 1.1879 0.6293 1.5819
Scotland 0.7310 1.5216 0.6194 1.5644 0.3426 0.9696 0.4790 1.2783
Spain 0.4919 0.7146 0.4010 0.6689 0.1738 0.3301 0.4728 0.8131
Sweden 0.5557 1.3620 0.2267 1.3740 0.1434 0.9964 0.4176 1.2511
Switzerland 0.3561 1.2345 0.2378 1.1530 0.2183 0.8531 0.2809 0.9071
Mean 0.6262 1.3627 0.5298 1.3128 0.3258 0.8729 0.4810 1.2013

9. Discussion

The above comparative analysis of fourteen methods for forecasting age-specific life ex-
pectancies is the most comprehensive to date. It constitutes an evaluation of point and
interval forecasts for life expectancies based on ten principal component methods, two ran-
dom walk methods, and two univariate time-series methods, using age- and sex-specific
of the fourteen developed countries. The methods include the LC method and four LC
variants, the HU method, itself an extension of the LC method, and four HU variants, RW
and RWD, ETS and ARIMA methods. The evaluation of point and interval forecasts of
life expectancies is a sequel of Shang, Booth, and Hyndman (2011), who considered a
similar forecasting exercise, but with application to mortality rates and life expectancy at
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birth. The evaluation of interval forecast accuracy is novel in the context of forecasting
age-specific life expectancies.

9.1 Point forecasts

Our overall findings regarding the direction of bias is that the LM has the smallest amount
of bias among all methods for the female data13. The bias performance of the LM method
is followed closely by the BMS and RWD methods. For the male data, all methods con-
sistently underestimate the life expectancies with an exception of the LC method. Cance-
lation of MFEs from different countries leads to the most superior performance of the LC
method14, which is followed by the RWD and LM methods. Unlike the LC method, the
RWD and LM methods are more centered around zero at all ages (see Figure 1).

Regarding the point forecast accuracy of life expectancies, the RWD method is the
most accurate method for forecasting the one-year-ahead life expectancies. The perfor-
mance of the RWD method is followed closely by the LM method15. In comparison to
the RWD method, the slightly less accurate performance of the LM method may due to the
inadequacy of truncating data from 1950 onward. As emphasized by Booth, Maindonald,
and Smith (2002), the optimal fitting period should be selected in a data-driven manner,
by using a statistical “goodness of fit" criterion. Truncating data from 1950 onward in the
LM method serves as a very rough guide for obtaining the optimal fitting period. As the
number of observations increases over years, truncating data from 1950 onward may no
longer be adequate to cope with recent structural change that happens after 1950. A future
research direction is to explore the possibility of combining the advantages of the LM and
BMS methods. To be more specific, the optimal fitting period is selected by a statistical
“goodness of fit" criterion, but the jump-off rates are the actual rates in the jump-off year.

9.2 Interval forecasts

Another finding is that all LC methods underestimate the variability in the life expectan-
cies; in other words, on average the prediction intervals are too narrow. This finding
is not new, and has been pointed out by Lee and Carter (1992). This underestimation
occurs for all populations consistently. By contrast, the HUw, RW and RWD methods
consistently produce much wider prediction intervals than all other methods, which also
lead to inferior interval forecast accuracy. The remaining methods exhibit a mixture of
overestimation and underestimation of the coverage probability for various countries.

13 refer to Table 4
14 refer to Table 5
15 refer to Tables 2 and 3
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As measured by the simple and weighted averages of the coverage probability de-
viance, the HU50 method produces the best interval forecast accuracy, which is followed
by the HU and HUrob methods16. For both female and male data, the HU methods pro-
duce more accurate interval forecasts than the LC methods. The main reason for their
narrower prediction intervals is that the LC methods consider only two sources of uncer-
tainty (see also Cairns 2000; Alho and Spencer 2005, p.215). In contrast, the HU methods
consider four sources of uncertainty. The additional two sources of uncertainty include:
First, the HU methods allow more principal components to be included in the model.
These additional components capture the underlying patterns of data, which are not ex-
plained by the first principal component (Booth, Maindonald, and Smith 2002; Renshaw
and Haberman 2003). Second, the HU methods use a nonparametric penalized regression
spline with the monotonic constraint of Ramsay (1988), to smooth the noisy log mortality
rates. Oftentimes, this results in a reduction of the overall variability.

It should be pointed out that the prediction intervals of life expectancies are con-
structed nonparametrically via a simulation approach. Therefore, they are asymmetric,
and this occasionally results in a wider upper bound only. In addition, the coverage prob-
ability deviance does not distinguish between the upper and lower bounds because it is
an absolute measure. Concretely, the coverage probability deviance would be the same,
when the empirical coverage probability is 0.9 or 0.7 at the nominal coverage probability
of 0.8. Further research is needed to examine other measures of interval forecast accuracy.

9.3 Comparison with some previous findings

Our findings differ from those of Shang, Booth, and Hyndman (2011) on several factors.
First, we use a rolling origin from 1988 to 2007, and examine the one-step-ahead and
ten-step-ahead point and interval forecast accuracy. Second, we consider the problem of
forecasting age-specific life expectancies rather than the life expectancy at birth studied
in Shang, Booth, and Hyndman (2011). Third, we use data from age 0 to 104+, rather
than 0 to 89+.

9.4 Limitations

Though including fourteen methods, this comparative analysis is limited to methods based
mainly on principal component approaches and univariate methods. Comparison of these
methods with other forecasting approaches is beyond the scope of this paper. However, the
analyses presented here provide a basis for the selection of principal component methods
to forecast age-specific life expectancies.

16 refer to Tables 10 and 11
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The comparison of the fourteen methods is solely based on the successive one-step-
ahead and ten-step-ahead point and interval forecasts. The use of the one-step-ahead
evaluations is a standard practice in forecasting, especially when a rolling origin is used.
While the one-step-ahead forecasts are customary in some time-series contexts, it may
not be the most relevant one in demography. Therefore, we also consider the ten-step-
ahead forecasts in this paper. However, it would be useful to examine a variety of forecast
horizons, such as h = 20 or h = 30.

The comparison of forecast accuracy is specific to the forecasting period from 1988
to 2007. It is possible that different results would be obtained for a different forecast-
ing period. In addition, the difference in forecast accuracy among methods may not be
statistically significant. To determine if the differences among methods are statistically
significant, a hypothesis testing is often performed. However, statistical tests of the results
are problematic, because the number of countries and the number of years in the forecast-
ing period are rather small, and cannot be considered as random samples. Therefore, we
did not test the statistical significance among the methods investigated.

The conclusion of this comparative analysis are based on age- and sex-specific simple
and weighted averages across the fourteen countries. As can be seen from the tables, some
methods perform well for certain countries, but may perform poorly overall. Similarly, a
method may perform best overall, but performs poorly for a certain country.

9.5 Future research

There are numerous ways in which the results of the present paper can be extended, and
we briefly mention a few of them at this point.

1. There are a number of problems, not just in the relatively narrow context of the
present paper but in age-specific mortality rate forecasting, in forecasting age-specific
fertility rates and in forecasting population size, to which the concept of model av-
eraging is applicable.

2. One might consider the model averaging approach to improve the accuracy of inter-
val forecast. Note that we cannot simply combine the lower and upper bounds of
prediction interval, as the underlying distribution is unknown.

3. One might consider different ways of selecting optimal combination weights.

9.6 Implementation

Implementation of the methods used in this article is straightforward using the readily
available R package demography (Hyndman 2012a). This package provides all fourteen
principal component approaches to model and forecast age-specific mortality rates and
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age-specific life expectancies. The data requirements are historical mortality rates, popula-
tion numbers and life expectancies in a complete matrix format by age and year. Such data
are readily available for many developed countries from the Human Mortality Database
(2012).
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