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Abstract

This paper deals especially with a two-stage approach to forecasting hourly elec-

tricity demand by using a linear regression model with serially correlated residuals. 

Firstly, ordinary least squares are applied to estimate a linear regression model based 

on purely deterministic predictors (essentially, polynomials in time and calendar 

dummy variables). In the case wherein the regression residuals are not a white noise 

series, a SARMA (seasonal autoregressive moving average) process is applied to the 

estimated regression residuals. After examining a vast set of potential representa-

tions, the stationary and invertible process associated with the smaller Akaike infor-

mation criterion and the smaller Ljung–Box statistic is selected. Secondly, two sets 

of instrumental predictors are added to the current model: the estimated residuals 

of the first regression model plus the estimated errors of the chosen SARMA pro-

cess. The new regression model is estimated by again using ordinary least squares, 

but taking advantage of the fact that the new regressors eliminate serial correlation. 

Practical issues in points and interval forecasting are illustrated with reference to 

nine-day ahead prediction performance for short-term electric loads in Italy.

Keywords Electricity demand · Simultaneous forecast intervals · Two-stage least 

squares · Serial dependence

1 Introduction

One strategic objective that companies operating in energy markets is to obtain 

accurate forecasts which, by reducing uncertainty in predicting the effects of man-

agement, can lead to substantial improvements in operating efficiency, reduction of 
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maintaining costs and increased reliability of the power supply. A descriptive statis-

tics analysis of the performances of energy companies is given in [26]. Over the last 

few decades, there have been many references with regard to the efforts being made 

to improve the accuracy of short term load forecasting.

The main goal of the paper is to develop a Regression-plus-SARMA (Reg-

SARMA) approach for short term forecasting of hourly electricity demand in the 

Italian electricity market.

Usually, the classical linear regression is a popular tool for investigating the rela-

tionship between a set of regressors and load, so as to forecast the load on the basis 

of the values of the predictors. Model parameters are estimated by applying the ordi-

nary least squares method, which involves the minimization of the sum of squared 

deviations (residuals) between observed and expected values given the fitted model. 

Applications of the regression model, for example, to Italian electricity consumption 

can be found in [3, 5, 15, 38].

There are many reasons why classical linear regression (CLR) might fail, rang-

ing from the inability to represent non-linear relationships to the often unrealistic 

requirement of a constant error variance. Also, special care should be taken regard-

ing the possible existence of outliers and/or multi-collinearity in the regressor matrix 

because either may alter the perception of the importance of the predictors and lead 

to inaccurate forecasts. Furthermore, residuals may be auto-correlated. Therefore, 

the question arises of whether we can improve our forecasts by incorporating infor-

mation on residuals.

In this paper, to deal with the correlation problem we introduce a combination 

of statistical methods, classical linear regression plus a SARMA model for the 

residuals.

The intent is to provide a more comprehensive, flexible and effective methodol-

ogy for short term predictions particularly for the case of the high-frequency time 

series of the energy market. The novel approach will enable reliable forecast of data 

that exhibit high volatility, strong mean reversion, and leptokurtosis. In the first 

stage, estimated loads are derived from a classical linear regression model with non-

stochastic predictors. In stage two, the residuals of stage one are examined by means 

of Box–Jenkins processes to ascertain whether they are random, or whether they 

exhibit patterns that can be used to improve fitting and enhance forecast accuracy. 

Finally, the computation of marginal prediction intervals (PIs) is used to evaluate 

the uncertainty associated with forecasts of hourly electricity load. The combina-

tion of the three-model building phases constitutes the specific contribution of this 

paper. We will demonstrate that the Reg-SARMA approach is not only effective in 

eliminating the harmful presence of serial dependence between regression residuals, 

but also it is easy to implement and satisfactory with respect of the predicted loads. 

The proposed methodology shows that intelligent integration of linear regression, 

time series and computational resources into a unique approach may provide accu-

rate predictions for short-term electric loads.

The paper proceeds as follows. Section 2 outlines the construction of the classical 

linear regression model, which will be based on a standard set of hypotheses so that 

the only problem will be the selection of the explanatory variables. We use princi-

pal component analysis and backward stepwise elimination to choose the predictors 
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(essentially, polynomials in time and calendar dummy variables) to be inserted in 

the regression model. Section  3 discusses the choice of the SARMA process that 

best describes the behavior of the estimated regression residuals. We consider a 

very broad class of processes. The stationary and invertible process associated with 

the smaller Akaike information criterion and the smaller Ljung–Box statistics are 

selected. Then, the residuals in the original regression model are replaced by the fit-

ted values of a SARMA process. Finally, regression and SARMA parameters are re-

estimated simultaneously by using the ordinary least squares and taking advantage 

of the fact that the new regressors eliminate the serial correlation between the origi-

nal residuals. Applications of the proposed methodology to Italian data (thanks to 

the ample availability of complete time series) show that Reg-SARMA models are 

very useful for point and interval forecasting of hourly electric demand. Section 4 

includes concluding remarks and future research.

2  Related work

The importance of energy demand management has been more vital in recent dec-

ades as the resources are getting less, emission is getting more and developments 

in applying renewable and clean energies has not been globally applied. Demand 

forecasting plays a vital role in energy supply-demand management for both gov-

ernments and private companies. Therefore, using models to accurately forecast the 

future energy consumption trends is an important issue for the power production 

and distribution systems. Several techniques have been developed over the last few 

decades to accurately predict the future in energy consumption. Over the years, sev-

eral methods have been developed to model the electricity load. See [21, 49] for a 

review. There has been a recent increase in literature, also under the impulse of [22]. 

In general terms, the various methods of load forecasting that can be applied at the 

macro level give rise to two main classes of procedures: first, statistical techniques 

such as seasonal autoregressive moving average, linear regression, non-parametric 

e semi-parametric regression, periodic stochastic time series, general exponential 

smoothing, state space model and Kalman filter analysis (e.g., [38, 42, 51]); second, 

artificial intelligence based techniques such as support vector machines fuzzy logic, 

artificial neural networks and expert based systems (e.g. [23, 29, 47, 48]). In the 

present paper, we describe and test a methodology based on linear statistical meth-

ods for short term load forecasting (STLF). An overview on this theme is provided 

in [1, 10]. Results of simple regression time series are often promising, and lead to 

developing univariate and multivariate models. [4] believe that some of the devel-

oped time series models such as ARIMA models and state space models are among 

the most useful short-term forecasting models (see also [13, 37]). A time series 

approach was also applied by [46] to forecast very short-term electricity demand in 

south Australia. The used approach slices the seasonal univariate time series into a 

time series of curves, and applies functional principal component analysis prior to 

using the regression techniques and univariate time series forecasting method. The 

authors believed that their approach is able to improve the accuracy for both point 

and interval forecasts.
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Various techniques have been investigated to solve the problem of short term 

forecasting, with varying degrees of success and there are widespread studies mak-

ing efforts for improving the accuracy of prediction. The reason of applying various 

methods to predict the energy consumption is that when the accuracy and computing 

time of several methods are the same, simpler methods are preferred to more com-

plex methods. Therefore, developing simple methods with acceptable accuracy is an 

attractive area of future studies.

3  Building the CLR model

The predictor selection is the most important phase in the construction of a classical 

linear regression model. Due to the lack of an established theoretical base for con-

vincing derivation of the explanatory variables to be employed in the analysis of the 

hourly electricity load, we are compelled to consider many potential factors. After 

analyzing a number of potential predictors, we settled on two sets of explanatory 

variables.

The first set comprises calendar variables that capture various features and spe-

cial conditions concerning consumer habits. Calendar events that affect electricity 

demand are the hours of the day: 23 dummy variables excluding the 24-th hour (note 

that at least one category of each group of dummy variables must be omitted to 

prevent complete collinearity between predictors); the days of the week: 6 dummy 

variables excluding Wednesday; months of the year: 11 dummy variables for the 

months excluding February. The choice of the omitted dummies arises from auto-

correlation analysis and experience with the utility companies. Another predictor 

considered is the daylight saving time. In Italy, daylight saving time begins in the 

last Sunday of March at 2:00 a.m. At that time all clock times are set ahead one 

hour. Loads corresponding to the non-observation at 2:00 a.m. are imputed using 

the average of the loads at 1:00 a.m. and 3:00 a.m. In the last Sunday of October, at 

3:00 a.m., returns the standard time and clock times are moved back one hour. Loads 

corresponding at 2:00 a.m. are imputed using the average of the loads at 2:00 a.m. 

and 3:00 a.m. Other predictors taken into account are public holidays (official and 

religious), days before and days after holidays (including week-end days). In short, a 

set of m = 4 + 23 + 6 + 11 + 4 = 48 variables is allowed.

The second set of explanatory variables derives from the trend always noted in 

load time series. Therefore, a standard procedure would be to include orthogonal 

polynomials in the regression up to the order needed to characterize the most com-

plicated trend. In the time series studied in our paper, orthogonal polynomials were 

fitted adaptively up to the order four. The use of orthogonal polynomials results in 

uncorrelated regressors so that multi-collinearity cannot occur.

Predictors such as sociological and demographic factors, temperature, relative 

humidity, solar radiation, wind speed, cloud cover, etc. were ignored because 

they are unusable in aggregation at large regional scale. Additionally, predic-

tion of changes in social and climate factors raises the question of whether these 

variables are predictable and, if they are, whether predictability can be achieved 

for changes at an hourly time step (see, for example, [6, 9]). Furthermore, if one 
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or more predictors must, themselves, be forecast, then the formula for forecast 

variances has to be modified to incorporate the uncertainty in forecasting those 

predictors that are not known perfectly, ex ante. This will vastly complicate the 

computation, particularly when taking into account relationships between errors 

in the predictor generating process and errors in the load generating process. 

Many authors view this problem as simply intractable. See [16, p. 127–128].

In any event, indicators for the climate could be introduced at the cost of set-

ting load forecasting within a more general framework of a system of time series 

regression equations (some based on atmospheric physics) which are beyond the 

scope of this paper. The undeniable influences of climatic variations are cap-

tured implicitly by the joint action of a polynomial trend and calendar dummies. 

In summary, the proposed model has the following form

where L
t
 is the hourly electric load expressed in MWh and X

t,i, i = 1, 2,… , m are the 

regressors or predictors. Each �j is a parameter that measures how L
t
 is related to 

the j-th predictor: �Lt∕�Xt,j = �j . Thus, coefficients measure the marginal effects of 

the predictor variables. One way to interpret �
0
 is that it coincides with the expected 

load (in MWh) when all dummy variables are in their respective reference category. 

Each combination of 0/1 gets its own regression surface, still parallel to each other. 

The addend e
t
 is an unobserved residual that accounts for disturbing factors other 

than the variation in the L
t
 that predictors do not explain.

Within the framework of the classical linear regression model, the term e
t
 

requires making explicit assumptions. We follow [50, ch.10] 

1. The conditional expectation of the residual at time t, given the predictors for all 

time periods, is zero E(e
t
|�) = 0 for each t.

2. The conditional variance E(e2

t
|�) = �

2

e
, t = 1,… , n is finite and constant for each 

t.

3. Conditional on the matrix of predictors � , the residuals in two different periods 

are uncorrelated with each other E(e
t
e

r
|�) = 0 for each t ≠ r.

4. The e
t
 s are independent of �.

5. The e
t
 s are independently and identically distributed as Gaussian random vari-

ables with zero mean and variance �2

e
.

Under the above conditions the method of least squares yields the best linear 

unbiased estimators of the unknown coefficient � , conditional on � . A con-

sequence of assumption 5 is that the least squares estimators have a Gaussian 

distribution, conditional on � , providing in this way, an inferential framework 

for the regression model. In this case, the parameter estimates obtained by least 

squares are equivalent to maximum likelihood estimates.

(1)Lt = �0 +

m
∑

j=1

�jXt,j + et,
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3.1  Discarding some of the predictors

Due to the high number of predictors, it is advisable to perform some sort of screen-

ing procedure before building a regression model with sequential strategies such as 

stepwise selection. To this end we carry out a preliminary, albeit schematic, selec-

tion based on principal component analysis. The set of predictors is then further 

refined by applying stepwise backward elimination. Before we start, it is impor-

tant to emphasize that in most cases the testing based screening procedures tend to 

include fewer regressors than desirable for forecasting purposes. In this sense, the 

variable selection will not involve the regressors in the trend component because it 

is better to use them to predict hourly electricity demand, even when they are not 

highly significant.

Let P1,… , P
�
 be the first � principal components (PC) of the correlation matrix 

of the potential regressors, ordered according to the percentage of explained vari-

ance from most to least. We consider useful components the PCs associated with an 

eigenvalue greater than or equal to 0.70 and which have three or more substantial 

loadings. We presume that if a data set were more parsimoniously represented by 

only � PCs, then it will often be true that the data set can be replaced by a subset of � 

“principal variables” with a relatively small loss of information.

We have selected the principal variables using the technique B4 described in [25, 

Sec. 6.3]. Principal variable analysis helps reduce the complexity of model (1) by 

identifying those variables that contain the most information. Specifically, method 

B4 first considers the predictor, which has the highest correlation coefficient (in 

absolute term) with the first principal component. This predictor is retained and is 

followed by another predictor that has the highest absolute correlation coefficient 

with the second principal component. Naturally, selections subsequent to the first 

are limited only to the principal variables that have not been retained in the pre-

ceding selections. The procedure is continued until � potential regressors have been 

identified. Nonetheless, � predictors can be still too large.

A refinement is carried by means of the backward elimination procedure, which 

cancels sequentially the predictors “most useless” from the current set of predic-

tors, one at a time until no more predictors can be removed. At each stage, the pre-

dictors are identified whose p-value of the corresponding t-statistic is higher than a 

prefixed threshold �̄ . The constant �̄ is the minimum level of significance to reject 

the hypothesis H
0
∶ �

i
= 0 , that is, pi > �̄ implies that the predictor X

i
 is a candi-

date to be removed. The p-values should not be taken too literally because we are in 

a multiple testing situation where we cannot assume independence between trials. 

Moreover, the removal of less significant regressors alters the significance of the 

remaining ones. Thus, one often overstates the importance of the remaining predic-

tors. Accordingly, we have established �̄ = 0.0000001 . The choice of such a small 

value is motivated by the desire to limit the adverse effect of huge samples (which 

are typical in the load forecasting domain) on stepwise regression. See [36].

If, at a given stage, there are more than one predictors verifying the condition 

pi > �̄ , then the predictor which has the largest VIF (variance inflation factor) is 

canceled from the set. Removals continue until the candidate to exit has a p-value 

lower than the minimum level �̄.
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3.2  Adequacy of fitting

The adequacy of the fitting models is studied by using the values of the adjusted 

R
2 and the bias-corrected Akaike information criterion

where R2 is the coefficient of multiple determination of the regression equation, m is 

the number of unknown parameters of the model and �̂2

e
 is the estimated variance for 

the fitted regression.

3.3  Serial correlation of estimated residuals

The CLR model presupposes the absence of serial correlation between residuals. 

If this is not true, then this fact can be detected through the auto-correlations of 

the estimated residuals. In this regard, a commonly used statistic is that suggested 

in [35]

where r
t
 is the auto-correlation of lag t for the estimated residuals ê

t
 s. Given the 

hourly seasonality of the loads, we set k
1
= 2 ⋅ 24 = 48 . Large values of LB lead to 

the rejection of the hypothesis of no auto-correlation between the residuals.

4  Point and simultaneous interval forecasts

Let L̂
n+h

 be the conditional expectation of the load demanded at day n + h , L
n+h

 , 

given the past loads 
{

L
n
,… , L1

}

where H is the prediction horizon of interest. We denote the conditional forecast 

error corresponding to L̂
n+h

 by e
n+h

= (L
n+h

− L̂
n+h

) . It can easily be shown that (4) 

is the forecast for which the mean squared error of prediction, defined as E(e
n+h

)2 , is 

as small as possible. The execution of (4) leads to

Expression (5) does not create any major problem because forecasts include either 

values of the orthogonal polynomials, which have already been used as regressors 

(2)R̄
2
= 1 −

(

1 − R
2
)

[

n − 1

n − m − 1

]

; AICc = n

[

log
(

�̂
2
e

)

+
n + m

n − m − 2

]

(3)LB = n(n + 2)

k
1

∑

t=1

r2

j

n − t

(4)L̂
n+h

= E
(
L

n+h
|L

n
, L

n−1,… , L1

)
, h = 1, 2,… , H

(5)L̂
t+h

= �̂0 +

m
∑

i=1

�̂
i
X

t+h,i.
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or future values of calendar effects, which are predetermined on the basis of interna-

tional conventions.

Now we turn to the question of how to facilitate the comparison of the forecast-

ing performance of regression models. For the purpose of this study, we have not 

used the entire time series, but kept the very last time points (validation period) 

untouched because to serve as a benchmark against which the quality of the fore-

casts is to be judged. In detail, we evaluate the predictive accuracy by the relative 

absolute error of forecast (RAEF).

where H is the time horizon and � is a small positive number (e.g. � = 0.00001 ) 

which acts as a safeguard against division by zero. The integer h runs on the hours 

of the validation period. Coefficient (6) is independent on the scale of the data and, 

due to the triangle inequality, ranges from zero to 100. The maximum is achieved 

in the ideal case of perfect forecasts: L
n+h

= L̂
n+h

 for each h. The lower the RAEF 

is, the less accurate the model is. The minimum stands for situations of inadequate 

forecasting such as L̂
n+h

= 0 or L̂
n+h

= −L
n+h

, h = 1, 2,… , H.

4.1  Simultaneous forecast intervals

Load forecasting is necessary, but it is at least as important to provide an assess-

ment of the uncertainty associated with forecasts. The usual method of evaluating 

the uncertainty associated with forecasts requires the computation of marginal pre-

diction intervals (PIs) at each individual horizon. However, Marginal intervals are 

overly optimistic, and may, therefore, be misleading since H marginal 100(1 − �)% 

predictions give a probability lower than the nominal level (1 − �)% for the joint H 

intervals.

Managers of electric power and light systems are frequently confronted with 

decision problems that require assessment of the set of possible upper/lower bounds 

that demand of electricity will follow over time and there are several methods for 

computing simultaneous forecast intervals. See [40, 114–116]. In this regard, [34] 

derived an exact probabilistic representation of the future loads corresponding to 

the settings X∗
t,i

, t = (n + 1),… , H i = 1,… , m . Whether a particular pattern of loads 

L
n+1,… , L

H
 falls within the region is easily ascertained by substituting these val-

ues into the multi-dimensional ellipsoid equation representing the prediction region. 

Path forecast evaluation falls within this context. See [27].

The exact approach is impractical if one is not interested in potential trajectories, 

but rather in a system of intervals, each covering a future observation. Given the 

availability of H future values, a more simple strategy is to determine two bands 

such that, under the condition of independent Gaussian distributed random errors, 

the probability of consecutive future loads L
n+h

, h = 1, 2,… , H that lie simultane-

ously within their respective range is at least is (1 − �) . In this regard, Lieberman 

proposes the hyper-cuboid region

(6)RAEF = 100

[
1 − H

−1

H∑

h=1

|L
n+h

− L̂
n+h

|

|L
n+h

| + |L̂
n+h

| + �

]
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where t(�∕2H, n − �) is the �∕2H percentage point of the t distribution, which has 

(n − �) degrees of freedom. We remark that there are other formulations for the pre-

diction intervals in a regression model (e.g. [17]), but (7) is simple to compute and 

it is equivalent to the other statistics for large samples as those used in this paper. 

Furthermore, L̂
n+h

= �̂
t

�
∗

n+h
 . The estimate of �

h
 is

Here �̂
e
 is the estimated mean square error of the regression and X̄

i
 is the mean of 

the i-th predictor. The quantity ai,j is the (i,j) element of the inverse matrix of the 

unscaled variance-covariance matrix of the predictors

The intervals (7) give the box-shaped region in H-dimensional space that circum-

scribes the exact confidence ellipsoid of minimum volume. However, if n is large, 

the approximate method is expected to give good results since the regression plan is 

essentially known. Finally, it is important to note that the predictors of the model (1) 

can be established ex-ante without uncertainties by the researcher.

The most important characteristic of PIs is their actual coverage rate (ACR), which 

is usually measured by the proportion of true loads observed in the validation period 

that are enclosed within the bounds

If ACR
�
≥ (1 − �) then future loads tend to be covered by the bands, but it may also 

imply that the estimated variances of forecast errors are positively biased. A level of 

ACR
�
 less than (1 − �) indicates under-dispersed forecast errors with overly narrow 

prediction intervals and unsatisfactory coverage behavior.

All other things being equal, narrow PIs are desirable as they reduce the uncertainty 

associated with forecast-based decision-making. However, higher accuracy level can be 

easily obtained by widening PIs. A complementary measure that quantifies the sharp-

ness of PIs might be useful in this context. Here, we use the score function.

Expression (11) reflects a penalty proportional to the narrowness of the intervals 

that encompass the true values at the nominal rate. Of course, the lower R
h,�

 is, the 

more accurate PIs will be. The average value of the score width across time points

(7)

[

L̂
n+h

± �̂
h

t

(

�

2H
, n − m − 1

)]

, h = 1, 2,… , H,

(8)�̂h = �̂e

√

√

√

√n−1(n + 1) +

m
∑

i=1

m
∑

j=1

ai,j
(

Xh,i − X̄i

)(

Xh,i − X̄i

)

.

(9)ai,j =

n
∑

t=1

Xt,iXt,j − nX̄iX̄j, i, j = 1, 2,… , m.

(10)ACR
�
= 100H

−1

H
∑

h=1

d
h,� where d

h,� =

{

1 if L
n+k

∈

[

L1,h,� , L2,h,�

]

0 otherwise.

(11)gh,� =

(

L2,h,� − L1,h,�

)

2Ln+h

, h = 1, 2,… , H.
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provides general indications of PI performance for what concerns their width.

4.2  Application to Italian data

We have implemented the procedure outlined in the preceding paragraphs to hourly 

time series of electricity loads from 1 a.m. on Friday, January 1, 2016 to 12 p.m. on 

Monday April 9, 2018, one for each zone of the Italian electricity market. See [14]. 

All the time series are n = 19,704 h long. The last nine days (216 hourly loads) act 

as validation period for assessing the accuracy of forecasting. Original data have 

been subjected to the filtering procedure of outliers described in [2].

OLS provide the results in Table 1 (note that only the significant predictors are 

shown). A quick glance is sufficient to note many interesting features. First of all, 

the presence of a quartic trend is evidenced by the significance of the regression 

parameters. It should be noticed that the response variable is not standardized so 

that the scale of the predictors can be compared within the same zone, but only the 

sign of the coefficients can be fairly compared between different zones. The hourly 

pattern of electric demand is made clear by the preponderance of significant coef-

ficients associated with the dummies of the hours. The sign is negative for hours 

before 8 a.m. and generally positive for business hours from 9 a.m. onwards.

Overall, the dummies are not important for the central days of the week, but 

significant for Monday, Saturday and Sunday. The sign of the coefficients is, as 

expected, negative for Saturday and Sunday confirming that consumption of elec-

tricity is lower at weekends (note that the coefficient is lower on Saturdays than on 

Sundays). Apparently, this effect extends to Mondays because, contrary to expecta-

tions, the sign of the Monday dummy is negative in each zone.

Regarding the dummies of the months, we observe that the coefficients are 

always negative in the four months from September to December whereas, in the 

other months, the sign is not constant. A negative sign is systematically found both 

for the dummy of holidays and the dummies concerning the days before and the days 

after holidays. We consider this a result of a small hourly electricity consumption 

when the productive activities slow down. The principal reason for introducing day-

light saving time (DST) is projected energy savings, particularly for electric lighting 

(e.g. [33]). Our study suggests that the policy seems to have scarce effect because 

the dummy associated with DST is slightly significant (and negative) only for the 

two largest zones: North and South.

In general, the results are unsatisfactory because, even though most of the coef-

ficients associated to the dummies are highly significant (p-values lower than 10
−3 ), 

the adjusted R2 values are relatively small (not greater than 0.90) and insufficient for 

forecasting purposes. This is in contradiction with the high RAEF indices, which 

all remain above 93% . The probability coverage rate (row headed “ARC”) always 

exceeds the nominal level of 90% . On the other hand, the widths shown in the row 

(12)ASW
�
=

1

H

L
∑

h=1

gh,�
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headed “ASW” indicate over liberal forecast intervals because the width of the bands 

is typically about one half of the average hourly load.

The major drawback of the OLS method is clearly found in the Ljung–Box sta-

tistics (row “LB”) in Table 1. The values reported are extremely high (with p-values 

virtually zero), so indicating that estimated residuals are serially correlated in all 

regression models. The combination of small R-squared, high t-Student and strong 

serial correlation are clear symptoms that either some important regressors have 

been omitted and/or that auto-correlation has to be taken seriously into account.

5  Regression models with SARMA residuals

Serially correlated residuals have several effects on regression analysis. Least 

squares estimators remain unbiased but are not efficient in the sense that they no 

longer have minimum variance. The estimated standard errors of the coefficients 

may be seriously understated or overstated, depending on the underlying process by 

which they interact with the explanatory variables of the model. The forecast inter-

vals and the various tests of significance commonly employed in CLR would no 

longer be strictly valid, even asymptotically.

The presence of serial correlation reveals that there is additional information in 

the data that has not been exploited in the CLR model. This is a fact of which we 

are fully aware since we have omitted to account for short-run effects on electric-

ity demand. Many studies, in effect, state that consumers remember the past and 

this implies that the electricity load demanded in previous periods will matter in 

demanding decision today (the “recency effect”).

5.1  The Reg-SARMA method

To correct for auto-correlation, we assume that the unobservable residuals follow a 

multiplicative SARMA process

where B is the usual backward shift operator Bjzt = zt−j and

are polynomials in B. The polynomials are constrained so that the roots of �∗(B) = 0 

and �∗(B) = 0 have magnitudes strictly greater than one, with no single root com-

mon to both polynomials, that is, only processes which are stationary and invertible 

are considered. Due to the massive presence of binary variables in the regressors, 

the process in (13) does not include difference operators. The “burden of non-sta-

tionarity” is placed entirely on the orthogonal polynomials used as regressors in 

Sect. 3.

(13)e
t
=
[

�∗(B)
]−1

�∗(B)a
t

(14)

�∗(B) = 1 − �∗

1
B − �∗

2
B2 −⋯ − �∗

p∗
Bp∗

; �∗(B) = 1 − �∗
1
B − �∗

2
B2 −⋯ − �∗

q∗
Bq∗
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Expression (13) may be considered as special case of the standard ARMA by tak-

ing p∗
= p + sP , q∗

= q + sQ . The integer s is the seasonal period ( s = 24 for hourly 

time series). Some of the �∗ s and �∗ s could be set equal to zero. The errors a
t
 are 

independent and identically distributed random variables with zero mean and finite 

variance �2

a
 . The substitution of e

t
 of (1) into the model in (13) yields

The above relationship (15) requires much more parameters than classical regres-

sion model. To reduce the number of unknowns, we set the values of the newly 

added regressors et, t = 0,−1,… ,−(p∗ − 1) and at, t = 0,−1,… ,−(q∗ − 1) to zero 

because zero is their expected value. Residuals and errors at the other time points 

remain unknown. For sufficiently large n however the effect of the chosen initializa-

tion procedure will be negligible.

A number of approaches to improving OLS estimates in the presence of serial 

correlation (e.g. [7, 12, 30, 31, 41]) have approximated the residuals by using

where L̂
t
, t = 1, 2,… , n are the estimated responses.

Let us suppose for the moment that p
∗ and q∗ are known or given. The estima-

tion of the SARMA parameters can be carried out by optimizing the log-likelihood 

function of (16) provided that the errors a
t
 are Gaussian random variables. Now, let 

ẽ
t
, t = 1, 2,… , n be the estimate residuals produced by the ARMA (p∗

, q
∗) process

The ẽ
t
 s are substituted into (15) yielding

where

In practice, the one-step-ahead forecast ẽ
t+1

 is used as an estimate of the unknown 

residual e
t+1

 and the unknown error a
t+1

 is set to its expected value of zero. In doing 

so, we can avoid the long auto-regression approximation of the MA component as is 

required in various GLS-type estimation methods such as [8, 18, 30, 44].

Thanks to the equations (17)–(19), the regressors of the extended relationship 

(15) are fully specified

(15)Lt = �0 +

m
∑

i=1

�iXt,i +

p∗
∑

j=1

�∗et−j +

q∗
∑

j=1

�∗at−j + at.

(16)êt =

(

Lt − L̂t

)

=

p∗
∑

j=1

�∗

j
êt−j −

q∗
∑

j=1

�∗
j
at−j + at, t = 1, 2,… , n.

(17)ẽt =

p∗
∑

j=1

�̂∗

j
êt−j −

q∗
∑

j=1

�̂∗
j
at−j + at, t = 1, 2,… , n.

(18)ẽt =

p∗
∑

j=1

�̂∗

j
ẽt−j −

q∗
∑

j=1

�̂∗
j
ãt−j, t = 1, 2,… , n,

(19)ãt =

�

0 for t = p∗, p∗
− 1,… ,

ẽt −
∑p∗

j=1
�̂∗

j
ẽt−j −

∑q∗

j=1
�̂∗

j
ãt−j for t = p∗

+ 1, p∗
+ 2,… .
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The ã
t
 s in the last sum are pairwise uncorrelated and do not contribute to the multi-

collinearity of the new regression model. Even the third addend does not appear to 

pose problems of multi-collinearity. The Reg-SARMA approach consists of the OLS 

method applied to the estimation of (20)

5.2  Orders of the SARMA components

One problem is still open. Since we ignore the orders of autoregressive-moving 

average components, the modelling procedure outlined in the preceding sec-

tion should be repeated for each reasonable value of p
∗ and q∗ . In order to reduce 

the computational effort required to maximize the Gaussian likelihood func-

tion, several estimation procedures have been suggested. See [32]. For exam-

ple, a number of authors: [18, 19, 39, 45], among others, propose to identify the 

orders (p∗
, q

∗) by using a sequence of linear regressions of L
t
 on lagged variables 

Lt−1, Lt−2,… , Lt−p∗ , êt−1, êt−2,… , êt−q∗ where the ê
t
 are obtained by fitting a long 

auto-regressive process to the time series of the residuals. Being a linear problem, 

the repetition for different values of p
∗ is computationally much cheaper than the 

maximum likelihood estimation of an ARMA process. Unfortunately, there is very 

little empirical evidence of the effectiveness and efficiency of these techniques in 

seasonal ARMA processes.

Let us assume that there is a true SARMA for the time series: (p0, 0, q0) × (P0, 0, Q0)s 

and fix the constraints 0 ≤ p ≤ p, 0 ≤ q ≤ q, 0 ≤ P ≤ P, 0 ≤ Q ≤ Q, where p, q, P, P 

are chosen beforehand trying to make sure the intervals include true orders, that is 

p0 ≤ p, q0 ≤ q, P0 ≤ P, Q0 ≤ Q . One method used to locate a good solution is a 

trawling search through the p × q × P × Q possible processes. In our experiments, 

the processes are estimated by using the function arima() in the R package stats. 

In general, brute-force methods are unmanageable for extremely long time series 

because of the computational complexity. If p = 4, q = 4, P = 3, Q = 3 then consid-

ering all possible processes involves estimating 400 different processes. Actually, 

the obstacle is more apparent than real. Improvements in computers and reductions 

in hardware costs allow us to consider the trawling search solution attractive for 

many more research and real-world applications than in the past.

Another objection against trawling search concerns the fact that there are no guar-

antees that the family of considered processes will include the “true” process. Even 

if it does, minimization over all combinations of polynomial orders necessarily leads 

to the estimation of over-parametrized and, thus, unidentified models, that is, inte-

gers p, q, P, Q larger that the true orders. Note, in this sense, that many different 

processes may perform reasonably similarly and difference between their diagnostic 

(20)Lt = �0 +

m
∑

i=1

�iXt,i +

p∗
∑

j=1

�∗

j
êt−j +

q∗
∑

j=1

�∗
j
ãt−j + at.

(21)L̂t = �̂0 +

m
∑

i=1

�̂iXt,i +

p∗
∑

j=1

�̂∗

j
êt−j +

q∗
∑

j=1

�̂∗
j
ãt−j .
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statistics are often only marginal. [24] observe, however, that these issues are not so 

important in forecasting, where the focus of model selection is usually on the predic-

tive ability of the chosen model, rather than on the correctness of the selection. In 

this light, we use the trawling search to detect the most suitable process aiming at 

maximizing predictive ability of the model.

It remains to be established how to choose between two different SARMA pro-

cesses. It seems logical to start from the AICc and LB statistics obtained from 

the CLR model shown in Table 1. A process would be considered admissible for 

forecasting purposes only if it fulfills the conditions on the polynomials (14) and 

improves both AICc and LB for the estimated residuals of (16). The admissible pro-

cess associated with the smaller AICc and LB is preferred.

Reg-SARMA equation (21) is a revised CLR model that should yield better sta-

tistics than the original CLR model (1). See [11, 20, 43]. Through extensive experi-

mentation, [28, 31] showed that GLS-type schemes allow the analyst to perform a 

generalized least squares estimation without the cumbersome computational diffi-

culties associated with the inversion of large size variance-covariance matrices.

5.3  Forecasts in Reg-SARMA models

The expanded relationship (21) can produce predictions of the new loads 

�̂
n,H = (L̂

n+1, L̂
n+2,… , L̂

n+H
)

where H is the time horizon and �
H

 is a [H × (m + 1)] matrix of the H predetermined 

values of the original regressors for t = n, (n + 1),… , H . �
H

 is a (H × p∗) matrix 

constructed by using the predicted values of the OLS residuals estimated by the 

selected SARMA process. Each column of �
H

 is an instance of ẽ
t
 at lags 1, 2,… , p

∗ 

and t = n, (n + 1),… , H . Analogously, �
H

 is a (H × q∗) matrix constructed by using 

the estimated errors of the process. Each column of �
H

 is an instance of ã
t
 at lags 

1, 2,… , q
∗ and t = n, (n + 1),… , H . The values of (22) serve to compute the diag-

nostic statistics for the expanded regression model. In particular, the AICc statis-

tic (2) and the forecast intervals (7). The new results are summarized in Table 2, 

together with the results achieved with CLR (row “Ols1”). The R scripts for comput-

ing the Reg-SARMA estimates are available from the authors on request.

As can be seen, Reg-SARMA offers a substantial improvement over OLS esti-

mation. The precision of the fitting procedure is increased as one can see from the 

columns in Table 2, which are dedicated to the AICc and R̄2 statistics. In both cases 

the improvement is quite substantial. Furthermore, the stability of the RAEF index 

across the estimation methods, is a demonstration that the predictive accuracy does 

not deteriorate when generalized least squares are used.

The new method has resulted in a general upgrading of the quality of forecasts. 

As can be readily appreciated, the width of the simultaneous forecast intervals 

(ASW) is reduced of about one half compared with OLS. The cost of this enhance-

ment is a lower coverage rate (ACR), which, however, ensures a confidence level 

(22)�̂
n,H = �

H
�̂ with �

H
=

[
�

H
|�

H
|�

H

]
, �̂ t

=

[
�̂|�̂|�̂

]
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greater than the nominal level of 90% . The most striking finding is the extraordinary 

decrease in the LB statistic whose p-value passes from a probability virtually zero 

with OLS to a probability virtually one with the Reg-SARMA method in all the six 

time series.

Table 2  Comparison of Ols and Reg-sarma estimates

Zone AICc R̄
2 RAEF LB ACR ASW Sarma order

C. North Ols 251,659 0.778 94.2 79,231.8 96.3 39.4

RgS 212,376 0.970 94.1 6.9 90.3 24.3 (4, 0, 4) × (2, 0, 0)24

C. South Ols 256,828 0.842 96.3 71,879.1 96.8 30.0

RgS 218,962 0.977 96.1 8.2 94.0 19.4 (2, 0, 1) × (2, 0, 3)24

North Ols 320,310 0.793 93.0 91,807.7 94.4 43.6

RgS 280,044 0.973 92.5 13.1 90.3 26.2 (1, 0, 0) × (2, 0, 0)24

Sardinia Ols 186,756 0.790 94.2 105,944.4 96.8 26.2

RgS 152,489 0.964 95.4 3.9 93.5 18.5 (2, 0, 0) × (3, 0, 1)24

Sicily Ols 214,208 0.851 96.7 79,875.4 97.2 26.3

RgS 176,968 0.978 96.8 6.9 92.1 17.5 (4, 0, 3) × (2, 0, 2)24

South Ols 235,526 0.815 96.2 124,094.7 97.7 34.4

RgS 198,428 0.972 96.1 4.0 94.4 22.3 (4, 0, 2) × (1, 0, 2)24

Fig. 1  Prediction intervals (PIs)
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The preceding discussion assumes that the future values �
H

 are known without 

errors or can be forecast perfectly or almost perfectly, ex ante. If, on the contrary, 

�
H

 or part of it must themself be forecast then formula (7) has to be modified to 

incorporate the uncertainty in forecasting �
H

 . [16, Section 4.6.4] points out that firm 

analytical results for the correct forecast variance for this case remain to be derived 

except for simple special cases. For example, formula (8) may lead to a serious 

underestimate of the forecast standard error, if, as is not uncommon in practice, the 

uncertainty about the future value of regressors is of the same order of magnitude as 

the uncertainty about the residuals.

In the case of the expanded model (21), the regressors in �
H

 are purely determin-

istic and hence appropriate to interval forecasts by the Lieberman method. Figure 1 

shows the forecasts of electricity demand and the lower and upper bands of the PIs .

The same is not true for �
H

 and �
H

 because these “pseudo” regressors are almost 

completely random in their behavior. It follows that, the application of the predic-

tion intervals in (7) is based upon the strong and unrealistic assumption of mak-

ing correct inference as if the serial correlation structure of regression residuals fol-

low exactly the selected SARMA process. This partially explains why the coverage 

range of Reg-SARMA models is more conservative than that of CLR models.

6  Conclusions and future work

Classical linear regression (CLR) relies on strong assumptions that are rarely sat-

isfied. The major contribution of this paper is to develop a new dynamic regres-

sion method (linear regression model with seasonal autoregressive-moving aver-

age residuals or Reg-SARMA model) for predicting the expected magnitude and 

direction of change of electricity demand. To build the Reg-SARMA model, 

we follow a two-step procedure. First, ordinary least squares (OLS) are applied 

to estimate a CLR model based on purely deterministic regressors. In the case 

wherein the regression residuals are not a white noise series, a SARMA process is 

identified and estimated on the basis of a multiple criteria optimization problem, 

which evaluates all possible processes encompassed within a (4, 0, 4) × (3, 0, 3)24 

model involving 400 different processes. The stationary and invertible process 

associated with the smaller AICc and LB statistics, is selected. Secondly, two 

sets of pseudo regressors derived from the estimated residuals and from estimated 

SARMA errors are added to the CLR model. The extended model is estimated by 

using the ordinary least squares method and taking advantage of the fact that the 

new regressors eliminate serial correlation.

The proposed approach has been applied to obtain point and interval forecasts 

for the nine-day ahead hourly electric loads in six Italian macro-regions. Two 

facts emerge clearly from the results. The most significant variables that influence 

electricity demand belong to a small set of calendar dummy variables. The fitting 

performance is very satisfactory as evidenced by the adjusted R
2 , by the bias-

corrected Akaike information criterion and by the predictive accuracy coefficient 
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RAEF. Additionally, from a computational point of view, the method is not very 

demanding for currently available computers.

In summary, the technique outlined in this paper is appreciable because errors 

involved with modeling and parameter estimation are at a tolerable level, so that it 

can be effectively applied for short-term load forecasting, thus ensuring important 

improvement with respect to the conventional regression models.

A obvious limitation of the our work is the absence of regressors that influence 

customer behavior with particular reference to explanatory variables representative 

of socio-demographic factors and climatic changes characterizing the various zones. 

The modification of the simultaneous forecast intervals to take into account the 

increased variability is the next logical step of the study.
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