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Point-based and Region-based Image Moments

for Visual Servoing of Planar Objects
Omar Tahri, François Chaumette

Abstract— Moments are generic (and usually intuitive) descrip-
tors that can be computed from several kinds of objects defined
either from closed contours or from a set of points. In this paper,
we present improvements in image-based visual servo using image
moments. First, the analytical form of the interaction matrix
related to the moments computed from a set of coplanar points
is derived, and we show that it is different of the form obtained
previously using coplanar closed contours. Six visual features are
selected to design a decoupled control scheme when the object is
parallel to the image plane. This nice property is then generalized
to the case where the desired object position is not parallel to
the image plane. Finally, experimental results are presented to
illustrate the validity of our approach and its robustness with
respect to modeling errors.

Index Terms— Visual servoing, image moment, invariant.

I. INTRODUCTION

TO date, an open question in image-based visual servoing

is to determine the set of visual features to be used in

the control scheme so that an optimal behavior of the system

is obtained. In the past, most works were concerned with

simple objects and the features used as input of the control

scheme were generally coordinates of points, or parameters

describing the configuration in the image of segments, straight

lines, or ellipses [9], [13]. The set of objects which these

methods can be applied is thus limited. They have also the

basic requirement of feature matching between initial and

desired images. More recent works have tried to surmount

the problems mentioned above, by using for example an

eigenspace representation [8], the polar signature of an object

contour [5], or, as in this paper, image moments [4]. Image

moments are particularly interesting. They can be computed

easily from a binary or a segmented image, or from a set of

extracted points of interest. Computing moments in several

images (for visual servoing, the initial and the desired ones,

and all the successive images acquired by the camera) just

necessitates a high level global matching of the object, and not

an accurate and tedious matching of each object point. They

are generic, describing the same geometrical entities whatever

the object shape complexity. Low order moments have an

intuitive meaning since they are directly related to the area, the

centroid, the inertial moments and the orientation of the object

in the image. Image moments have been widely studied in

the computer vision community [12], [22], [21], especially for

pattern recognition applications. In addition to the advantages

recalled above, judicious combinations of moments are indeed

The authors are with IRISA/INRIA Rennes, Campus de Beaulieu, 35 042
Rennes-cedex, France
Parts of this work have already been presented at ICRA’03 and ICRA’04.

invariant to some transformations such as scale, 2D translation

and/or 2D rotation. This property is of great interest in pat

tern recognition, which explains the amount of work about the

determination of moments invariants (see [23], [2], [32], [19]

for instance). As it will be shown in this paper, such invariance

property is also of particular interest in visual servoing.

Whatever the nature of the possible measures extracted from

the image, from a set of image points coordinates to a set

of image moments, the main question is how to combine

them to obtain an adequate behavior of the system. In most

works, the combination is nothing but a simple stacking. If

the error between the initial value of the features and the

desired one is small, and if the task to realize constrains all the

available degrees of freedom (dofs), that may be a good choice.

However, as soon as the error is large, problems may appear

such as reaching local minimum or a task singularity [3]. To

overcome these problems, combining path planning and visual

servoing is a first approach, since tracking planned trajectories

allows the error to always remain small [20], [7], [34]. A

second approach is to use the measures to build particular

visual features that will ensure expected properties to the

control scheme. Position-based visual servoing belongs to this

approach. Using visual measures and an a priori knowledge

of a CAD model of the observed object, the relative camera-

object pose is estimated and used as input to the control

scheme [33]. An adequate 3D trajectory can thus be obtained,

such as a geodesic for the orientation and a straight line

for the translation. However, position-based visual servoing

may suffer from potential instabilities due to image noise [3]

(the “cooking” of the visual features from the measures is

quite complex since it comes from the solution of an inverse

problem1). 2 1/2 D (or hybrid) visual servoing also belongs to

this approach [18]. The goals were to combine 2D features and

3D features to decouple the control of the rotation from the

control of the translation (as in 3D visual servoing), to ensure

as much as possible the visibility of the object in the camera

field of view, and also to demonstrate the global stability

of the system using only the measures from the current and

the desired images. Finally, several works have been realized

in image-based visual servoing following the same general

objective. In [14], the coordinates of points are expressed

in a cylindrical coordinate system, instead of the classical

Cartesian one, to improve the robot trajectory. In [11], the

three coordinates of the centroid of an object in a virtual image

obtained through a spherical projection have been selected to

control three dofs of an under-actuated system. This selection

1The marvelous expression “cooking of features” is from Peter Corke.
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ensures a passivity property that is useful to control such

complex systems. In [24], a vanishing point and the horizon

line have been selected to control a similar system. This choice

ensures a good decoupling between translational and rotational

dofs. In [15], vanishing points have also been used for a

dedicated object (a 3D rectangle), once again for decoupling

properties. For the same object, six visual features have been

designed in [6] to control the six dofs of a robot arm, following

a partitioned approach. Finally, in [4], a first attempt to select

six features from image moments has been recently presented.

This selection was valid only for planar objects whose desired

pose is parallel to the image plane. In this paper, the selection

method is significantly improved, and is generalized for any

desired object pose.

In most of related previous works, the selection of the visual

features was guided by a partitioned approach to design a

decoupled control scheme, that is to try to associate each

dof to be controlled with only one visual feature. That is

indeed a good strategy. However, is is not sufficient to obtain

a good behavior of the visual features and of the robot

trajectory simultaneously. In few words, we recall that the time

variation ṡ of the visual features s can be expressed linearly

with respect to the relative camera-object kinematics screw v:

ṡ = Lsv (1)

where Ls is the interaction matrix related to s [9], [13].

The control scheme is usually designed to try to ensure an

exponential decoupled decrease of the visual features to their

desired value s
∗, from which we deduce if we consider an

eye-in-hand system observing a static object:

vc = −λ L̂s

+
(s− s

∗) (2)

where L̂s is a model or an approximation of Ls, L̂s

+
the

pseudo-inverse of L̂s, λ a positive gain tuning the time to

convergence, and vc the camera velocity sent to the low-

level robot controller. In the following, we denote respec-

tively υ and ω the translational and the rotational com-

ponents of the kinematic screw, so that vc = (υ, ω) =
(υx, υy, υz, ωx, ωy, ωz). An exponential decoupled decrease

will be obtained simultaneously on the visual features and on

the camera velocity (that would give a perfect behavior) only

if Ls and L̂s

+
are constant. If it is possible to choose L̂s

+

as a constant matrix, the form of Ls is set by the design

of s, and it is generally very far from a constant matrix.

For instance, the well known interaction matrix related to the

coordinates x = (x, y) of an image point is given by:

Lx =

(
−1/Z 0 x/Z xy −1−x2 y

0 −1/Z y/Z 1+y2 −xy −x

)
(3)

where Z is the depth of the observed point. We can see

from (3) that the velocities ẋ and ẏ are really not the same with

respect to each camera velocity component: some are inversely

proportional to the depth Z of the point, some are linearly

dependent to the image coordinates, while others depend

on them at second order. The non linearities in system (1)

using (3) explain the difference of behaviors in image space

and in 3D space, and the inadequate robot trajectory that

occurs sometimes when the displacement to realize is large [3]

(of course, for small displacements such that the variations

of Lx are negligible, a correct behavior is obtained, as already

recalled above). An important problem is thus to determine

visual features such that their interaction matrix minimizes

the non linearities in (1). Ideally, we would like Ls to be the

identity matrix I6, even if this goal is probably impossible to

reach. Note that designing a decoupled or a partitioned system

is a step toward this goal, since it introduces terms equal to 0

in Ls.

In this paper, we propose significant improvements in the

determination of adequate visual features using image mo-

ments. In the next section, we first briefly recall the basic

definition of image moments. We then give a general analytical

form of their interaction matrix. In [4], only objects defined

from closed contours were considered, while this paper deals

also with moments computed from a set of image points.

Section III is devoted to the determination of six visual features

to control the six dofs of the system for the particular case

where the desired object pose is parallel to the image plane.

This result is generalized in Section IV to the case where the

object may have any orientation with respect to the camera.

Finally, experimental results are presented in Section V to

validate the proposed theoretical results.

II. MODELING

A. Moment invariants

If we consider a dense object O in the image, defined by a

set of closed contours (see for instance Fig. 2.b and 8.b), its

2D moments mij of order i + j are defined by:

mij =

∫∫

O

xiyjdxdy (4)

The centered moments µij are computed with respect to the

object centroid (xg, yg). They are defined by:

µij =

∫∫

O

(x − xg)
i(y − yg)

jdxdy (5)

where xg = m10/a and yg = m01/a, a = m00 being the

object area. Similarly, for a discrete set of n image points

(see for instance Fig. 14.a), the moments are defined by:

mij =

n∑

k=1

xj
k yj

k (6)

while the centered moments are now given by:

µij =

n∑

k=1

(xk − xg)
i(yk − yg)

j (7)

where xg = m10/n and yg = m01/n, (m00 = n in that

case). The centered moments defined either from (5) or (7) are

known to be invariant to 2D translational motion. In the liter-

ature, many works have presented various methods to derive

moment invariants to other transformations such as scale and

2D rotation. For instance, moment invariants to rotation have

been obtained from radial and angular moments [23], Zernike

moments [30], [2], [32], and complex moments [1], [10]. As
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for invariants to scale, several combinations of moments have

been proposed, such as for example [19]:

Is =
mpq

m
(p+q+2)/2
00

(8)

This formula will be used in Section III to decouple the

features involved in the control of the translational dofs υx

and υy . We now present several combinations of moments

that are invariant to 2D translation, 2D rotation, and to scale.

Complete details on how they have been determined can be

found in [21], [22] and [27].

c1 = I1
I2

, c2 = I3
I4

, c3 = I5
I6

, c4 = I7
I6

, c5 = I8
I6

,

c6 = I9
I6

, c7 = I11
I10

, c8 = I12
I10

, c9 = I13
I15

, c10 = I14
I15

(9)

where invariants I1 to I15 are given in Appendix. We will see

in Section III and V that, depending on the object considered,

two among the invariants (9) will be selected as visual features

to control the rotational velocities ωx and ωy . We now derive

a general form of the interaction matrix related to image

moments.

B. Interaction matrix of image moments

In [4], the interaction matrix Lmij
related to any mo-

ment mij defined from (4) has been determined. It has been

obtained from the following equation:

ṁij =

∫∫

O

[
∂f

∂x
ẋ+

∂f

∂y
ẏ+f(x, y)(

∂ẋ

∂x
+

∂ẏ

∂y
)]dxdy (10)

where f(x, y) = xiyj . If a planar object is considered, and

if we exclude the degenerate case where the camera optical

center belongs to this plane, so that, for any object point:

1

Z
= Ax + By + C, (11)

we obtain (see [4] for more details):

Lmij
=

[
mvx mvy mvz mwx mwy mwz

]
(12)

where:





mvx = −i(Amij +Bmi−1,j+1+Cmi−1,j)−δAmij

mvy = −j(Ami+1,j−1+Bmij+Cmi,j−1)−δBmij

mvz = (i+j+3δ)(Ami+1,j+Bmi,j+1+Cmij)−δCmij

mwx = (i+j+3δ)mi,j+1 + jmi,j−1

mwy = −(i+j+3δ)mi+1,j − imi−1,j

mwz = imi−1,j+1 − jmi+1,j−1

(13)

with δ = 1. We now consider the case of moments defined

by (6). We will see that a different analytical form of Lmij
is

obtained, characterized by the value of δ. Computing the time

derivative of (6), we obtain:

ṁij =

n∑

k=1

(ixi−1
k yj

k ẋk + jxi
kyj−1

k ẏk) (14)

The velocity of any image point xk is given from (1) and (3),

setting s = xk in (1). More precisely, using (11), the velocity

of xk can be written:





ẋk = −(Axk + Byk + C)υx

+ xk(Axk + Byk + C)υz

+ xkykωx − (1 + x2
k)ωy + ykωz

ẏk = −(Axk + Byk + C)υy

+ yk(Axk + Byk + C)υz

+ (1 + y2
k)ωx − xkykωy − xkωz

(15)

Finally, using (15) in (14), and then using (6), we obtain after

simple developments the interaction matrix related to mij . Its

analytical form is again given by (12) and (13) but with δ = 0.

Matrix Lmij
is thus not exactly the same if we consider the

moments (4) of a dense object (i.e. defined by closed contours)

or the moments (6) of a discrete object (i.e. defined by a set

of discrete points). The analytical forms are similar since the

two terms of (14) correspond exactly to the first two terms

present in (10). On the other hand, they are different since the

third term of (10) does not appear in (14). To illustrate these

differences on a simple example, let us consider moment m00.

In the discrete case, m00 is nothing but the number n of object

points. This number is of course invariant and we can check

by setting i = j = δ = 0 in (13) that all the terms of Lm00

are indeed equal to 0. In the dense case, m00 is nothing but

the area of the object, and general robot motion modifies its

value, as can be checked from (13) using δ = 1.

Many visual features derived from moments have however

a very similar behavior in both cases. For instance, we can

easily compute from (12) the interaction matrix related to the

coordinates xg and yg of the object center of gravity. We

obtain:

Lxg
= [−1/Zg 0 xgvz xgwx xgwy yg ]

Lyg
= [ 0 −1/Zg ygvz ygwx ygwy −xg ]

(16)

where:






1/Zg = Axg + Byg + C
xgvz = xg/Zg + Aǫn20 + Bǫn11

ygvz = yg/Zg + Aǫn11 + Bǫn02

xgwx = −ygwy = xgyg + ǫn11

xgwy = −(1 + x2
g + ǫn20)

ygwx = 1 + y2
g + ǫn02

with nij = µij/m00, ǫ = 4 for dense objects and ǫ = 1 for

discrete objects.

Similarly, if we consider the centered moments defined

by (5) or (7), we obtain after tedious developments:

Lµij
=

[
µvx µvy µvz µwx µwy µwz

]
(17)

with:




µvx = −(i + δ)Aµij − iBµi−1,j+1

µvy = −jAµi+1,j−1 − (j + δ)Bµij

µvz = −Aµwy + Bµwx + (i + j + 2δ)Cµij

µwx = (i + j + 3δ)µi,j+1 + (i + 2j + 3δ)ygµij

+ixgµi−1,j+1 − iǫn11µi−1,j − jǫn02µi,j−1

µwy = −(i + j + 3δ)µi+1,j − (2i + j + 3δ)xgµij

−jygµi+1,j−1 + iǫn20µi−1,j + jǫn11µi,j−1

µwz = iµi−1,j+1 − jµi+1,j−1

In all cases, and as expected, we can check from µvx

and µvy that all centered moments are invariant with respect
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to translational motions parallel to the image plane when the

object is parallel to the image plane (µvx = µvy = 0 if

A = B = 0). Similarly, for the same configurations, we

can check from (12) that the invariants to scale given by (8)

are invariant to translational motion along the optical axis

(Isvz = 0 if A = B = 0). Finally, after quite tedious

computations, we can also check that the invariants ci given

in (9) are such that ciωz = 0, and, if A = B = 0, such that

civx = civy = civz = 0. As detailed in the next section, these

invariance properties will be useful to select adequate visual

features for visual servoing.

III. CHOICE OF THE VISUAL FEATURES

In this section, we select from the previous theoretical

results six combinations of moments to control the six dofs

of the robot. Our objective is to obtain a sparse interaction

matrix that changes slowly around the desired position of the

camera. We will see that the solution we present is such that

the interaction matrix is block-triangular when the object is

parallel to the image plane. Furthermore, we will see that, for

the same positions, the elements corresponding to translational

motions form a constant diagonal block, which is independent

of depth. In [4], this last interesting property was not satisfied.

We first assume that the desired position of the object is

parallel to the image plane (i.e. A = B = 0) and we denote

L
‖
s the interaction matrix for such configurations. The more

general case where the desired object position may have any

orientation with respect to the image plane will be treated in

the next section.

A. Visual features to control the translational dof

In [6], [4], the three visual features used to control the trans-

lational dofs have been selected to be the coordinates xg, yg

of the center of gravity and the area a = m00 of the object in

the image. In that case, we obtain from (16) and (12):

L
‖
xg =[ −C 0 Cxg ǫ1 −(1+ǫ2) yg ]

L
‖
yg =[ 0 −C Cyg 1+ǫ3 −ǫ1 −xg ]

L
‖
a =[ 0 0 2aδC 3aδyg −3aδxg 0 ]

(18)

with ǫ1 = xgyg + ǫn11, ǫ2 = x2
g + ǫn20 and ǫ3 = y2

g + ǫn02.

First, we recall that if a set of n points is considered, we cannot

use the area m00 since it is a constant value equal to n. This

case will thus be studied after. Then, we can note that, even

if the above matrix is triangular, most of its elements are not

constant. Moreover, the third feature a does not have the same

dynamics with respect to υz than xg and yg with respect to υx

and υy respectively.

A better choice can be obtained from these intuitive features,

by just adding an adequate normalization. More precisely, we

define:

an = Z∗

√
a∗

a
, xn = anxg, yn = anyg (19)

where a∗ is the desired area of the object in the image, and

Z∗ the desired depth between the camera and the object. The

interaction matrices related to these normalized features can

be easily determined from (18). Noting that Z∗
√

a∗ = Z
√

a =√
S where S is the area of the planar object, we obtain:

L
‖
xn=[−1 0 0 anǫ11 −an(1+ǫ12) yn ]

L
‖
yn =[ 0 −1 0 an(1+ǫ21) −anǫ22 −xn]

L
‖
an =[ 0 0 −1 −anǫ31 anǫ32 0 ]

(20)

with ǫ11 = ǫ22 = 4n11 − xgyg/2, ǫ12 = 4n20 − x2
g/2,

ǫ21 = 4n02 − y2
g/2, ǫ31 = 3yg/2, and ǫ32 = 3xg/2. Since an

is inversely proportional to
√

a, we find again the recent result

given in [16] stating that the variation of such features depends

linearly on the depth (note the constant term in the third

element of L
‖
an ). The normalization by Z∗

√
a∗ has just be

chosen so that this constant term is equal to −1. Furthermore,

the design of xn and yn allows us to completely partition

the three selected features to the three translational dofs. This

decoupling property was expected from (8). We also obtain

the same dynamics for the three features (note the diagonal

block equal to −I3 in (20)). This very nice property will allow

us to obtain an adequate robot translational trajectory.

We now consider the case of a discrete object. Since

µ20 +µ02 is invariant to 2D translation and to 2D rotation, we

propose to replace in (19) the area and its desired value by:

a = µ20 + µ02 and a∗ = µ∗
20 + µ∗

02 (21)

In that case, the interaction matrix related to xn, yn, and an

is again given by (20), but with:





ǫ11 = n11 + xg(yg − ǫ31) , ǫ12 = n20 + xg(xg − ǫ32)
ǫ21 = n02 + yg(yg − ǫ31) , ǫ22 = n11 + yg(xg − ǫ32)
ǫ31 = yg + (ygµ02 + xgµ11 + µ21 + µ03)/a
ǫ32 = xg + (xgµ20 + ygµ11 + µ12 + µ30)/a

The control of the translational dofs can thus be realized with

the same nice properties for both cases. We now consider the

rotational dofs.

B. Visual features to control the rotational dof

First, as in [6], [4], we use the object orientation α that

can be defined from the second order centered moments:

α = 1
2 arctan( 2µ11

µ20−µ02

). We also use two moment invariants

ci and cj chosen in (9). The interaction matrices related to

these features have the following form:

L
‖
ci = [ 0 0 0 ciwx

ciwy
0 ]

L
‖
cj = [ 0 0 0 cjwx

cjwy
0 ]

L
‖
α = [ 0 0 0 αwx αwy −1 ]

(22)

where the analytical form of ciwx
, ciwy

, cjwx
and cjwy

can be

obtained after tedious developments using (17), and where:





αwx = (β[µ12(µ20 − µ02) + µ11(µ03 − µ21)]
+γxg[µ02(µ20 − µ02) − 2µ2

11]
+γygµ11[µ20 + µ02])/d

αwy = (β[µ21(µ02 − µ20) + µ11(µ30 − µ12)]
+γxgµ11[µ20 + µ02]
+γ[µ20(µ02 − µ20) − 2µ2

11])/d
d = (µ20 − µ02)

2 + 4µ2
11

with β = 5 and γ = 1 for a dense object, and with β = 4 and

γ = 2 for a discrete object.
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Unfortunately, we have not been able to find two combi-

nations of moments ci and cj such that ciwy = cjwx = 0
and such that ciwx and cjwy are constant. In fact, their value

and their variation change for each object since they depend

on the value of several moments. That is why we will see in

Section V how to choose for each object the best pair (ci, cj)
from the set given in (9).

Finally, we recall that the interaction matrices (20) and (22)

have nice expected forms only when the object is parallel to the

image plane. In Section V, we will see that, when the desired

object position is parallel to the image plane, satisfactory

results are obtained even if the initial position is far away from

this configuration. However, if the desired object position is

not parallel to the image plane, the decoupling and linearizing

properties are not as good as in the parallel case. That is why

we present in the next section a new method to generalize

our results to the case where the desired object position may

have any orientation with respect to the image plane (except

of course the degenerate case where the camera optical center

belongs to the object plane).

IV. GENERALIZATION TO DESIRED OBJECT POSES NON

PARALLEL TO THE IMAGE PLANE

The general idea of our method consists in applying a virtual

rotation to the camera, computing the visual features after this

virtual motion, and then using the transformed features in the

control law. The rotation is determined so that the image plane

in its virtual desired position is parallel to the object. The

properties obtained in this case will thus be enlarged for any

desired configuration.

The first step of the method consists in determining the vir-

tual rotation R
∗ to apply to the camera. If the task is specified

by a desired configuration to reach between the camera and

the object, R
∗ is directly given by this configuration (but this

method necessitates the knowledge of the 3D model of the

object to compute the desired value s
∗ of the visual features).

If the task is specified by a desired image acquired during an

off-line learning step, R
∗ can be obtained either from a pose

estimation algorithm if the model of the object is known, or

from a partial pose estimation algorithm if another image of

the object is available [29]. Finally, the two angles involved

in R
∗ can also be given during the learning step in the same

way as the desired depth Z∗ is set for the parallel case. For this

method, no prior knowledge of the pattern lying on the target

plane is required. We have chosen this last simple solution for

the experimental results presented in Section V. We will see

in that section that a coarse approximation of R
∗ is sufficient

since the decoupling properties are ensured in a neighborhood

of the parallel configuration.

We now describe how the visual features are computed. Let

us denote (Xt, Yt, Zt) and (X, Y, Z) the coordinates of a 3D

point after and before the virtual rotation. Of course, we have:



Xt

Yt

Zt



 = R
∗




X
Y
Z



 =




r11 r12 r13

r21 r22 r23

r31 r32 r33








X
Y
Z



 (23)

from which we deduce immediately the coordinates (xt, yt)
of the point in the image that would have been obtained if

the camera had really moved. Indeed, using the perspective

projection equation (xt = Xt/Zt, yt = Yt/Zt), we obtain:
{

xt =(r11x+r12y+r13)/(r31x+r32y+r33)
yt =(r21x+r22y+r23)/(r31x+r32y+r33)

(24)

where (x, y) are the coordinates of the point in the real image.

We can note that (xt, yt) can be computed directly from R
∗

and (x, y). An estimation of the coordinates of the 3D point

is thus useless.

If the object is composed of a set of n points, (24) is applied

to all the n points in the desired image (from which visual

features s
∗
t are computed), and for all the n points in the

current image (from which visual features st are computed).

Otherwise, if a dense object is considered, the moments after

the virtual rotation are given by:

mtpq
=

∫∫

Ot

xt
pyt

qdxtdyt =

∫∫

O

xt
pyt

q |Jt| dxdy (25)

where:

|Jt| =

∣∣∣∣∣

∂xt

∂x
∂xt

∂y
∂yt

∂x
∂yt

∂y

∣∣∣∣∣ = 1/(r31x + r32y + r33)
3

We thus obtain:

mtpq
=

∫∫

O

(r11x+r12y+r13)
p(r21x+r22y+r23)

q

(r31x+r32y+r33)γ
dxdy

(26)

where γ = p + q + 3. Computing the moments directly

from (26) is possible, but time consuming. We thus propose a

more efficient method based on a Taylor series expansion of

1/(r31x + r32y + r33)
γ . Indeed, if r31x + r32y ≪ r33 (which

is the case in practice), this term can be approximated by:

1

(r31x+r32y+r33)γ
≈ 1

rγ
33

(1−γ
(r31x+r32y)

r33
+. . .) (27)

Using (27) in (26) and after simple developments, we obtain:

mtpq
≈ rp

13r
q
23

rγ
33

p∑

k1=0

k1∑

l1=0

q∑

k2=0

k2∑

l2=0

(
k1

p

)(
l1
k1

)(
k2

q

)(
l2
k2

)

(
r11

r13

)l1(r12

r13

)k1−l1(r21

r23

)l2(r22

r23

)k2−l2

(28)

(ml,k−l−
(r31ml+1,k−l+r32ml,k−l+1)

r33
+. . .)

with k = k1 + k2 and l = l1 + l2. The moments after the

virtual rotation can thus be computed directly and efficiently

from the moments in the real image.

Finally, a change in the control law (2) has to be performed

to come back from the virtually rotated camera to the real one:

v = −λ V L̂s

−1
(st − s

∗
t ) (29)

where matrix V is nothing but:

V =

[
R

∗⊤ 0

0 R
∗⊤

]

Let us note that V is a constant block-diagonal matrix and

thus preserves the decoupling properties between translational

and rotational motions. Let us also note that the virtual rotation
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does not change the stability properties of the system, even if it

is coarsely approximated, as long as we avoid the degenerate

case where the camera optical center belongs to the object

plane (which is very unlikely to occur).

V. EXPERIMENTAL RESULTS

This section presents several experimental results obtained

at video rate with a six dofs eye-in-hand system using first

dense objects, and then discrete ones. For dense objects, image

moments are efficiently computed from the contour points

using Green’s theorem [26]. In all the experiments, and as

in [28], we have used the following model of the interaction

matrix in the control law (29):

L̂s =
1

2
(L

‖
s(st∗)

+ L
‖
s(st)

)

Indeed, it has been recently proved in [17] that this choice

improves largely the system behavior. Note that, of course,

the improvements appear only for the terms of Ls which are

not constant.

A. Experimental results using dense objects

We first consider the object depicted in Fig. 2.a and 2.b: a

“whale”. For this object, we have chosen c9 and c10 from the

set given in (9) to control the rotational motion ωx and ωy.

For all the possible pairs, we can indeed compute using (28)

the error:

ec(α, β) = (cit(α, β) − ci
∗
t )

2 + (cjt(α, β) − cj
∗
t )

2 (30)

where α and β, which represent the rotation angles around x
and y axis, are varying from −π

3 to π
3 , typically. We then

choose the pair (ci, cj) such that the error ec presents a global

minimum with an influence zone as large and as symmetrical

as possible [31]. A complete study is given in [27]. We just

present in Fig. 1 the value of ec for four possible pairs. We can

note from Fig. 1.a and 1.d that (c9, c10) and (c9, c5) supply

an adequate behavior of ec (that is why (c9, c10) has been

selected). On the other hand, (c6, c4) and (c3, c4) have to be

avoided (see Fig. 1.b and 1.c). This off-line selection process

has to be done for each new object considered, once a desired

image is acquired. Computing the values of ec(α, β) for all

the possible pairs (ci, cj) takes currently few seconds on a

standard PC.

In the next paragraph, we consider the case where a pure

translational motion can be realized to reach the desired image

from the initial one. We will then consider more complex

displacements.

1) Pure translational motion: We compare in Fig. 2 the

results obtained with our features given in (19) and those

obtained using the centroid coordinates (xg, yg) and the area a.

For that first experiment, the image plane is parallel to the

object plane, the desired depth Z∗ has been set to 0.5 m, and

gain λ to 0.1. We can see in Fig. 2 the improvements brought

by the proposed features (corresponding plots are in dashed

lines) since they allow to obtain the same exponential decou-

pled decrease for the visual features and for the components

of the camera velocity. As expected, the camera 3D trajectory

(a) (b)

(c) (d)

Fig. 1. Representation of f(ec) on [−π

3
; π

3
] × [−π

3
; π

3
] for the “whale”

and pair: (a) (c9, c10), (b) (c6, c4), (c) (c3, c4), (d) (c9, c5).

is a pure straight line using the proposed features, while it is

not using the other ones. Note that using a bad estimation of

Z∗ with our features has just a gain effect. Thus it changes the

time-to-convergence of the system, but not the robot trajectory

nor the exponential decoupled decrease of the features (as long

as Ẑ∗ > 0).

The results still remain good when the image and object

planes are not parallel (see Fig. 3). In that case, Z∗ has again

been set to 0.5 m and rotation R
∗ has been specified by hand

as a rotation of 30◦ around x-axis. The camera 3D trajectory is

still a straight line, while, if the virtual rotation is not applied,

rotational motions are involved to reach the goal whatever the

visual features used. This validates the selected features to

control the translational motions, and also the importance of

applying a virtual rotation when the desired object position is

not parallel to the image plane.

2) Complex motion: We now test our scheme for displace-

ments involving very large translations and rotations. We first

consider the case where the image and the object planes

are parallel at the desired position. The desired image is

depicted in Fig. 2.b while the initial one is in Fig. 4.a. The

numerical value of the interaction matrix computed for the

desired position is given by:

L
‖
s(s∗)=




−1 0 0 0.01 −0.52 0.01
0 −1 0 0.51 −0.01 0.01
0 0 −1 −0.02 −0.01 0
0 0 0 −0.61 0.09 0
0 0 0 −0.33 −0.62 0
0 0 0 −0.04 −0.08 −1




As expected, we can note that L
‖
s(s∗) is block triangular with

main terms around the diagonal. Its condition number, equal

to 2.60, is very satisfactory. The obtained results are given in

Fig. 4. They show the good behavior of the control law. Indeed,

there is no oscillation in the decreasing of the visual features
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(a) (b)

0 200 400 600 800 1000 1200 1400
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

  using our featues

 using  the other features

0 200 400 600 800 1000 1200 1400
−4

−2

0

2

4

6

8

using our features

 using the other features

(c) (d)

−0.1 0 0.1 0.2 0.3 0.4−0.5
0

0.5
−0.5

0

0.5

using our features

using the other features

(e)

Fig. 2. Results for a pure translational motion when the object is parallel to
the image plane: (a) initial image, (b) desired image, (c) s − s

∗ (m), (d) υc

(cm/s), (e) camera 3D trajectory

(see Fig. 4.c), and there is only one small oscillation for only

two components of the camera velocity (see Fig. 4.d). Even

if the rotation to realize between the initial and the desired

positions is very large, the obtained camera 3D trajectory is

satisfactory (see Fig. 4.b). The decoupling properties are thus

ensured in a large neighborhood of the desired position despite

the fact that the current object plane parameters are never

computed nor introduced in the control law. The behavior

obtained with our pure image-based method is thus similar

to that obtained with a hybrid control scheme (but it does not

necessitate an estimation of the camera displacement at each

iteration of the control scheme). We can finally note that using

moments of order 5 (involved in c9 and c10) does not introduce

significant noise in the control law.

The results obtained when the image and the object planes

are not parallel for the desired position are given in Fig. 5. We

can note the very large difference between the initial image

(Fig. 5.a) and the desired one (Fig. 3.b). Thanks to the virtual

rotation applied and to the visual features selected, the camera

trajectory is still very satisfactory, as well as the decreasing

of the visual features, and the decreasing of the components

of the camera velocity.

3) Results with a bad calibration and object occlusion:

We now test the robustness of our approach with respect to a

bad calibration of the system. In the experiment reported in

Fig. 6, errors have been added to camera intrinsic parameters

(a) (b)

-0.2

 0

 0.2

 0.4

 0  200  400  600  800

s1
s2
s3
s4
s5
s6

-2

 0

 2

 4

 0  200  400  600  800

vx
vy
vz
wx
wy
wz

(c) (d)

0
0.2

0.4

0
0.2

0.4

−0.4

−0.2

0

(e)

Fig. 3. Results for a pure translation when the object is not parallel to the
image plane: (a) initial image, (b) desired image, (c) s−s

∗ (m), (d) vc (cm/s
and dg/s), (e) camera 3D trajectory

−0.2
0

0.2
0.4

0.1

0.15

0.2

−0.7

−0.6

−0.5

−0.4

−0.3

(a) (b)

-0.6

-0.4

-0.2

 0

 0  250  500

s1
s2
s3
s4
s5
s6

-9

-6

-3

 0

 0  250  500

vx
vy
vz
wx
wy
wz

(c) (d)

Fig. 4. Results for a complex motion when the desired object position is
parallel to the image plane: (a) initial image, (b) camera 3D trajectory, (c)
s − s

∗ (m), (d) vc (cm/s and dg/s).
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−0.2

0

0.2

0

0.5

1
−0.7

−0.6

−0.5

−0.4

−0.3

(a) (b)

-0.8

-0.4

 0

 0.4

 0  500  1000  1500

s1
s2
s3
s4
s5
s6 -4

-2

 0

 2

 0  500  1000  1500

vx
vy
vz
wx
wy
wz

(c) (d)

Fig. 5. Results for a complex motion when the desired object position is
not parallel to the image plane: (a) initial image, (b) camera 3D trajectory,
(c) s − s

∗ (m), (d) vc (cm/s and dg/s).

(25% on the focal length and 20 pixels on the coordinates

of the principal point) and to the object plane parameters

(Ẑ∗ = 0.8 m instead of Z∗ = 0.5 m). The lighting conditions

from the initial position (see Fig. 6.a) to the desired one (see

Fig. 2.b) are also different. Furthermore, an occlusion has been

generated since the object is not completely in the camera

field of view at the beginning of the servo. Despite the worse

conditions of experiments, the system still converges, and, as

soon as the occlusion ends (after iteration 30), the behavior

of the system is similar to those of the previous experiments,

which validates the robustness of our scheme with respect to

modeling errors.

−0.2 0 0.2 0.4 0.6
0

0.1

0.2
−0.45

−0.4

−0.35

−0.3

−0.25

(a) (b)

-1.2

-0.8

-0.4

 0

 0  100  200  300

s1
s2
s3
s4
s5
s6 -20

-10

 0

 10

 0  100  200  300

vx
vy
vz
wx
wy
wz

(c) (d)

Fig. 6. Results using a bad calibration: (a) initial image, (b) camera 3D
trajectory (c) s− s

∗ (m), (d) vc (cm/s and dg/s).

4) Results for another object: We now consider another

object: a “brain” (see Fig. 8.a and 8.b). For that object,

pair (c6, c4) has been selected to control the rotational mo-

tion ωx and ωy. Indeed, it is clear from Fig. 7 that this

pair is now adequate, while (c9, c10) is not. The numerical

value of the interaction matrix corresponding to the desired

configuration given in Fig. 8.b is given by:

L
‖
s(s∗)=




−1 0 0 −0.00 −0.51 0.00
0 −1 0 0.51 0.00 0.01
0 0 −1 −0.00 −0.02 0
0 0 0 −3.38 −2.68 0
0 0 0 −0.90 1.03 0
0 0 0 −0.10 0.00 −1




Once again, we can note the nice form of L
‖
s(s∗) whose

condition number is 3.14. We can also note in Fig. 8.c, 8.d.

and 8.e the correct behavior of the control law, which is very

similar to the one obtained with the “whale”.

(a) (b)

Fig. 7. Representation of f(ec) for the “brain” and for the pair: (a) (c9, c10),
(b) (c6, c4).

(a) (b)
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−0.5

0

0.5

−0.5

0

0.5
−0.5

0

0.5

(e)

Fig. 8. Results obtained with the ”brain” for a desired object position parallel
to the image plane: (a) initial image, (b) desired image, (c) s − s

∗ (m), (d)
vc (cm/s and dg/s), (e) camera 3D trajectory
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Similarly, if we consider a desired configuration of the

object plane non parallel to the image plane, the behavior

obtained is still satisfactory thanks to the virtual rotation

applied (see Fig. 9 where R
∗ has again been specified as a

rotation of 30◦ around x-axis).

(a) (b)

-2

 0

 2

 4

 0  400  800  1200

s1
s2
s3
s4
s5
s6 -8

-4

 0

 4

 0  400  800  1200

vx
vy
vz
wx
wy
wz

(c) (d)

−0.2
−0.1

0
0.1

−0.2
−0.1

0
0.1

−0.2

−0.1

0

0.1

0.2

(e)

Fig. 9. Results obtained with the ”brain” for a desired object position non
parallel to the image plane: (a) initial image, (b) desired image, (c) visual
features s − s

∗ (m), (d) vc (cm/s and dg/s), (e) camera 3D trajectory.

B. Experimental results using discrete objects

Discrete objects are now considered. The first one is very

simple and composed of 17 ”white dots” (see Fig. 11). For

that object, several pairs of moments invariants can be chosen,

such as for instance (c9, c10) or (c6, c4) (see Fig. 10). In

the following experiments, we have chosen the pair (c6, c4).
Two cases for the desired camera position have been also

(a) (b)

Fig. 10. Representation of f(ec) for the set of points and for the pair: (a)
(c9, c10), (b) (c6, c4).

considered: either the image plane is parallel to the object,

or it is not. The corresponding images are given in Fig. 11.a

and 11.b.

1) Pure translational motion: In this experiment, the same

pure translation T = (−24 cm, 17 cm,−70 cm) is between

the initial and the desired configurations for both parallel and

non parallel cases (see Fig. 11.c and 11.d). We have compared

the results obtained using the moments proposed in Section III-

A as visual features (see (19) and (21)), and using all the points

coordinates (xk, yk).

(a) (b)

(c) (d)

0 200 400 600 800
0

0.05

0.1

0.15

   using points coordinates

 using our features

100 200 300 400 500

−10

0

10

20

  using our features

using points coordinates

(e) (f)

0.2
0.4

0.6 0

0.2

0.4
−0.5

0

0.5

−0.4 −0.2 0 0.20
0.2

0.4

−0.2

0

0.2

(g) (h)

Fig. 11. Pure translational motion: (a) desired image when the object is
parallel to the image plane, (b) desired image when the object is not parallel
to the image plane), (c) initial image for a pure translation from (a), (d)
initial image for a pure translation from (b), (e) comparison of s − s

∗ (m),
(f) comparison of υc (cm/s), (g) camera 3D trajectory when the object is
parallel to the image plane (in blue, using our features, and in red using
points coordinates), (h) idem when the object is not parallel to the image
plane.

In both parallel and non parallel cases, we can see in

Fig. 11.e, 11.f, 11.g and 11.h the improvements brought using

moments and, for the non parallel case, brought by the virtual

rotation. Indeed, they allow to obtain a pure exponential

decrease for the visual features and generate exactly the same

camera velocity. As expected, the camera 3D trajectory is thus
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a pure straight line in both cases using the proposed method.

When points coordinates are used, we have no more a pure

exponential decrease for the visual features and for the camera

velocity components. The camera trajectory is thus no more a

straight line. Rotational motions (unfortunately not visible on

the presented plots) are even involved when points are used

for the non parallel case.

2) Complex motion and comparison wrt. basic image-based

visual servoing: We now consider a complex displacement and

we present a comparison between our image-based method

using six combinations of moments and the traditional image-

based method where the coordinates of the image points are

used as input to the control scheme. The initial image is given

in Fig. 12.a while the desired one is given in Fig. 12.b. The

(a) (b)
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-0.1

 0

 0.1

 0  400  800

-6

-3

 0

 3

 6

 0  400  800

vx
vy
vz
wx
wy
wz

(e) (f)

−0.2
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0

0.2

−0.2

0

0.2

(g) (h)

Fig. 12. Results for a complex motion using a discrete object, comparison
using our visual features and using a basic image-based approach : (a) initial
image, (b) desired image, (c) s − s

∗ (m) using moments, (d) vc (cm/s and
dg/s) using moments, (e) s − s

∗ (m) using image points coordinates, (f) vc

(cm/s and dg/s) using image points coordinates, (g) image points trajectories
(in blue using our features, in red using image points coordinates) (h) camera
trajectories (with same colors)

corresponding displacement is very large (tx = −38 cm,

ty = 47 cm, tz = 10 cm, θux = 23◦, θuy = −27◦,

θuz = 64◦) and the desired position is such that there is

a rotation of 20◦ around x camera axis between the object

plane and the image plane. As for the other objects considered

previously, the interaction matrix using the moments after the

virtual rotation is sparse and block triangular:

L
‖
s(s∗

t
)=




−1 0 0 0.00 −0.51 0.18
0 −1 0 0.48 −0.00 0.03
0 0 −1 −0.24 −0.02 0
0 0 0 3.44 −20.56 0.0
0 0 0 1.19 −2.31 0.0
0 0 0 0.14 −0.72 −1




Despite the large displacement to realize, we can note in

Fig. 12.c and 12.d the decoupled and exponential decrease

of the six combinations of moments and of the six camera

velocity components. If points coordinates are used as input

to the control law (see Fig. 12.e and 12.f), the system still

converges, but without these nice properties. The difference

of behaviors is particularly clear on the trajectories of the

image points (see Fig. 12.g) and on the camera trajectory (see

Fig. 12.h) where our scheme leads to almost a pure 3D straight

line. The results obtained using the proposed combinations

of 2D moments are thus similar to those of a hybrid visual

servoing. Even if currently limited to planar objects, our

method has the advantage that it does not necessitate to solve

explicitly the matching problem between each point of the

object extracted on the current image and the corresponding

point extracted on the desired image. Contrary to the other

existing methods (that is basic image-based schemes, position-

based schemes and hybrid schemes), it is sufficient to check

that the same set of points is used to compute the moments

in the current and in the desired images.

3) Results with a bad system calibration: We now test

the robustness of our approach with respect to modeling

errors. In the presented experiment, errors have been added

to camera intrinsic parameters (25% on the focal length and

20 pixels on the coordinates of the principal point) and to

the object depth (Ẑ∗ = 1 m instead of Z∗ = 0.7 m).

Furthermore, an error equal to 10◦ has been set in R
∗. The

results are given in Fig. 13. Even if the trajectory of the

points are different in the calibrated and coarse calibrated

cases (compare Fig. 12.g and 13.c), which is mainly due to

the large errors introduced in the camera intrinsic parameters,

all the errors introduced have a small effect on the decreasing

of the moments (compare Fig. 12.c and 13.a), on the camera

velocity components (compare Fig. 12.d and 13.b), and thus

on the camera 3D trajectory, which is still very near to a pure

straight line as in the calibrated case (see Fig. 13.d where

the trajectories can be compared). Let us note that the basic

image-based method using points coordinates as input to the

control law does not allow the system to converge with the

same modeling errors, since some points leave the camera

field of view. These results validate the strong robustness of

our scheme with respect to modeling errors, and the fact

that the decoupling properties are not sensitive to a coarse

approximation of the virtual rotation since they are ensured in

a neighborhood of the virtually rotated desired position.

4) Results for complex images: Finally, we present ex-

perimental results obtained with more complex images (see
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Fig. 13. Results with modeling errors: (a) s − s
∗ (m), (b) vc (cm/s and

dg/s), (c) image points trajectories, (d) camera trajectory (in blue, the trajectory
obtained without modeling error, and in red with modeling errors).

Fig. 14) using the pair (c9, c10). The considered points have

been extracted using the well known Harris detector and

tracked using a simple SSD algorithm. We can note that the

plots obtained are more noisy than using simple dots, because

of the less accurate points extraction. It is mainly noticeable

on ωx and ωy components of the camera velocity, since these

values depend on moments of order 5 (while ωz and υz are

not noisy at all since their value only depend of moments

of order 2). Despite this noise, the exponential decrease, the

convergence and the stability are still obtained, which proves

the validity of our approach. This results could be improved

easily using a sub-pixel accuracy image tracker, such as for

instance the Shi-Tomasi algorithm [25].
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Fig. 14. Results for complex images: (a) initial image, (b) desired image,
(c) ‖s − s

∗‖ (m) , (d) vc (cm/s and dg/s).

VI. CONCLUSION

In this paper, we have proposed a new visual servoing

scheme based on image moments valid for dense and discrete

objects. Six features have been designed to decouple the dofs

of the system, which provides a large domain of convergence,

a good behavior of the visual features, as well as an adequate

camera trajectory. A new method, based on a virtual camera

rotation, has also been proposed to extend the decoupling

properties for any desired camera orientation with respect to

the object. The experimental results have shown the validity

of our approach, and its robustness with respect to modeling

errors. We have obtained similar results than using an hybrid

visual servoing scheme, but with a more simple cooking of

the visual features, since our method does not necessitate

any point-to-point matching, any homography estimation, nor

any partial displacement estimation at each iteration of the

control scheme. Future works will be devoted to determine an

unique pair of moments invariants able to efficiently control ωx

and ωy whatever the considered object. We would like also to

generalize the results to non planar objects, and to determine

analytical conditions to ensure the global stability of the

system in presence of modeling errors.

APPENDIX

The set of invariants involved in (9) are given by [27]:

I1 = −µ20µ02 + µ2
11
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2 + 4µ2

11
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2
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2
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30µ

2
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3
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2
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I6 = 3µ2
30µ

2
12 + 2µ2

30µ
2
03 − 6µ30µ

2
21µ12 − 6µ30µ21µ12µ03
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