Point-Based Computer Graphics

Eurographics 2002 Tutorial T6

Organizers
Markus Gross
ETH Zürich
Hanspeter Pfister
MERL, Cambridge
Presenters
Marc Alexa
TU Darmstadt
Markus Gross
ETH Zürich
Mark Pauly
ETH Zürich
Hanspeter Pfister
MERL, Cambridge
Marc Stamminger
Bauhaus-Universität Weimar
Matthias Zwicker
ETH Zürich

Contents

Tutorial Schedule 2
Presenters Biographies 3
Presenters Contact Information 4
References 5
Project Pages 6
Tutorial Schedule
8:30-8:45 Introduction (M. Gross)
8:45-9:45 Point Rendering (M. Zwicker)
9:45-10:00 Acquisition of Point-Sampled Geometry and Appearance I(H. Pfister)
10:00-10:30 Coffee Break
10:30-11:15 Acquisition of Point-Sampled Geometry and Appearance II (H. Pfister)
11:15-12:00 Dynamic Point Sampling (M. Stamminger)
12:00-14:00 Lunch
14:00-15:00 Point-Based Surface Representations (M. Alexa)
15:00-15:30 Spectral Processing of Point-Sampled Geometry (M. Gross)
15:30-16:00 Coffee Break
16:00-16:30 Efficient Simplification of Point-Sampled Geometry (M. Pauly)
16:30-17:15 Pointshop3D: An Interactive System for Point-Based SurfaceEditing (M. Pauly)
17:15-17:30 Discussion (all)

Presenters Biographies

Dr. Markus Gross is a professor of computer science and the director of the computer graphics laboratory of the Swiss Federal Institute of Technology (ETH) in Zürich. He received a degree in electrical and computer engineering and a Ph.D. on computer graphics and image analysis, both from the University of Saarbrucken, Germany. From 1990 to 1994 Dr. Gross was with the Computer Graphics Center in Darmstadt, where he established and directed the Visual Computing Group. His research interests include physics-based modeling, point based methods and multiresolution analysis. He has widely published and lectured on computer graphics and scientific visualization and he authored the book "Visual Computing", Springer, 1994. Dr. Gross has taught courses at major graphics conferences including SIGGRAPH, IEEE Visualization, and Eurographics. He is associate editor of the IEEE Computer Graphics and Applications and has served as a member of international program committees of major graphics conferences. Dr. Gross was a papers co-chair of the IEEE Visualization '99 and Eurographics 2000 conferences.

Dr. Hanspeter Pfister is Associate Director and Senior Research Scientist at MERL - Mitsubishi Electric Research Laboratories - in Cambridge, MA. He is the chief architect of VolumePro, Mitsubishi Electric's real-time volume rendering hardware for PCs. His research interests include computer graphics, scientific visualization, and computer architecture. His work spans a range of topics, including point-based rendering and modeling, 3D scanning, and computer graphics hardware. Hanspeter Pfister received his Ph.D. in Computer Science in 1996 from the State University of New York at Stony Brook. He received his M.S. in Electrical Engineering from the Swiss Federal Institute of Technology (ETH) Zurich, Switzerland, in 1991. He is Associate Editor of the IEEE Transactions on Visualization and Computer Graphics (TVCG), member of the Executive Committee of the IEEE Technical Committee on Graphics and Visualization (TCVG), and member of the ACM, ACM SIGGRAPH, IEEE, the IEEE Computer Society, and the Eurographics Association.

Mark Pauly is currently a PhD student at the Computer Graphics Lab at ETH Zurich, Switzerland. He is working on point-based surface representations for 3D digital geometry processing, focusing on spectral methods for surface filtering and resampling. Further research activities are directed towards multiresolution modeling, geometry compression and texture synthesis of point-sampled objects.

Dr. Marc Stamminger received his PhD in computer graphics in 1999 from the University of Erlangen, Germany, for his work about finite element methods for global illumination computations. After that he worked at the Max-Planck-Institut for Computer Science (MPII) in Saarbrücken, Germany, where he headed the global illumination group. As a PostDoc in Sophia-Antipolis in France he worked on the interactive rendering and modeling of natural environments. Since 2001 he is an assistant professor at the Bauhaus-University in Weimar. His current research interests are point-based methods for complex, dynamic scenes, and interactive global illumination methods.

Matthias Zwicker is in his last year of the PhD program at the Computer Graphics Lab at ETH Zurich, Switzerland. He has developed rendering algorithms and data
structures for point-based surface representations, which he presented in the papers sessions of SIGGRAPH 2000 and 2001. He has also extended this work towards high quality volume rendering. Other research interests concern compression of point-based data structures, acquisition of real world objects, and texturing of point-sampled surfaces.

Dr. Marc Alexa leads the project group "3d Graphics Computing" within the Interactive Graphics System Group, TU Darmstadt. He received his PhD and MS degrees in Computer Science with honors from TU Darmstadt. His research interests include shape modeling, transformation and animation as well as conversational user interfaces and information visualization.

Presenters Contact Information

Dr. Markus Gross

Professor
Department of Computer Science
Swiss Federal Institute of Technology (ETH)
CH 8092 Zürich
Switzerland
Phone: +41 16327114
FAX: +41 16321596
grossm@inf.ethz.ch
http://graphics.ethz.ch
Dr. Hanspeter Pfister
Associate Director
MERL - A Mitsubishi Electric Research Lab
201 Broadway
Cambridge, MA 02139
USA
Phone: (617) 621-7566
Fax: (617) 621-7550
pfister@merl.com
http://www.merl.com/people/pfister/
Matthias Zwicker
Department of Computer Science
Swiss Federal Institute of Technology (ETH)
CH 8092 Zürich
Switzerland
Phone: +41 16327437
FAX: +41 16321596
zwicker@inf.ethz.ch
http://graphics.ethz.ch
Mark Pauly
Department of Computer Science
Swiss Federal Institute of Technology (ETH)
CH 8092 Zürich

Switzerland
Phone: +41 16320906
FAX: +41 16321596
pauly@inf.ethz.ch
http://graphics.ethz.ch
Dr. Marc Stamminger
Bauhaus-Universität Weimar
Bauhausstr. 11
99423 Weimar
Germany
Phone: +49 3643583733
FAX: +49 3643583709
Marc.Stamminger@medien.uni-weimar.de
Dr. Marc Alexa
Interactive Graphics Systems Group
Technische Universität Darmstadt
Fraunhoferstr. 5
64283 Darmstadt
Germany
Phone: +49 6151155674
FAX: +49 6151155669
alexa@gris.informatik.tu-darmstadt.de
http://www.igd.fhg.de/~alexa

References

M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, C. Silva.

Point set surfaces. Proceedings of IEEE Visualization 2001, p. 21-28, San Diego, CA, October 2001.
O. Deussen, C. Colditz, M. Stamminger, G. Drettakis, Interactive visualization of complex plant ecosystems. Proceedings of IEEE Visualization 2002, to appear, Boston, MA, October 2002.
W. Matusik, H. Pfister, P. Beardsley, A. Ngan, R. Ziegler, L. McMillan, Imagebased 3D photography using opacity hulls. Proceedings of SIGGRAPH 2002, to appear, San Antonio, TX, July 2002.
W. Matusik, H. Pfister, A. Ngan, R. Ziegler, L. McMillan, Acquisition and rendering of transparent and refractive objects. Thirteenth Eurographics Workshop on Rendering, to appear, Pisa, Italy, June 2002.
M. Pauly, M. Gross, Spectral processing of point-sampled geometry. Proceedings of SIGGRAPH 2001, p. 379-386, Los Angeles, CA, August 2001.
M. Pauly, M. Gross, Efficient Simplification of Point-Sampled Surfaces. IEEE Proceedings of Visualization 2002, to appear, Boston, MA, October 2002.
H. Pfister, M. Zwicker, J. van Baar, M. Gross, Surfels - surface elements as rendering primitives. Proceedings of SIGGRAPH 2000, p. 335-342, New Orleans, LS, July 2000.
M. Stamminger, G. Drettakis, Interactive sampling and rendering for complex and procedural geometry, Rendering Techniques 2001, Proceedings of the Eurographics Workshop on Rendering 2001, June 2001.
L. Ren, H. Pfister, M. Zwicker, Object space EWA splatting: a hardware accelerated approach to high quality point rendering. Proceedings of the Eurographics 2002, to appear, Saarbrücken, Germany, September 2002.
M. Zwicker, H. Pfister, J. van Baar, M. Gross, EWA volume splatting. Proceedings of IEEE Visualization 2001, p. 29-36, San Diego, CA, October 2001.
M. Zwicker, H. Pfister, J. van Baar, M. Gross, Surface splatting.

Proceedings of SIGGRAPH 2001, p. 371-378, Los Angeles, CA, August 2001.
M. Zwicker, H. Pfister, J. van Baar, M. Gross, EWA splatting. IEEE Transactions on Visualization and Computer Graphics, to appear.
M. Zwicker, M. Pauly, O. Knoll, M. Gross, Pointshop 3D: an interactive system for point-based surface editing. Proceedings of SIGGRAPH 2002, to appear, San Antonio, TX, July 2002

Project Pages

- Rendering http://graphics.ethz.ch/surfels
- Acquisition http://www.merl.com/projects/3Dimages/
- Dynamic sampling http://www-sop.inria.fr/reves/personnel/Marc.Stamminger/pbr.html
- Processing, sampling and filtering http://graphics.ethz.ch/points
- Pointshop3D
http://www.pointshop3d.com

Point-Based Computer Graphics
Eurographics 2002 Tutorial T6
Marc Alexa, Markus Gross, Mark Pauly, Hanspeter Pfister, Marc Stamminger, Matthias Zwicker

Polynomials...

ETROVS

\checkmark Rigorous mathematical concept
\checkmark Robust evaluation of geometric entities
\checkmark Shape control for smooth shapes
\checkmark Advanced physically-based modeling
\times Require parameterization
\times Discontinuity modeling
\times Topological flexibility
Refine h rather than p !

Polynomials -> Triangles

- Piecewise linear approximations
- Irregular sampling of the surface
- Forget about parameterization

Triangle meshes
A Multiresolution modeling

- Compression
- Geometric signal processing

Triangles...

\checkmark Simple and efficient representation
\checkmark Hardware pipelines support Δ
\checkmark Advanced geometric processing is being in sight
\checkmark The widely accepted queen of graphics primitives
\times Sophisticated modeling is difficult
\times (Local) parameterizations still needed
\times Complex LOD management
\times Compression and streaming is highly non-trivial
Remove connectivity!

Triangles -> Points

- From piecewise linear functions to Delta distributions
- Forget about connectivity

Point clouds
A Points are natural representations within 3D acquisition systems

- Meshes provide an articifical enhancement of the acquired point samples

History of Points in Graphics

- Particle systems [Reeves 1983]
- Points as a display primitive [Whitted, Levoy 1985]
- Oriented particles [Szeliski, Tonnesen 1992]
- Particles and implicit surfaces [Witkin, Heckbert 1994]
- Digital Michelangelo [Levoy et al. 2000]
- Image based visual hulls [Matusik 2000]
- Surfels [Pfister et al. 2000]
- QSplat [Rusinkiewicz, Levoy 2000]
- Point set surfaces [Alexa et al. 2001]
- Radial basis functions [Carr et al. 2001]
- Surface splatting [Zwicker et al. 2001]
- Randomized z-buffer [Wand et al. 2001]
- Sampling [Stamminger, Drettakis 2001]
- Opacity hulls [Matusik et al. 2002]
- Pointshop3D [Zwicker, Pauly, Knoll, Gross 2002]...?

The Purpose of our Course is \qquad EG 2008
I) ...to introduce points as a versatile and powerful graphics primitive
II) ...to present state of the art concepts for acquisition, representation, processing and rendering of point sampled geometry
III) ...to stimulate YOU to help us to further develop Point Based Graphics

Morning Schedule

$8: 30-8: 45$	Introduction (M. Gross)
$8: 45-9: 45$	Point Rendering (M. Zwicker)
9:45-10:00	Acquisition of Point-Sampled Geometry and Appearance I (H. Pfister)
$10: 00-10: 30$	Coffee Break
$10: 30-11: 15$	Acquisition of Point-Sampled Geometry and Appearance II (H. Pfister)
$11: 15-12: 00$	Dynamic Point Sampling (M. Stamminger)

8

Afternoon Schedule

EG wo

14:00-15:00 Point-Based Surface Representations (M.
15:00-15:30 Alexa)

Geometry (M. Gross)
15:30-16:00 Coffee Break

16:00-16:30 Efficient Simplification of Point-Sampled Geometry (M. Pauly)
16:30-17:15 Pointshop3D: An Interactive System for PointBased Surface Editing (M. Pauly)
17:15-17:30 Discussion (all)

Afternoon Schedule	
$14: 00-15: 00$	Point-Based Surface Representations (M. Alexa) Spectral Processing of Point-Sampled Geometry (M. Gross) Coffee Break
$15: 00-15: 30$	Efficient Simplification of Point-Sampled 16:00-16:00
Geometry (M. Pauly) Pointshop3D: An Interactive System for Point- Based Surface Editing (M. Pauly) Discussion (all)	
$17: 15-17: 30-17: 15$	11

- Introduction and motivation
- Surface elements
- Rendering
- Antialiasing
- Hardware Acceleration
- Conclusions

Motivation 1

- Performance of 3D hardware has exploded (e.g., GeForce4: 136 million vertices per second)
- Projected triangles are very small (i.e., cover only a few pixels)
- Overhead for triangle setup increases (initialization of texture filtering, rasterization)

A simpler, more efficient rendering primitive than triangles?

Point-Based Computer Graphics

Motivation 2	
- Modern 3D scanning devices (e.g., laser range scanners) acquire huge point clouds - Generating consistent triangle meshes is time consuming and difficult	
A rendering primitive for direct visualization of point clouds, without the need to generate triangle meshes?	[Levoy et al. 2000] Your Name

Points as Rendering Primitives

EG

- Point clouds instead of triangle meshes [Levoy and Whitted 1985, Grossman and Dally 1998, Pfister et al. 2000]
 textures)

Point-Based Computer Graphics
Your Name

Surface Elements - Surfels

- Each point corresponds to a surface element, or surfel, describing the surface in a small neighborhood
- Basic surfels:

BasicSurfel \{
position;
color;
\}

Point-Based Computer Graphic

Surfels

E Eruva

- How to represent the surface between the points?

- Surfels need to interpolate the surface between the points
- A certain surface area is associated with each surfel

Surfels

- Surfels can be extended by storing additional attributes
- This allows for higher quality rendering or advanced shading effects

ExtendedSurfel \{

Surfels

- Surfels store essential information for rendering
- Surfels are primarily designed as a point rendering primitive
- They do not provide a mathematically smooth surface definition (see [Alexa 2001], point set surfaces)

Model Acquisition

EG

- 3D scanning of physical objects
- See Pfister, acquisition
- Direct rendering of acquired point clouds
- No mesh reconstruction necessary

Model Acquisition

- Processing and editing of point-sampled geometry

point-based surface editing [Zwicker et al. 2002] (see Pauly, Pointshop3D)

Point Rendering Pipeline

Forward

Warping \begin{tabular}{c}
Filtering

and Shading

\Rightarrow Visibility \Rightarrow

Image

Reconstruction
\end{tabular}

- Perspective projection of each point in the point cloud
- Analogous to projection of triangle vertices
- homogeneous matrix-vector product
- perspective division

Point Rendering Pipeline

- Per-point shading
- Conventional models for shading (Phong, Torrance-Sparrow, reflections, etc.)
- High quality antialiasing is an advanced topic discussed later in the course

Point Rendering Pipeline

- Visibility and image reconstruction is performed simultaneously
- Discard points that are occluded from the current viewpoint
- Reconstruct continuous surfaces from projected points

Image Reconstruction

EG200

- Goal: avoid holes
- Use surfel disc radius r to cover surface completely

3D object space

Point-Based Computer Graphics

Quad Rendering Primitive

- Draw a colored quad centered at the projected point
- The quad side length is h, where $h=2$ * r * s
- The scaling factor s given by perspective projection and viewport transformation
- Hardware implementation spen spenGL GL_POINTS

Comparison

- Quad primitive
- Low image quality (primitives do not adapt to surface orientation)
- Efficient rendering
- Supported by conventional 3D accelerator hardware (OpenGL GL_POINTS)
- Projected disc primitive
- Higher image quality (primitives adapt to surface orientation)
- Not directly supported by graphics hardware
- Higher computational cost

Visibility: Z-Buffering
 당

- No blending of rendering primitives

Point-Based Computer Graphics

Splatting

- A splat primitive consists of a colored point primitive and an alpha mask

Splatting

- The final color $c(x, y)$ is computed by additive alpha blending, i.e., by computing the weighted sum

$$
c(x, y)=\frac{\sum_{i} c_{i} w_{i}(x, y)}{\sum_{i} w_{i}(x, y)}
$$

Normalization is necessary, because the weights do not sum up to one with irregular point distributions

$$
\sum_{i} w_{i}(x, y) \neq 1
$$

Extended Z-Buffering

0 G 200

Depthrest (x, y) \{
if (abs(splat $z-z(x, y))<t h r e s h o l d) ~\{$
$c(x, y)=c(x, y)+$ splat color
$\mathrm{w}(\mathrm{x}, \mathrm{y})=\mathrm{w}(\mathrm{x}, \mathrm{y})+$ splat $\mathrm{w}(\mathrm{x}, \mathrm{y})$
\} else if (splat $z<z(x, y))$ \{
$z(x, y)=$ splat z
$c(x, y)=$ splat color
$w(x, y)=$ splat $w(x, y)$
\}
\}

Point-Based Computer Graphics

High Quality Splatting $\overline{\text { EGin }}$

- High quality splatting requires careful analysis of aliasing issues
- Review of signal processing theory
- Application to point rendering
- Surface splatting [Zwicker et al. 2001]

Aliasing in Computer

Graphics

- Aliasing = Sampling of continuous functions below the Nyquist frequency
- To avoid aliasing, sampling rate must be twice as high as the maximum frequency in the signal
- Aliasing effects:
- Loss of detail
- Moire patterns, jagged edges
- Disintegration of objects or patterns
- Aliasing in Computer Graphics
- Texture Mapping
- Scan conversion of geometry

Aliasing in Computer Graphics

 - Aliasing: high frequencies in the input signal appear as low frequencies in the reconstructed signal

Antialiasing

- Prefiltering
- Band-limit the continuous signal before sampling
- Eliminates all aliasing (with an ideal low-pass filter)
- Closed form solution not available in general
- Supersampling
- Raise sampling rate
- Reduces, but does not eliminate all aliasing artifacts (in practice, many signals have infinite frequencies)
- Simple implementation (hardware)

Resampling

Resampling Filters

Resampling Filters

Resampling

C2

- Resampling in the context of surface rendering
- Discrete input function = surface texture (discrete 2D function)
- Warping = projecting surfaces to the image plane (2D to 2D projective mapping)
- Warping a 2 D reconstruction kernel is equivalent to projecting a surfel disc with alpha mask

Point-Based Computer Graphics

Resampling Filters

- A resampling filter is a convolution of a warped reconstruction filter and a low-pass
filter
screen space

warped
reconstruction
kernel kernel
Point-Based Computer Graphics
"no information falls inbetween the pixel

low-pass filter (determined by pixel grid)
resampling filter ("blurred reconstruction kernel") Your Name 44

ECROM

$$
c(x, y)=\sum_{k} c_{k} c_{k} r_{k}\left(m^{-1}(x, y)\right) \otimes h(x, y)
$$

Gaussian Resampling Filters

- Gaussians are closed under linear warping and convolution
- With Gaussian reconstruction kernels and low-pass filters, the resampling filter is a Gaussian, too
- Efficient rendering algorithms (surface splatting [Zwicker et al. 2001])

Mathematical Formulation

$$
\begin{aligned}
c(x, y) & =\sum_{k} c_{k} r_{k}\left(m^{-1}(x, y)\right) \otimes h(x, y) \\
& =\sum_{k} c_{k} G_{k}(x, y)
\end{aligned}
$$

Gaussian resampling filter

Properties of 2D Resampling Filters

Hardware Implementation

- Based on the object space formulation of EWA filtering
- Implemented using textured triangles
- All calculations are performed in the programmable hardware (extensive use of vertex shaders)
- Presented at EG 2002 ([Ren et al. 2002])

Conclusions

ECro

- Points are an efficient rendering primitive for highly complex surfaces
- Points allow the direct visualization of real world data acquired with 3D scanning devices
- High performance, low quality point rendering is supported by 3D hardware (tens of millions points per second)
- High quality point rendering with anisotropic texture filtering is available
- 3 million points per second with hardware support
- 1 million points per second in software
- Antialiasing technique has been extended to volume rendering

Surface Splatting Performance

- Software implementation
- 500000 splats/sec on 866 MHz PIII
- 1000000 splats/sec on 2 GHz P4
- Hardware implementation [Ren et al. 2002]
- Uses texture mapping and vertex shaders
- 3000000 splats/sec on GeForce4 Ti 4400

Applications

(c)

- Direct visualization of point clouds
- Real-time 3D reconstruction and rendering for virtual reality applications
- Hybrid point and polygon rendering systems
- Rendering animated scenes
- Interactive display of huge meshes
- On the fly sampling and rendering of procedural objects

Future Work

- Dedicated rendering hardware
- Efficient approximations of exact EWA splatting
- Rendering architecture for on the fly sampling and rendering

References
[Levoy and Whitted 1985] The use of points as a display primitive, technical report, University of North Carolina at Chapel Hill, 1985 [Heckbert 1986] Fundamentals of texture mapping and image warping, Master's Thesis, 1986
[Grossman and Dally 1998] Point sample rendering, Eurographics workshop on rendering, 1998
[Levoy et al. 2000] The digital Michelangelo project, SIGGRAPH 2000 [Rusinkiewicz et al. 2000] Qsplat, SIGGRAPH 2000
[Pfister et al. 2000] Surfels: Surface elements as rendering primitives, SIGGRAPH 2000

- [Zwicker et al. 2001] Surface splatting, SIGGRAPH 2001
- [Zwicker et al. 2002] EWA Splatting, to appear, IEEE TVCG 2002
[Ren et al. 2002] Object space EWA splatting: A hardware accelerated approach to high quality point rendering, Eurographics 2002

Ecrous		
Acquisition of Point-Sampled Geometry and Appearance		
${ }_{\text {Pont. Sased Compueer Grapics }}$	Haspecer frise, weal	1

The Goal: To Capture Reality

- Fully-automated 3D model creation of real objects.
- Faithful representation of appearance for these objects.

Wojciech Matusik, MIT Addy Ngan, MIT

Remo Ziegler, MERL Leonard McMillan, MIT

,

Point-Based Computer Graphics
Hanspeter Pfister, MERL

Image-Based 3D Photography

- An image-based 3D scanning system.
- Handles fuzzy, refractive, transparent objects.
- Robust, automatic
- Point-sampled geometry based on the visual hull.
- Objects can be rendered in novel environments.

Point-Based Computer Graphics

Previous Work

- Active and passive 3D scanners
- Work best for diffuse materials.
- Fuzzy, transparent, and refractive objects are difficult.
- BRDF estimation, inverse rendering
- Image based modeling and rendering
- Reflectance fields [Debevec et al. 00]
- Light Stage system to capture reflectance fields
- Fixed viewpoint, no geometry
- Environment matting [Zongker et al. 99, Chuang et al. 00]
- Capture reflections and refractions
- Fixed viewpoint, no geometry

Outline		Ecrux
- Overview > System - Geometry - Reflectance - Rendering - Results		
Point-Based Computer Graphics	Hanspeter Pfister, MERL	5

Acquisition

- For each viewpoint (6 cameras $\times 72$ positions)
- Alpha mattes
- Use multiple backgrounds [Smith and Blinn 96]
- Reflectance images
- Pictures of the object under different lighting
(4 lights $\times 11$ positions)
- Environment mattes
- Use similar techniques as [Chuang et al. 2000]

Point-Based Computer Graphics
Hanspeter Pfister, MERL

Approximate Geometry

- The approximate visual hull is augmented by radiance data to render concavities, reflections, and transparency.

Surface Light Fields

- A surface light field is a function that assigns a color to each ray originating on a surface. [Wood et al., 2000]

Color Blending

- Blend colors based on angle between virtual camera and stored colors.
- Unstructured Lumigraph Rendering [Buehler et al., SIGGRAPH 2001]
- View-Dependent Texture Mapping [Debevec, EGRW 98]

Geometry - Opacity Hull

- Store the opacity of each observation at each point on the visual hull [Matusik et al. SIG2002].

Point-Based Computer Graphics

Opacity Hull - Discussion

- View dependent opacity vs. geometry trade-off.
- Similar to radiance vs. geometry trade-off.
- Sometimes acquiring the geometry is not possible (e.g. resolution of the acquisition device is not adequate).
- Sometimes representing true geometry would be very inefficient (e.g. hair, trees).
- Opacity hull stores the "macro" effect.
$\begin{array}{lll}\text { Point-Based Computer Graphics } & \text { Hanspeter Pfister, MERL } & 20\end{array}$

Point-Based Models

ETROVS

- No need to establish topology or connectivity.
- No need for a consistent surface parameterization for texture mapping.
- Represent organic models (feather, tree) much more readily than polygon models.
- Easy to represent view-dependent opacity and radiance per surface point.

Light Transport Model

- Assume illumination originates from infinity.
- The light arriving at a camera pixel can be described as:

$$
C(x, y)=\int_{\Omega} W(\omega) E(\omega) d \omega
$$

${ }^{C}(x, y) \quad$ - the pixel value
E - the environment
W - the reflectance field

Surface Reflectance Fields

E C 200

- 6D function: $W\left(P, \omega_{i}, \omega_{r}\right)=W\left(u_{r}, v_{r} ; \theta_{i}, \Phi_{i} ; \theta_{r}, \Phi_{r}\right)$

[^0]

Reflectance Field Acquisition
 ```BC20```

- We separate the hemisphere into high resolution Ω_{h} and low resolution $\Omega_{\text {l }}^{\text {[Matusik }}$ et al., EGRW2002].

$C(x, y)=\int_{\Omega_{h}} W_{h}(\xi) T(\xi) d \xi+\int_{\Omega_{l}} W_{l}\left(\omega_{i}\right) L\left(\omega_{i}\right) d \omega$

$$
\text { Point-Based Computer Graphics } \quad \text { Hanspeter Pfister, MERL } 26
$$

Acquisition

E Erova

- For each viewpoint (6 cameras $\times 72$ positions)
- Alpha mattes
- Use multiple backgrounds [Smith and Blinn 96]
- Reflectance images \longleftarrow Low resolution
- Pictures of the object under different lighting
(4 lights $\times 11$ positions)
- Environment mattes \longleftarrow High resolution
- Use similar techniques as [Chuang et al. 2000]

Low-Resolution Reflectance Field

```
0
```

$$
C(x, y)=\int_{\Omega_{h}} W_{h}(\xi) T(\xi) d \xi+\int_{\Omega_{l}} W_{l}\left(\omega_{i}\right) L\left(\omega_{i}\right) d \omega
$$

- W_{l} sampled by taking pictures with each light turned on at a time [Debevec et al 00].

$\int_{\Omega_{l}} W_{l}\left(\omega_{i}\right) L\left(\omega_{i}\right) d \omega \approx \sum_{i=1}^{n} W_{i} L_{i}$ for n lights

Compression

- Subdivide images into 8×8 pixel blocks.
- Keep blocks containing the object (avg. compression 1:7)
- PCA compression (avg. compression 1:10)

High-Resolution Reflectance Field
$C(x, y)=\int_{\Omega_{h}} W_{h}(\xi) T(\xi) d \xi+\int_{\Omega_{l}} W_{l}\left(\omega_{i}\right) L\left(\omega_{i}\right) d \omega$

- Use techniques of environment matting [Chuang et al., SIGGRAPH 00].
- Approximate W_{h} by a sum of up to two Gaussians:
- Reflective G_{1}.
- Refractive G_{2}.

$W_{h}(\xi)=a_{1} G_{1}+a_{2} G_{2}$
Point-Based Computer Graphics

Surface Reflectance Fields
 ECrung

- Work without accurate geometry.
- Surface normals are not necessary.
- Capture more than reflectance:
- Inter-reflections
- Subsurface scattering
- Refraction
- Dispersion
- Non-uniform material variations
- Simplified version of the BSSRDF [Debevec et al., 00].

Point-Based Computer Graphics
Hanspeter Pfister, MERL 31

Outline

- Overview
- Previous Works
- Geometry
- Reflectance
$>$ Rendering
- Results

Point-Based Computer Graphics
Hanspeter Pfister, MERL 32

Rendering

탄

- Input: Opacity hull, reflectance data, new environment
- Create radiance images from environment and low-resolution reflectance field.
- Reparameterize environment mattes.
- Interpolate data to new viewpoint.
$1^{\text {st }}$ Step: Relighting $\Omega_{\text {। }}$
- Compute radiance image for each viewpoint.

$2^{\text {nd }}$ Step: Reproject Ω_{h}

- Project environment mattes onto the new environment.
- Environment mattes acquired was parameterized on plane T (the plasma display).
- We need to project the Gaussians to the new environment map, producing new Gaussians.

[^1]

Hanspeter Pfister, MERL

- From new viewpoint, for each surface point, find four nearest acquired viewpoints.
- Store visibility vector per surface point.
- Interpolate using unstructured lumigraph interpolation [Buehler et al., SIGGRAPH 01] or viewdependent texture mapping [Debevec 96].
- Opacity.
- Contribution from low-res reflectance field (in the form of radiance images).
- Contribution from high-res reflectance field.

| Outline |
| :--- | :--- |
| - Overview
 - Previous Works
 - Geometry
 - Reflectance
 - Rendering
 $>$ |
| Results |

Conclusions

- A fully automatic system that is able to capture and render any type of object.
- Opacity hulls combined with lightfields / surface reflectance fields provide realistic 3D graphics models.
- Point-based rendering offers easy surface parameterization of acquired models.
- Separation of surface reflectance fields into highand low-resolution areas is practical.
- New rendering algorithm for environment matte interpolation.

Acknowledgements

- Colleagues:
- MIT: Chris Buehler, Tom Buehler.
- MERL: Bill Yerazunis, Darren Leigh, Michael Stern.
- Thanks to:
- David Tames, Jennifer Roderick Pfister.
- NSF grants CCR-9975859 and EIA-9802220.
- Papers available at:
- http://www.merl.com/people/pfister/

dynamic point sampling	
Marc Stamminger	
Pont. Bsesed comperer crapics	

point rendering

- in software
- filtering
- texturing
- hole filling
- in hardware
- as points
- as polygonal disks
- as splats

results		
- points are well suited for - procedural geometry - terrains - complex geometry - combinations		
Point-Based Computer Graphics	Marc Stamminger	11

complex polygonal geometry

- generate list of randomly distributed samples
- for every frame: compute n, render the first n

Point-Based Computer Graphics
Marc Stamminger 13
complex polygonal geometry

sample densities

- adapt point densities to image space (2D)
- or: adapt to post-perspective space (3D)

complex geometry

- video „complex geometry"
- download at
http://www-sop.inria.fr/reves/research

densities complex geometry

- world space -> post-perspective:
- area decreases by squared distance
- goal:
uniform post-perspective point density
- point number ~area/d ${ }^{2}$

video - video „ $\sqrt{ } 5$ sampling" - download at http://www-sop.inria.fr/reves/research		
Ponit:Esased Computer Craphics Marc Samminger ${ }^{33}$		

terrain parameterization

video
- video ,terrain rendering e"
- download at
http://www-sop.inria.fr/reves/research

eco systems

- level of detail:
- polygonal model
- replace polygons by points and lines
- reduce number of points and lines

eco systems

ETava

- modeller (xfrog) delivers:
- triangle set T_{p}
- random point set representing T_{p}
- triangle set T_{1}
- random line set L representing T_{1} ($|\mathrm{L}|<\mathrm{T}_{\mathrm{t}}$)

eco systems

E 2

- criterion for point / line number (per object)
- user parameter: point size $d_{p} /$ line width d_{l}
- approximate screen space area of object:
$\mathrm{A}^{\mathrm{f}}=\mathrm{A}^{*} 0.5 / \mathrm{d}^{2}$
- \#points $\sim A^{\prime} / d_{p}{ }^{2}$
- \#lines ~ A^{\bullet} / d_{p}
eco systems

- video „eco system rendering"
- download at
http://www-sop.inria.fr/reves/research

Point-Based Computer Graphics

Motivation

- Many applications need definition of surface based on point samples
- Reduction
- Up-sampling
- Interrogation (e.g. ray tracing)
- Desirable surface properties
- Manifold
- Smooth
- Local (efficient computation)

Point-Based Computer Graphics
Marc Alexa

Overview

- Introduction \& Basics
- Fitting Implicit Surfaces
- Projection-based Surfaces

Introduction \& Basics

- Regular/Irregular
- Approximation/Interpolation
- Global/Local
- Standard techniques
- LS, RBF, MLS
- Problems
- Sharp edges, feature size/noise
- Functional/Manifold

Point-Based Computer Graphics

Approximation/Interpolation EGRow

- Noisy data -> Approximation

- Perfect data -> Interpolation

Global/Local

- Global approximation

- Local approximation

- Locality comes at the expense of smoothness

Point-Based Computer Graphics

Least Squares

g 002

- Fits a primitive to the data
- Minimizes squared distances between the p_{i} 's and primitive g

$$
\min _{g} \sum_{i}\left(p_{i_{y}}-g\left(p_{i_{x}}\right)\right)^{2}
$$

Least Squares - Example

- Resulting system

$$
0=\sum_{i} 2 p_{i_{x}}^{j}\left(p_{i_{y}}-\left(1, p_{i_{x}}, p_{i_{x}}^{2}, \ldots\right) \mathbf{c}^{T}\right) \Leftrightarrow
$$

$$
\left(\begin{array}{cccc}
1 & x & x^{2} & \ldots \\
x & x^{2} & x^{3} & \\
x^{2} & x^{3} & x^{4} & \\
\vdots & & & \ddots
\end{array}\right)\left(\begin{array}{c}
c_{0} \\
c_{1} \\
c_{2} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
y \\
y x \\
y x^{2} \\
\vdots
\end{array}\right)
$$

Moving Least Squares

EC

- Compute a local LS approximation at t
- Weight data points based on distance to t

Moving Least Squares

ER2

- The set
$f(t)=g_{t}(t), g_{t}: \min _{g} \sum_{i}\left(p_{i_{y}}-g\left(p_{i_{x}}\right)\right)^{2} \theta\left(\left\|t-p_{i_{x}}\right\|\right)$
is a smooth curve, iff θ is smooth

[^2]
Moving Least Squares

ㄷ

- Typical choices for θ :
- $\theta(d)=d^{-r}$
- $\theta(d)=e^{-d^{2} / h^{2}}$
- Note: $\theta_{i}=\theta\left(\left\|t-p_{i_{x}}\right\|\right)$ is fixed
- For each t
- Standard weighted LS problem
- Linear iff corresponding LS is linear

Radial Basis Functions

- Solve $p_{j_{y}}=\sum_{i} w_{i} r\left(\left\|p_{i_{x}}-p_{j_{x}}\right\|\right)$
to compute weights w_{i}
- Linear system of equations

Radial Basis Functions

cerane

- Represent interpolant as
- Sum of radial functions r
- Centered at the data points p_{i}

$$
f(x)=\sum_{i} w_{i} r\left(\left\|p_{i}-x\right\|\right)
$$

$\begin{array}{lll}\text { Point-Based Computer Graphics } & \text { Marc Alexa } & 14\end{array}$
14

Radial Basis Functions

- Solvability depends on radial function
- Several choices assure solvability
- $r(d)=d^{2} \log d \quad$ (thin plate spline)
- $r(d)=e^{-d^{2} / h^{2}} \quad$ (Gaussian)
- h is a data parameter
- h reflects the feature size or anticipated spacing among points

Functional/Manifold

- Standard techniques are applicable if data represents a function

- Manifolds are more general

Point-Based Computer Graphics

Estimating normals

- Two problems
- Normal direction and
- Orientation (Implicits are signed!)
- Normal direction by fitting a tangent
- LS fit to nearest neighbors
- Weighted LS fit
- MLS fit

Point-Based Computer Graphics
24

Estimating normals

- The constrained minimization problem

$$
\min _{\|n\|=1} \sum_{i}\left\langle q-p_{i}, n\right\rangle^{2} \theta_{i}
$$

is solved by the eigenvector corresponding to the smallest eigenvalue of

$$
\left(\begin{array}{lll}
\left.\sum_{i}\left(q_{x}-p_{i}\right)^{2}\right)^{2} & \sum_{i}\left(q_{x}-p_{i}\right)^{2} \theta_{i} & \sum_{i}\left(q_{x}-p_{i}\right)^{2} \theta_{i} \\
\sum_{i}\left(q_{y}-p_{i}\right)^{2} \theta_{i} & \sum_{i}\left(q_{y}-p_{i}\right)^{2} \theta_{i} & \sum_{i}\left(q_{v}-p_{i_{i}}\right)_{i} \\
\sum_{i}^{i}\left(q_{z}-p_{i}\right)^{2} \theta_{i} & \left.\sum_{i}\left(q_{z}-p_{i}\right)^{2}\right)_{i} & \sum_{i}\left(q_{z}-p_{i_{i}}\right)^{2} \theta_{i}
\end{array}\right)
$$

$\begin{array}{lll}\text { Point-Based Computer Graphics } & \text { Marc Alexa } & 26\end{array}$ 26

Estimating normals

ECROS

- Consistent orientation
- Problem is NP-hard
- Greedy approach (Hoppe)
- Compute spanning tree based on graph of k-nearest neighbors
- Orient consistently along spanning tree

oint-Based Computer Graphics \square

Computing Implicits

- Given N points and normals p_{i}, n_{i} and constraints $f\left(p_{i}\right)=0, f\left(p_{i}+n_{i}\right)=1$
- Let $p_{i+N}=p_{i}+n_{i}$
- An RBF approximation

$$
f(\mathbf{x})=\sum_{i} w_{i} r\left(\left\|p_{i}-\mathbf{x}\right\|\right)
$$

leads to $2 N$ linear equations in $2 N$ unknowns (a $2 N \times 2 N$ matrix)

Computing Implicits

Computing Implicits

CR

- Sparse matrices $(r(0)$

- Needed: $d>c \rightarrow r(d)=0, r^{\prime}(c)=0$

- Compactly supported RBFs

RBF Implicits - Results EGpins

- Images courtesy Greg Turk

Implicits - Conclusions

\%cis

- Scalar field is underconstrained
- Constraints only define where the field is zero, not where it is non-zero
- Signed fields restrict surfaces to be unbounded
- All implicit surfaces define solids
Projection
- Idea: Map space to surface
- Surface is defined as fixpoints of
mapping
Point-Based Computer Graphics

Surface definition

- Projection procedure (Levin)
- Local polyonmial approximation - Inspired by differential geometry
- "Implicit" surface definition
- Infinitely smooth \&
- Manifold surface

Point-Based Computer Graphics
Marc Alexa
36

Local Reference Plane

Spatial data structure

EG2002

- Regular grid based on support of θ
- Each point influences only 8 cells
- Each cell is an octree
- Distant octree cells are approximated by one point in center of mass

Error bounds

- Paradigm:
- Given surface S
- Point set $P=\left\{p_{i}\right\}$ sampled from S
($r_{i} \in S$) defines S_{R}

Point-Based Computer Graphics
Marc Alexa 43

Error bounds

- Approximation error of S_{P} to S
- MLS error approximating a function f with a polynomial g: $\|f-g\| \leq M \cdot h^{m+1}$
- $M \in O\left(\left\|f^{(m+1)}\right\|\right)$
- m = degree of polynomial
- S_{P} is approximated by a polynomial in each point
- $\left\|S-S_{p}\right\| \leq M \cdot h^{m+1}$

Point-Based Computer Graphics
Marc Alexa
44

Conclusions

- Projection-based surface definition
- Surface is smooth and manifold
- Surface may be bounded
- Representation error mainly depends on point density
- Adjustable feature size h allows to smooth out noise
- Number of points control h
- Increase/decrease number of points to adjust the quality of representation

Some References

- Alexa, Behr, Cohen-Or, Fleishman, Levin, Silva. Point Set Surfaces. IEEE Visualization 2002, pp. 21-28, 2002
Carr, Beatson, Cherrie, Mitchell, Fright, McCallum, Evans. Reconstruction 2001 Proc., pp. 67-76, 2001
- Hoppe, DeRose, Duchamp, McDonald, Stuetzle. Surface Reconstruction from unorganized points. SIGGRAPH 1992 Proc., pp. 71-78, 1992
Levin. The approximation power of moving least-squares. Math. Comp.
$67(224): 1517-1531,1998$
7(224):1517-1531, 1998
Levin. Mesh-independent surface interpolation. Curves \& Surfaces 2000
Savchenko, Pasko, Okunev, Kuniii. Function representation of solids
Graphics Forum, 14(4):181-188, 1995 points and contours. Comp
Turk O'Brien. Shape transformation
SIGGRAPH 1999 Proc., pp. 335-342, 1999 variational implicit surfaces.
Turk, O'Brien. Variational implicit surfaces. Technical Report GITGVU 9915,
Georgia Institute of Technology, 1999

	EG00
Spectral Processing of PointSampled Geometry	
	menas cose

Overview

- Introduction
- Fourier transform
- Spectral processing pipeline
- Applications
- Spectral filtering
- Adaptive subsampling
- Summary

Point-Based Computer Graphics

Introduction

탄Nㅡㄴ

- Idea: Extend the Fourier transform to manifold geometry

\Rightarrow Spectral representation of point-based objects
\Rightarrow Powerful methods for digital geometry processing

Point-Based Computer Graphics
Markus Gross

Introduction

0

- Applications:

- Spectral filtering:
- Noise removal
- Microstructure analysis
- Enhancement
- Adaptive resampling:
- Complexity reduction
- Continuous LOD

Fourier Transform

- 1D example:

- Benefits:
- Sound concept of frequency
- Extensive theory
- Fast algorithms

[^3]Markus Gross

Fourier Transform

- Requirements:
- Fourier transform defined on Euclidean domain \Rightarrow we need a global parameterization
- Basis functions are eigenfunctions of Laplacian operator
\Rightarrow requires regular sampling pattern so that basis functions can be expressed in analytical form (fast evaluation)
- Limitations:
- Basis functions are globally defined \Rightarrow Lack of local control

Point-Based Computer Graphics

Approach ecroog		
- Split model into patches that: - are parameterized over the unit-square \Rightarrow mapping must be continuous and should minimize distortion - are re-sampled onto a regular grid \Rightarrow adjust sampling rate to minimize information loss - provide sufficient granularity for intended application (local analysis) \Rightarrow process each patch individually and blend processed patches		
Point-Based Computer Graphics	Markus Gross	7

Patch Layout Creation

ECpow

Patch Layout Creation

\%cime

- Iterative, local optimization method
- Merge patches according to quality metric:

$$
\Phi=\Phi_{S} \cdot \Phi_{N C} \cdot \Phi_{B} \cdot \Phi_{R e g}
$$

$\Phi_{S} \Rightarrow$ patch Size
$\Phi_{N C} \Rightarrow$ curvature
$\Phi_{B} \Rightarrow$ patch boundary
$\Phi_{R e g} \Rightarrow$ spring energy regularization

Patch Layout Creation

- Parameterize patches by orthogonal projection onto base plane
- Bound normal cone to control distortion of mapping using smallest enclosing sphere

[^4]Markus Gross 11

Patch Resampling

EG

- Patches are irregularly sampled:

[^5]

Spectral Analysis

- 2D discrete Fourier transform (DFT)
\Rightarrow Direct manipulation of spectral coefficients
- Filtering as convolution:

$$
F(x \otimes y)=F(x) \cdot F(y)
$$

\Rightarrow Convolution: $\mathrm{O}\left(\mathrm{N}^{2}\right) \Rightarrow$ multiplication: $\mathrm{O}(\mathrm{N})$

- Inverse Fourier transform
\Rightarrow Filtered patch surface
Point-Based Computer Graphics \quad Markus Gross 14

Spectral Filters

TCown

- Smoothing filters

Spectral Filters

- Microstructure analysis and enhancement

Spectral Resampling

- Low-pass filtering
\Rightarrow Band-limitation
- Regular Resampling
\Rightarrow Optimal sampling rate (sampling theorem)
\Rightarrow Error control (Parseval's theorem)

Reconstruction

- Filtering can lead to discontinuities at patch boundaries
\Rightarrow Create patch overlap, blend adjacent patches

Point-Based Computer Graphics

Summary

- Versatile spectral decomposition of pointbased models
- Effective filtering
- Adaptive resampling
- Efficient processing of large point-sampled models

Reference

- Pauly, Gross: Spectral Processing of Point-sampled Geometry, SIGGRAPH 2001

Overview

- Introduction
- Local surface analysis
- Simplification methods
- Error measurement
- Comparison

Introduction

Eguva

- Point-based models are often sampled very densely
- Many applications require coarser approximations,
e.g. for efficient
- Storage
- Transmission
- Processing
- Rendering
\Rightarrow we need simplification methods for reducing the complexity of point-based surfaces

Point-Based Computer Graphics

Introduction

Crava

- We transfer different simplification methods from triangle meshes to point clouds:
- Incremental clustering
- Hierarchical clustering
- Iterative simplification
- Particle simulation
- Depending on the intended use, each method has its pros and cons (see comparison)
- Cloud of point samples describes underlying (manifold) surface
- We need:
- mechanisms for locally approximating the surface \Rightarrow MLS approach
- fast estimation of tangent plane and curvature \Rightarrow principal component analysis of local neighborhood

Neighborhood

ER20

- No explicit connectivity between samples (as with triangle meshes)
- Replace geodesic proximity with spatial proximity (requires sufficiently high sampling density!)
- Compute neighborhood according to Euclidean distance
- Improvement: angle criterion (Linsen)

- project points onto tangent plane
- sort neighbors according to angle
- include more points if angle between subsequent points is above some threshold

Covariance Analysis

- Covariance matrix of local neighborhood N :

$$
\mathbf{C}=\left[\begin{array}{c}
\mathbf{p}_{i_{1}}-\overline{\mathbf{p}} \\
\cdots \\
\mathbf{p}_{i_{n}}-\overline{\mathbf{p}}
\end{array}\right]^{T} \cdot\left[\begin{array}{c}
\mathbf{p}_{i_{1}}-\overline{\mathbf{p}} \\
\cdots \\
\mathbf{p}_{i_{n}}-\overline{\mathbf{p}}
\end{array}\right], \quad i_{j} \in N
$$

- with centroid $\overline{\mathbf{p}}=\frac{1}{|N|} \sum_{i \in N} \mathbf{p}_{i}$

Covariance Analysis

- The total variation is given as:

$$
\sum_{i \in N}\left|\mathbf{p}_{i}-\overline{\mathbf{p}}\right|^{2}=\lambda_{0}+\lambda_{1}+\lambda_{2}
$$

- We define surface variation as:

$$
\sigma_{n}(\mathbf{p})=\frac{\lambda_{0}}{\lambda_{0}+\lambda_{1}+\lambda_{2}}, \quad \lambda_{0} \leq \lambda_{1} \leq \lambda_{2}
$$

- measures the fraction of variation along the surface normal, i.e. quantifies how strong the surface deviates from the tangent plane \Rightarrow estimate for curvature

Covariance Analysis

- Comparison with curvature:

original

variation $\mathrm{n}=20$

Incremental Clustering

```
EcguNa
```

- Clustering by region-growing:
- Start with random seed point
- Successively add nearest points to cluster until cluster reaches maximum size
- Choose new seed from remaining points
- Growth of clusters can also be bounded by surface variation
\Rightarrow Curvature adaptive clustering

Surface Simplification

Cruna

- Incremental clustering
- Hierarchical clustering
- Iterative simplification
- Particle simulation
Point-Based Computer Graphics

Incremental Clustering

TC

- Incremental growth leads to internal fragmentation \Rightarrow assign stray samples to closest cluster

- Note: this can increase maximum size and variation bounds!

Point-Based Computer Graphics

Incremental Clustering

- Replace each cluster by its centroid

original model with
color-coded clusters $(34,384$ points)

Point-Based Computer Graphics

Hierarchical Clustering

Crave

- Top-down approach using binary space partition:
- Split the point cloud if:
- Size is larger than user-specified maximum or
- Surface variation is above maximum threshold
- Split plane defined by centroid and axis of greatest variation (= eigenvector of covariance matrix with largest associated eigenvector)
- Leaf nodes of the tree correspond to clusters

Hierarchical Clustering

EReve

- Adaptive clustering

original model with color-coded clusters (34,384 points)

simplified model
(1,000 points)

Point-Based Computer Graphics
Mark Pauly 20

Iterative Simplification

- Iteratively contracts point pairs
\Rightarrow Each contraction reduces the number of points by one
- Contractions are arranged in priority queue according to quadric error metric (Garland and Heckbert)
- Quadric measures cost of contraction and determines optimal position for contracted sample
- Equivalent to QSlim except for definition of approximating planes

IG

Iterative Simplification

- Quadric measures the squared distance to a set of planes defined over edges of neighborhood
- plane spanned by vectors $\mathbf{e}_{1}=\mathbf{p}_{i}-\mathbf{p}$ and $\mathbf{e}_{2}=\mathbf{e}_{1} \times \mathbf{n}$

Point-Based Computer Graphics

Particle Simulation

EG20

- Resample surface by distributing particles on the surface
- Particles move on surface according to interparticle repelling forces
- Particle relaxation terminates when equilibrium is reached (requires damping)
- Can also be used for up-sampling!

Particle Simulation

- Initialization
- randomly spread particles
- Repulsion
- linear repulsion force $F_{i}(\mathbf{p})=k\left(r-\left\|\mathbf{p}-\mathbf{p}_{i}\right\|\right) \cdot\left(\mathbf{p}-\mathbf{p}_{i}\right)$
\Rightarrow only need to consider neighborhood of radius r
- Projection
- keep particles on surface by projecting onto tangent plane of closest point
- apply full MLS projection at end of simulation

Particle Simulation

EROM

- Adaptive simulation
- Adjust repulsion radius according to surface variation
\Rightarrow more samples in regions of high variation

original model (75,781 points)

Point-Based Computer Graphics
 Mark Pauly 26

Particle Simulation

- User-controlled simulation
- Adjust repulsion radius according to user input

Measuring Error

- Measure the distance between two point-sampled surfaces using a sampling approach
- Maximum error: $\Delta_{\text {max }}\left(S, S^{\prime}\right)=\max _{\mathbf{q} \in Q} d\left(\mathbf{q}, S^{\prime}\right)$ \Leftrightarrow Two-sided Hausdorff distance
- Mean error: $\Delta_{\text {avg }}\left(S, S^{\prime}\right)=\frac{1}{|Q|} \sum_{\mathbf{q} \in Q} d\left(\mathbf{q}, S^{\prime}\right)$
\Rightarrow Area-weighted integral of point-to-surface distances
- Q is an up-sampled version of the point cloud that describes the surface S

Comparison

- Error estimate for Michelangelo's David simplified from 2,000,000 points to 5,000 points

Comparison

- Execution time as a function of input model size (reduction to 1\%)

Point-Based Computer Graphics Mark Pauly 32

Comparison

- Summary

	Efficiency	Surface Error	Control	Implementation
Incremental Clustering	+	-	-	+
Hierarchical Clustering	+	-	-	+
Iterative Simplification	-	+	\circ	\circ
Particle Simulation	\circ	+	+	-

Point-based vs. Mesh Simplification

References

- Pauly, Gross: Efficient Simplification of Pointsampled Surfaces, IEEE Visualization 2002
- Shaffer, Garland: Efficient Adaptive Simplification of Massive Meshes, IEEE Visualization 2001
- Garland, Heckbert: Surface Simplification using Quadric Error Metrics, SIGGRAPH 1997
- Turk: Re-Tiling Polygonal Surfaces, SIGGRAPH 1992
- Alexa et al. Point Set Surfaces, IEEE Visualization 2001

Overview

- Introduction
- Pointshop3D System Components
- Point Cloud Parameterization
- Resampling Scheme
- Editing Operators
- Summary

PointShop3D

- Interactive system for point-based surface editing
- Generalizes 2D photo editing concepts and functionality to 3D point-sampled surfaces
- Uses 3D surface pixels (surfels) as versatile display and modeling primitive

Parameterization

- Constrained minimum distortion parameterization of point clouds

Parameterization

EGRow

- Measuring distortion
$\gamma(\mathbf{u})=\int_{\theta}\left(\frac{\partial^{2}}{\partial r^{2}} X_{\mathbf{u}}(\theta, r)\right)^{2} d \theta$

- Integrates squared curvature using local polar re-parameterization

Parameterization

- Discrete formulation:

$$
\tilde{C}(U)=\sum_{j \in M}\left(\mathbf{p}_{j}-\mathbf{u}_{j}\right)^{2}+\varepsilon \sum_{i=1}^{n} \sum_{j \in N_{i}}\left(\frac{\partial U\left(\mathbf{x}_{i}\right)}{\partial \mathbf{v}_{j}}-\frac{\partial U\left(\mathbf{x}_{i}\right)}{\partial \tilde{\mathbf{v}}_{j}}\right)^{2}
$$

- Approximation: mapping is piecewise linear

$$
X_{\mathbf{u}}(\theta, r)=X\left(\mathbf{u}+r\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right]\right)
$$

Parameterization

- Directional derivatives as extension of divided differences based on k-nearest neighbors

Parameterization

Crain

- Multigrid solver for efficient computation of resulting sparse linear least squares problem

$$
\tilde{C}(U)=\sum_{j}\left(\mathbf{b}_{j}-\sum_{i=1}^{n} a_{j, i} \mathbf{u}_{i}\right)^{2}=\|\mathbf{b}-A \mathbf{u}\|^{2}
$$

Reconstruction

- Reconstruction with linear fitting functions is equivalent to surface splatting!
\Rightarrow we can use the surface splatting renderer to reconstruct our surface function (see chapter on rendering)
- This provides:
- Fast evaluation
- Anti-aliasing (Band-limit the weight functions before sampling using Gaussian low-pass filter)
- Distortions of splats due to parameterization can be computed efficiently using local affine mappings

Summary

- Pointshop3D provides sophisticated editing operations on point-sampled surfaces
\Rightarrow points are a versatile and powerful modeling primitive
- Limitation: only works on "clean" models - sufficiently high sampling density
- no outliers
- little noise
\Rightarrow requires model cleaning (integrated or as preprocess)

Reference

- Zwicker, Pauly, Knoll, Gross: Pointshop3D: An interactive system for Point-based Surface Editing, SIGGRAPH 2002
- check out:
www.pointshop3D.com

[^0]: Point-Based Computer Graphics

[^1]: Point-Based Computer Graphics

[^2]: Point-Based Computer Graphics

[^3]: Point-Based Computer Graphics

[^4]: Point-Based Computer Graphics

[^5]: Point-Based Computer Graphics

