
Point-Based Value Iteration for Constrained POMDPs

Dongho Kim Jaesong Lee Kee-Eung Kim
Department of Computer Science

KAIST, Korea
{dkim, jaesong, kekim}@cs.kaist.ac.kr

Pascal Poupart
School of Computer Science

University of Waterloo, Canada
ppoupart@cs.uwaterloo.ca

Abstract

Constrained partially observable Markov deci-
sion processes (CPOMDPs) extend the standard
POMDPs by allowing the specification of con-
straints on some aspects of the policy in addition
to the optimality objective for the value function.
CPOMDPs have many practical advantages over
standard POMDPs since they naturally model prob-
lems involving limited resource or multiple ob-
jectives. In this paper, we show that the opti-
mal policies in CPOMDPs can be randomized, and
present exact and approximate dynamic program-
ming methods for computing randomized optimal
policies. While the exact method requires solv-
ing a minimax quadratically constrained program
(QCP) in each dynamic programming update, the
approximate method utilizes the point-based value
update with a linear program (LP). We show that
the randomized policies are significantly better than
the deterministic ones. We also demonstrate that
the approximate point-based method is scalable to
solve large problems.

1 Introduction
Partially observable Markov decision processes (POMDPs)
are widely used for modeling stochastic sequential decision
problems under partial or uncertain observations. The stan-
dard POMDP model has the reward function which encodes
the immediate utility of executing actions in environment
states, and the optimal policy is obtained by maximizing the
long-term reward. However, since the utility depends on mul-
tiple objectives in practice, it is often required to manually
balance different objectives into the single reward function
until the corresponding optimal policy is satisfactory to the
domain expert. In addition, application domains of POMDPs
generally have well-established measures for evaluating sys-
tems, and the domain experts typically have a hard time un-
derstanding the concept of value functions.

Constrained POMDPs (CPOMDPs) concern the situation
where there is one criterion (reward) to be maximized while
making other criteria (costs) below the prescribed thresholds.
Each criterion is represented using its own reward or cost
function. A typical situation is a resource-limited agent,e.g.,

a battery-equipped robot whose goal is to accomplish as many
tasks as possible given a finite amount of energy. In fact,
many problems in practice can be naturally formulated us-
ing a set of constraints. For example, POMDP-based spo-
ken dialogue systems[Williams and Young, 2007] have to
successfully complete dialogue tasks while minimizing the
length of dialogues. We can use the CPOMDP to represent
these two criteria by assigning a constant reward of−1 for
each dialogue turn and a cost of1 for each unsuccessful di-
alogue. By bounding the aggregate cost, the optimal pol-
icy from the CPOMDP is guaranteed to achieve certain level
of dialogue success rate,i.e., task completion rate (TCR),
the performance measure which dialogue system experts are
more comfortable with than the value function in standard
POMDPs. Another example is POMDP-based opportunistic
spectrum access (OSA)[Zhaoet al., 2007] in wireless com-
munications. OSA seeks to maximize the utilization of wire-
less spectrum by allowing secondary devices to communicate
through the wireless channel that is already allocated to pri-
mary devices. Since the communication collision with the
primary device is potentially dangerous, there are regulatory
requirements on the maximum collision rate that secondary
devices have to meet in order to be approved. Such require-
ments can be naturally modeled as cost constraints, while the
communication bandwidth is the reward that should be max-
imized.

Despite these advantages, the CPOMDP has not received
as much attention as its MDP counterpart,i.e., constrained
MDPs (CMDPs)[Altman, 1999], with the exception of the
dynamic programming method for finding deterministic opti-
mal policies[Isomet al., 2008]. In this paper, we first present
a motivating CPOMDP example where the best determinis-
tic policy is suboptimal. We then present our exact and ap-
proximate algorithms for finding randomized optimal poli-
cies in CPOMDPs. The exact algorithm is only of theoretical
interest, since it is based on solving minimax quadratically
constrained programs (QCPs) to prune useless policies. The
approximate algorithm is motivated by point-based value it-
eration (PBVI)[Pineauet al., 2006] in standard POMDPs,
where we collect the samples ofadmissible costs[Piunovskiy
and Mao, 2000] in addition to belief points. It thereby solves
linear programs (LPs) instead of computationally demand-
ing minimax QCPs. We demonstrate the scalability of our
method on the constrained version of a POMDP problem with



thousands of states.

2 Preliminaries
In this section, we briefly review the definitions of CMDPs
and CPOMDPs. We also explain the suboptimality of deter-
ministic policies for CPOMDPs through an example.

2.1 Constrained POMDPs
The standard, unconstrained POMDP is defined as a tuple
〈S,A,Z, T,O,R, γ, b0〉: S is the set of statess; A is the set
of actionsa; Z is the set of observationsz; T is the transition
function whereT (s, a, s′) denotes the probabilityP (s′|s, a)
of changing to states′ from states by taking actiona; O is
the observation function whereO(s, a, z) denotes the proba-
bility P (z|s, a) of making observationz when executing ac-
tion a and arriving in states; R is the reward function where
R(s, a) denotes the immediate reward of executing actiona
in states; γ ∈ [0, 1) is the discount factor;b0 is the initial
belief whereb0(s) is the probability that we start in states.

The constrained POMDP (CPOMDP) is defined as a tuple
〈S,A,Z, T,O,R, {Ck}

K
k=1, {ĉk}

K
k=1, γ, b0〉 with the follow-

ing additional components:

• Ck(s, a) ≥ 0 is the cost of typek incurred for executing
actiona in states,

• ĉk is the upper bound on the cumulative cost of typek.

Solving a CPOMDP corresponds to finding an optimal pol-
icy π:

maximizeEπ [
∑∞

t=0 γtR(st, at)]

subject to the cumulative cost constraints:

Eπ [
∑∞

t=0 γtCk(st, at)] ≤ ĉk ∀k. (1)

Since the state is not directly observable in POMDPs and
CPOMDPs, we often use the notion of belief, which is
the probability distributionb over the current states.b′ =
τ(b, a, z) denotes the successor of beliefb upon executinga
and observingz, which is computed using Bayes theorem:

b′(s′) = O(s′, a, z)
∑

s T (s, a, s′)b(s)/P (z|b, a). (2)

2.2 Suboptimality of deterministic policies
It is well known that optimal policies for CMDPs may be
randomized. In[Altman, 1999], it is shown that when a
CMDP is feasible, the number of randomizations under an
optimal stationary policy is related to the number of con-
straints. More specifically, if we define the number of ran-
domizationsm(s, π∗) under an optimal policyπ∗ in states
as|{a|π∗(a|s) > 0}|−1, the total number of randomizations
is m(π∗) =

∑

s∈S m(s, π∗) ≤ K whereK is the number of
constraints.

It has also been shown that, under the special condition
of non-atomic initial distribution and transition probabilities,
searching in the space of deterministic policies is sufficient
to find optimal policies in CMDPs with uncountable state
spaces[Feinberg and Piunovskiy, 2002]. A probability dis-
tribution is defined to be non-atomic if its cumulative distri-
bution function is continuous. Since a POMDP can be formu-
lated as an MDP with the continuous belief space[Kaelbling

Figure 1: State transition diagram for the counter example.
The edges are labeled with actions, followed by the cor-
responding transition probabilities, immediate rewards and
costs.

et al., 1998], we may regard a CPOMDP as a CMDP with an
uncountable state space. The non-atomic condition is how-
ever not met. The initial distribution is atomic since theb0

is the only possible initial state. The transition probabilities,
which are defined as

p(b′|b, a) =
∑

z∈Z p(b′|b, a, z)P (z|b, a)

where

p(b′|b, a, z) =

{

1 if τ(b, a, z) = b′,
0 otherwise,

are also atomic because the probability mass of the tran-
sition function is concentrated at a finite number of points
τ(b, a, z1), . . . , τ(b, a, z|Z|), i.e., their cumulative distribution
functions are not necessarily continuous. Therefore, the exis-
tence result of deterministic optimal policies for uncountable
state CMDPs cannot be directly applied to CPOMDPs.

We can construct examples of CPOMDPs where determin-
istic policies are suboptimal. The simplest case is the degen-
erate CPOMDP with perfectly observable states. It is equiva-
lent to a finite-state CMDP which may not have any optimal
policy that is deterministic. While the degenerate CPOMDP
has a finite number of reachable belief states, the following
example has infinitely many reachable beliefs.

Consider a CPOMDP withS = {s1, s2, s3}, A =
{a1, a2}, Z = {z}. The reward function is defined by as-
signing1 for performinga2 in s2 and zero for all other cases.
The cost function is defined by assigning1 for performing
a2 in s1 or s2, and zero for all other cases. The transition
probabilities are shown in Fig. 1, where actiona2 leads to the
absorbing states3. Since there is only one observation, the
agent cannot exactly figure out the current state. Therefore,
given the initial beliefb0 = [0, 1, 0], the set of reachable be-
liefs is {bt = [1 − 0.9t, 0.9t, 0]}∞t=0. Note thatbt is reached
only at time stept, and that the agent has only one chance of
receiving a non-zero rewardR(bt, a2) = 0.9t by executing
a2 while this will incur a cost of1.

Supposeγ < ĉ < 1. A deterministic policy cannot execute
actiona2 earlier thant = 1 because executing it att = 0 will
violate the cumulative cost constraint. Hence, the maximum
value achievable by a deterministic policy is0.9γ with the
cumulative cost ofγ. However, consider a randomized policy
that executes actiona2 with probability ĉ at t = 0, and then,
if actiona1 was executed att = 0, always executes actiona1

at t ≥ 1. This policy achieves the value of1 · ĉ+0 · (1− ĉ) =
ĉ > 0.9γ with the cumulative cost of exactlŷc.



3 Exact Dynamic Programming for CPOMDP
In [Isomet al., 2008], a dynamic programming (DP) method
was proposed to finddeterministicpolicies in CPOMDPs. We
briefly review the method in order to present our contribution.

For the sake of presentation, we shall refer to the value
function of a CPOMDP as the joint function of cumulative
reward and cost functions and assume only one constraint
(K = 1) unless explicitly stated otherwise. The DP method
by Isomet al. [2008] constructs the set ofα-vector pairs for
the value function, one for the cumulative reward function
and the other for the cumulative cost function. Therefore, for
each pair of vectors〈α′

i,r, α
′
i,c〉 in the value functionV ′, the

DP update should compute:1

αa,z
i,r (s) = R(s,a)

|Z| + γ
∑

s′∈S T (s, a, s′)O(s′, a, z)α′
i,r(s

′)

αa,z
i,c (s) = C(s,a)

|Z| + γ
∑

s′∈S T (s, a, s′)O(s′, a, z)α′
i,c(s

′)

V = ∪a∈A ⊕z∈Z {〈α
a,z
i,r , αa,z

i,c 〉|∀i},

which in the worst case will generate|A||V ′||Z| pairs of vec-
tors. To mitigate the combinatorial explosion, the method
uses incremental pruning[Cassandraet al., 1997] which in-
terleaves pruning useless vectors with generatingα-vectors
for each action and observation. For the pruning step, we de-
termine whether to include the newly created pair of vectors
〈αr, αc〉 in the value function using the following mixed in-
teger linear program (MILP):

max
h,b,di

h

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

αc · b ≤ ĉ,

(αr − αi,r) · b ≥ h− diM ∀i,

αi,c · b ≥ diĉ ∀i,

di ∈ {0, 1} ∀i,
∑

s∈S b(s) = 1,

b(s) ≥ 0 ∀s ∈ S,

h ≥ 0,

(3)

where〈αi,r, αi,c〉 is thei-th vector pair in the value function
V , andM is a sufficiently large positive constant.〈αr, αc〉
should be included if there exists a beliefb where it is useful
to represent the value function. For〈αr, αc〉 to be useful at
b, αc should satisfy the cumulative cost constraint as stated
in the first constraint in Eqn. 3, andαr should have a higher
cumulative reward than any other〈αi,r, αi,c〉 ∈ V that sat-
isfies the cumulative cost constraintαi,c · b ≤ ĉ as stated in
the second and third constraints. A variabledi ∈ {0, 1} in-
dicates whetherαi,c violates the cumulative cost constraint at
b. If di = 1, the third constraintαi,c · b ≥ ĉ indicates that
αi,c violates the cumulative cost constraint atb and the sec-
ond constraint is trivially satisfied. Ifdi = 0, αr must have a
higher cumulative reward thanαi,r by satisfying the second
constraint. If this program is feasible, we have found a belief
where〈αr, αc〉 is useful, hence the newly created vector will
not be pruned.

1the cross-sum operator⊕ is defined asA ⊕ B = {a + b|a ∈
A, b ∈ B} with the summation of pairs as〈a1, a2〉 + 〈b1, b2〉 =
〈a1 + b1, a2 + b2〉.

Algorithm 1: regressV ′

input : V ′

output: {〈αa,∗
r , αa,∗

c 〉}, {Γ
a,z}

foreach a ∈ A andz ∈ Z do
〈αa,∗

r , αa,∗
c 〉 ← 〈R(·, a), C(·, a)〉

Γa,z ← ∅
foreach 〈α′

i,r, α
′
i,c〉 ∈ V ′ do

αa,z
i,r (s) =

∑

s′∈S T (s, a, s′)O(s′, a, z)α′
i,r(s

′)

αa,z
i,c (s) =

∑

s′∈S T (s, a, s′)O(s′, a, z)α′
i,c(s

′)

Γa,z ← Γa,z ∪ 〈αa,z
i,r , αa,z

i,c 〉

However, this pruning algorithm has a number of issues.
First, as described in the previous section, deterministicpoli-
cies can be suboptimal in CPOMDPs. Hence, we have to
consider randomized policies which involves taking a con-
vex combination ofα-vectors when checking for dominance.
Second, the method will prune away every vector that violates
the cumulative cost constraint in each DP update. This may
lead to a suboptimal deterministic policy since it effectively
ensures thatevery intermediatet-step policy should satisfy
the cumulative cost constraint; satisfying the long-term cu-
mulative cost constraint in Eqn. 1 does not necessarily mean
that the constraint should be satisfied at every time step.

We therefore revise the MILP to the following minimax
quadratically constrained program (QCP):

min
b

max
wi,h

h

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

αc · b ≥ b ·
∑

i wiαi,c + h,

b ·
∑

i wiαi,r − αr · b ≥ h,
∑

s∈S b(s) = 1,

b(s) ≥ 0 ∀s ∈ S,
∑

i wi = 1,

wi ≥ 0 ∀i.

(4)

The first and second constraints state that, ifh ≥ 0, there
exists a convex combination of vectors which incurs less cu-
mulative cost thanαc while achieving a higher cumulative
reward thanαr at beliefb. Hence, if we obtain a nonnegative
h by maximizing it for beliefb, then〈αr, αc〉 is not useful
at belief b because we have a better or equally performing
randomized policy. Since we minimize the maximumh over
the entire belief simplex, if the final solutionh is nonnega-
tive, then〈αr, αc〉 is not useful at any beliefb, and thus it can
be pruned. Unfortunately, this minimax QCP is computation-
ally demanding to solve, and thus we propose a point-based
approximate method for CPOMDPs in the next section.

4 Approximate Method for CPOMDP
4.1 Point-based value iteration
The point-based value iteration (PBVI) algorithm[Pineauet
al., 2006] for the standard POMDP uses a finite set of reach-
able beliefsB = {b0, b1, . . . , bq}, instead of the entire belief
simplex, for planning. Performing DP updates only at the be-
liefs b ∈ B eliminates the need to solve linear programs (LPs)
for pruningα-vectors in standard POMDPs.



Algorithm 2: updateV = H̃V ′

input : B, V ′

output: V
V ← ∅
{〈αa,∗

r , αa,∗
c 〉}, {Γ

a,z} ← regress(V ′)
foreach a ∈ A do

Γa ← 〈αa,∗
r , αa,∗

c 〉 ⊕
⊕

z∈Z γΓa,z

Γ←
⋃

a∈A Γa

foreach b ∈ B do
V ← V ∪ prune(b, Γ)

Algorithm 3: prune
input : b, Γ
output: Γ̃
Γ̃← ∅
foreach 〈αr, αc〉 ∈ Γ do

Solve the LP (Eqn. 5) and get the solutionh
if h < 0 then

Γ̃← Γ̃ ∪ {〈αr, αc〉}

We can adapt the point-based DP update to CPOMDPs in
a simple way. For eachb ∈ B, we enumerate the regressions2

of α-vectors using Alg. 1. We then prune the dominated vec-
tors using onlyb ∈ B. The complete point-based DP update
is shown in Alg. 2. Since pruning is confined toB, we check
the dominance ofα-vectors for eachb ∈ B, thereby reducing
the minimax QCP in Eqn. 4 to the following LP:

max
wi,h

h

∣

∣

∣

∣

∣

∣

∣

∣

αc · b ≥ b ·
∑

i wiαi,c + h,

b ·
∑

i wiαi,r − αr · b ≥ h,
∑

i wi = 1,

wi ≥ 0 ∀i,

(5)

which has the same formulation as the maximization problem
in Eqn. 4 except thatb is no longer a variable. The pruning
algorithm using the above LP is shown in Alg. 3.

Although this algorithm is based on the enumeration al-
gorithm for standard POMDPs[Monahan, 1982], we can
easily modify it to perform incremental pruning. However,
compared to the standard PBVI which maintains only one
α-vector at each belief, this simple point-based algorithm
still suffers from the potential combinatorial explosion in the
number ofα-vectors. This is mainly because, although we
have collected the finite set of reachable beliefs, we havenot
collected any information on how much cost can be incurred
while still satisfying the cumulative cost constraint at those
beliefs.

4.2 PBVI with admissible cost
The main idea behind our approximate algorithm is to addi-
tionally obtain information on the cumulative cost for each

2Regression refers to the multiplication of anα-vector by the
dynamics of an action-observation pair.

collected belief. Before presenting our point-based algo-
rithm, we introduce a new variabledt representing the ex-
pected cumulative cost that can be additionally incurred for
the remaining time steps{t, t + 1, . . .} without violating the
cumulative cost constraint. We call thisadmissible costat
time stept [Piunovskiy and Mao, 2000]. LetWt be the cumu-
lative cost up to time stept, i.e., Wt =

∑t
τ=0 γτC(bτ , aτ ).

Then the admissible cost at time stept + 1 is defined as
dt+1 = 1

γt+1 (ĉ − Wt). In other words,dt+1 is the differ-
ence between̂c (the maximum expected cumulative cost al-
lowed) andWt (the cumulative cost incurred so far) rescaled
by 1/γt+1. The admissible cost at time stept + 1 can be
recursively defined as follows:

dt+1 = 1
γt+1 (ĉ−Wt)

= 1
γt+1 (ĉ−Wt−1 − γtC(bt, at))

= 1
γ
(dt − C(bt, at)). (6)

Therefore, if the agent performsat, the admissible cost att+1
is updated by Eqn. 6. The initial admissible cost isd0 = ĉ.

Note that we use the expected costC(bt, at) instead of
the actually incurred cost when updating the admissible cost.
This is because the policies in CPOMDPs are not defined
to be contingent on actual costs, in the same way as the
policies in standard POMDPs are not contingent on the re-
ceived rewards. If we extend the definition of policies to
be contingent on actual costs, we can adopt some of the ap-
proaches in MDP such as incorporating actual costs into the
state space[Meuleauet al., 2009], or using the sample path
constraints[Ross and Varadarajan, 1989; 1991].

In order to use the notion of admissible cost in PBVI,
we first sample pairs of beliefs and admissible costs,B =
{(b0, d0), (b1, d1), . . . , (bq, dq)}. For a belief-cost pair(b, d),
the best action is obtained by solving the following LP:

max
wi

b ·
∑

i

wiαi,r

∣

∣

∣

∣

∣

∣

b ·
∑

i wiαi,c ≤ d,
∑

i wi = 1,

wi ≥ 0 ∀i,

(7)

where the resulting coefficientwi represents the probability
of choosing the action corresponding to〈αi,r, αi,c〉. Note that
there exists a solutionwi with at most two non-zero compo-
nents because the above LP contains|V | + 2 constraints and
at least|V | constraints must be active at extreme points. For
CPOMDPs withK constraints, there always exists a solution
that will have at mostK + 1 non-zero components.3

The revised point-based DP update is described in Alg. 4.
For each belief-cost point(b, d) ∈ B, we construct:

α
(b,d),a
r = αa,∗

r + γ
∑

z∈Z α̃a,z
r

whereα̃a,z
r is the best convex combination of the value vec-

tors with respect to the next belief and admissible cost, ob-
tained by the LP in Eqn. 7.α(b,d),a

c is obtained as the by-
product of computingα(b,d),a

r . Finally, we once again use the
LP in Eqn. 7 to find the best convex combination of the value
vectors with respect to the current belief and admissible cost.

3We can guarantee at most(K + 1) vector pairs if we use LP
solver that always returns an extreme point, e.g., simplex method.



Algorithm 4: updateV = H̃V ′ (PBVI with admissible
cost)

input : B, V ′

output: V
V ← ∅
{〈αa,∗

r , αa,∗
c 〉}, {Γ

a,z} ← regress(V ′)
foreach (b, d) ∈ B do

foreach a ∈ A do
foreach z ∈ Z do

dz ←
1
γ
(d− C(b, a))P (z|b, a)

Solve the LP (Eqn. 7) with
∀〈αi,r, αi,c〉 ∈ Γa,z and(b, dz),
and get the solutioñwi.
α̃a,z

r ←
∑

i w̃iαi,r

α̃a,z
c ←

∑

i w̃iαi,c

α
(b,d),a
r = αa,∗

r + γ
∑

z∈Z α̃a,z
r

α
(b,d),a
c = αa,∗

c + γ
∑

z∈Z α̃a,z
c

Γ(b,d) ←
⋃

a∈A{〈α
(b,d),a
r , α

(b,d),a
c 〉}

Solve the LP (Eqn. 7) withΓ(b,d) and(b, d), and get
the solutionwi.
V ← V ∪ {〈αi,r, αi,c〉 ∈ Γ(b,d)|wi > 0}

Note that each̃αa,z
r is computed by distributing the admis-

sible cost via1
γ
(d−C(b, a))P (z|b, a). Ideally, we should not

impose such a constraint on each observation to obtain the
best convex combination atb. However, this will lead to a
local combinatorial explosion due to cross-summations, and
we observed that distributing the admissible cost yielded suf-
ficiently goodα-vectors while ensuring that the admissible
cost constraint is satisfied atb.

In summary, the algorithm does not depend on cross-
summations and maintains at most(K + 1) vector pairs for
each belief, hence a total of at most(K + 1)|B| vector pairs.

4.3 Policy execution

In the execution phase, the agent chooses its action with re-
spect to the current belief and admissible cost. The over-
all procedure for the execution phase is shown in Alg. 5.
Specifically, at time stept, the optimal randomized action
is calculated by solving the LP in Eqn. 7 with(bt, dt), and
obtaining the solutionwi. The agent selects a vector pair
〈αi,r, αi,c〉 by randomly choosing the indexi with proba-
bility wi, and then the current admissible costdt is resetto
d′t = αi,c ·b since the agent decides to follow the policy corre-
sponding to〈αi,r, αi,c〉which incurs the expected cumulative
cost ofαi,c · b for the remaining steps. The new admissible
costd′t can be higher or lower than the original admissible
cost dt, but they will be the same in the expectation since
actions are chosen randomly according to thewi satisfying
dt =

∑

i wi(αi,c · bt). After executing the action associated
with 〈αi,r, αi,c〉, the next admissible costdt+1 is then calcu-
lated by Eqn. 6 and the next belief is computed by Eqn. 2 with
the observationzt from the environment.

Algorithm 5: Execution
input : b = b0, d = ĉ
while true do

Solve the LP (Eqn. 7) with(b, d)
Randomly choose the indexi with probabilitywi

Perform the actionai corresponding to〈αi,r, αi,c〉
Receive observationz from the environment
d← αi,c · b
d← 1

γ
(d− C(b, ai))

b← τ(b, a, z)
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Figure 2: Results for the toy problem (ĉ = 0.95, γ = 0.9).

5 Experiments
5.1 Randomized vs. deterministic policies
We first experimentally confirm that deterministic policies
cannot represent optimal policies of CPOMDPs using the toy
problem in Fig. 1. Fig. 2 shows the cumulative reward and
cost of the deterministic and randomized policies obtainedby
the algorithms. As demonstrated in Sec. 2.2, the determinis-
tic policy was suboptimal since it had to executea1 at t = 0
anda2 at t = 1 in order to satisfy the cumulative cost con-
straint. Hence, the deterministic policy achieved the value of
0.9γ with the cumulative cost ofγ. The randomized policy
achieved the value of̂c while exactly satisfying the cumula-
tive cost constraint at̂c.

5.2 Quickest change detection
We compare the policies found by the exact and the approxi-
mate methods for CPOMDPs in the Quickest Change Detec-
tion (QCD) problem[Isom et al., 2008]. The problem has
3 states consisting of PreChange, PostChange, and PostA-
larm. The agent has to alarm as soon as possible after the
state changes to PostChange, while bounding the probability
of false alarm,i.e., executing the alarm action when the state
is PreChange. We use the discounted version of the problem
with γ = 0.95, and set the false alarm probability constraint
to ĉ = 0.2.

Fig. 3 compares the results of the exact and approximate
methods for the discounted QCD problem. Due to the com-
plexity of the MILP in Eqn. 3 and the minimax QCP in Eqn. 4,
the exact methods using MILP and QCP pruning were not
able to perform DP updates more than 6 and 5 time steps,
respectively. The approximate method used 500 belief-cost
sample pairs, and it was able to perform DP updates more



1 2 3 4 5 6 7 8 9 10

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Planning horizon

C
um

ul
at

iv
e 

re
w

ar
d/

co
st

 

 

cost (rand,QCP)

reward (rand,QCP)

cost (det, MILP)

reward (det, MILP)

cost (rand,PBVI)

reward (rand,PBVI)

Figure 3: Results of the exact and approx. algorithms (PBVI
with admissible cost) for the discounted QCD problem.
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Figure 4: Planning time for the discounted QCD problem.

than 10 time steps without difficulty. Furthermore, the pol-
icy from the approximate method performed close to the one
from the exact method. Fig. 4 compares the planning time for
each method.4 Note that the exact method takes large amount
of time due to the combinatorial explosion in the number of
α-vectors even though the useless ones are pruned, whereas
the approximate method exhibits its running time linear in the
planning horizon.

5.3 n-city ticketing
In order to demonstrate the usefulness of the CPOMDP for-
mulation in spoken dialogue systems and the scalability of
our approximate method, we show experimental results on
the n-city ticketing problem[Williams et al., 2005]. The
problem models the dialogue manager agent which inter-
acts with the user to figure out the origin and the destination
amongn cities for flight reservation. At each time step, the
agent asks the user for the information about the origin and/or
the destination, and submit the ticket purchase request once
it has gathered sufficient information. However, due to the
speech recognition errors, the observed user’s response can be
different from the true response. We denote the probabilityof
speech recognition error asPe which is incorporated into the
observation probability of the model. We used a constant re-
ward function of−1 for each time step till the terminal submit

4All the experiments were done on a Linux platform with the In-
tel Xeon 2.66GHz CPU and 32GB memory. All the algorithms were
implemented in Matlab; MILPs and LPs were solved using CPLEX
12.1; minimax QCPs were solved usingfmincon in Matlab for the
outer minimization and CPLEX 12.1 for the inner maximization.
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Figure 5: Results of PBVI with admissible cost for 3-City
Ticketing problem (Pe = 0.2). Vertical axis represents the
average cumulative reward/cost over 1000 simulations. Error
bars represent 95% confidence intervals.

action, and a constant cost function of1 for issuing a ticket
with wrong origin or destination and 0 otherwise. Hence, the
reward part represents the efficiency (dialogue length) andthe
cost part represents the accuracy (task completion rate).

Fig. 5 shows the results from the approximate method us-
ing 50 belief-cost sample pairs forn = 3 with Pe = 0.2. This
problem has|S| = 1945, |A| = 16, |Z| = 18, andγ = 0.95.
Note that the policy uses more dialogue turns for smallerĉ,
since it needs more information gathering steps to be more
accurate about the origin and the destination.

6 Conclusion
We showed that optimal policies in CPOMDPs can be ran-
domized, and presented exact and approximate methods for
finding randomized policies for CPOMDPs. Experimen-
tal results show that randomized optimal policies are bet-
ter then deterministic ones, and our point-based method ef-
ficiently finds approximate solutions. Although we demon-
strated CPOMDPs with one constraint, our algorithms nat-
urally extend to multiple constraints and different discount
factors for each reward or cost function.

Careful readers may note that the policy from our point-
based method can violate the cost constraints because the cu-
mulative cost function is constructed using the sampled be-
liefs in the same way PBVI approximates the value function.
If such violation is a serious issue, we can use upper bound
approximation techniques[Hauskrecht, 2000] for represent-
ing the cumulative cost functions to absolutely guarantee sat-
isfying the cost constraints. However, in our experiments,us-
ing the lower bound representation (α-vectors) yielded fairly
good results.

There are several future works worth pursuing. First, the
proposed method can benefit from adopting state-of-the-art
POMDP solvers with heuristic belief exploration. Second,



it would be interesting to extend this approach to average re-
ward and cost criterion models, since a lot of well-established
measures are defined using such criterion in practice. Lastly,
it is an open question whether we can extend this approach to
factored representation for CPOMDPs.
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