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Abstract

Partially Observable Markov Decision Processes (POMDPs) are a popular formalism
for sequential decision making in partially observable environments. Since solving POMDPs
to optimality is a difficult task, point-based value iteration methods are widely used. These
methods compute an approximate POMDP solution, and in some cases they even provide
guarantees on the solution quality, but these algorithms have been designed for problems
with an infinite planning horizon. In this paper we discuss why state-of-the-art point-
based algorithms cannot be easily applied to finite-horizon problems that do not include
discounting. Subsequently, we present a general point-based value iteration algorithm for
finite-horizon problems which provides solutions with guarantees on solution quality. Fur-
thermore, we introduce two heuristics to reduce the number of belief points considered
during execution, which lowers the computational requirements. In experiments we demon-
strate that the algorithm is an effective method for solving finite-horizon POMDPs.

1. Introduction

Partially Observable Markov Decision Processes (POMDPs) provide a framework for plan-
ning under uncertainty in partially observable environments (Kaelbling, Littman, & Cassan-
dra, 1998). POMDPs have been applied in several real-world applications, such as spoken
dialog systems (Williams & Young, 2007) and assistance for people with dementia (Boger,
Poupart, Hoey, Boutilier, Fernie, & Mihailidis, 2005). The framework has been extended to
various settings, such as planning for decentralized agents (Oliehoek & Amato, 2016) and
planning subject to constraints (Walraven & Spaan, 2018).

POMDPs can be solved to optimality using exact value iteration algorithms (Cassandra,
Littman, & Zhang, 1997; Walraven & Spaan, 2017). However, solving POMDPs to optimal-
ity is PSPACE-complete (Papadimitriou & Tsitsiklis, 1987) and most research on POMDPs
focuses on scalable approximation techniques nowadays. Most notably, point-based value
iteration algorithms (Pineau, Gordon, & Thrun, 2003) have proven to be successful for
computing POMDP solutions. This led to a variety of algorithms, such as randomized
point-based value iteration (Spaan & Vlassis, 2005) and point-based methods with guaran-
tees on convergence to optimality (Kurniawati, Hsu, & Lee, 2008; Smith & Simmons, 2005;
Poupart, Kim, & Kim, 2011). Furthermore, several algorithms compute upper bounds on
solution quality, which enables assessment of the quality of the computed policy.

In several planning domains it is natural to assume a finite horizon without discount-
ing of reward. For example, in domains where utility should be maximized in the next 24
hours, one would be interested in the reward collected in the next 24 hours, and the utility
afterwards is no longer relevant. Such situations occur in, e.g., smart energy grids, where
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charging providers solve planning problems with a finite horizon for electric vehicles (Qi,
Xu, Shen, Hu, & Song, 2014), and unit commitment (Morales-España, Latorre, & Ramos,
2013) requires planning under uncertainty for creating finite-horizon schedules for power
generators. Another example is condition-based maintenance in which the condition of,
e.g., a machine is partially observable while performing planning for maintenance (Byon
& Ding, 2010). A common characteristic of existing point-based POMDP algorithms is
that they have been designed for problems with an infinite time horizon. This raises the
question whether and how state-of-the-art infinite-horizon POMDP algorithms can be used
for solving finite-horizon problems without discounting, while providing guarantees on so-
lution quality and convergence. It turns out that the algorithms do not easily generalize to
finite time horizons, and in most cases the algorithms can only be used for infinite-horizon
POMDPs that include a discount factor that is strictly less than 1. This means that existing
algorithms cannot be applied directly, and this shows that finite-horizon POMDPs require
tailored point-based algorithms.

1.1 Contributions

In this paper we present a new solution approach for POMDPs with a finite time hori-
zon. We introduce and evaluate a point-based value iteration algorithm that is suitable for
solving finite-horizon POMDPs without discounting of reward. To be more specific, our
contributions are the following.

First, we provide an extensive overview of strategies for solving finite-horizon POMDPs
using existing algorithms. This discussion shows that state-of-the-art point-based value
iteration algorithms have several limitations in finite-horizon settings, and it also shows that
there is a need for tailored value iteration algorithms for solving finite-horizon POMDPs.

Second, we present the new finite-horizon point-based value iteration algorithm FiVI.
This algorithm unifies several ideas that have been developed for solving infinite-horizon
POMDPs, and the algorithm enables us to solve finite-horizon POMDPs while having guar-
antees on solution quality and convergence.

Third, we present additional heuristics which further improve the performance of FiVI.
In particular, we describe a technique to reduce the number of backups that is executed by
the algorithm. Additionally, we present a technique to improve the efficiency of value upper
bound updates during the execution of FiVI.

Fourth, we execute several experiments which demonstrate the efficacy of FiVI when
solving POMDPs with a finite time horizon. The experiments show that FiVI is an attrac-
tive approach for such problems, and it confirms that our additional heuristics have positive
influence on the performance of the algorithm. Finally, the experiments show that FiVI
typically finds solutions with a better value lower bound and a smaller gap compared to
other strategies for finite-horizon problems.

1.2 Outline

Our paper is structured as follows. In Section 2 we introduce Partially Observable Markov
Decision Processes and mathematical concepts that are typically used when computing so-
lutions. In Section 3 we discuss why state-of-the-art value iteration algorithms for POMDPs
cannot be applied to finite-horizon problems. In Section 4 we present FiVI, which is our
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Figure 1: POMDP agent interacting with the environment

point-based value iteration algorithm that is suitable for solving finite-horizon problems.
We further extend our FiVI algorithm in Section 5, which presents our backup and update
strategies. In Section 6 we describe our experimental results, and in Section 7 we discuss
our conclusions and directions for future work.

2. Partially Observable Markov Decision Processes

In this section we introduce Partially Observable Markov Decision Processes and we pro-
vide an overview of concepts used in solution algorithms. We consider a Partially Ob-
servable Markov Decision Process (Kaelbling et al., 1998), which models an agent that
interacts with an uncertain environment. A POMDP can be defined using the tuple M =
〈S,A,O, T,Ω, R, b1〉. The sets S, A and O contain a finite number of states, actions and
observations, respectively. The function T : S × A× S → [0, 1] defines the stochastic state
transitions. After executing action a ∈ A in state s ∈ S, the state changes stochastically to
state s′ ∈ S with probability T (s, a, s′) = P (s′|s, a). The function R : S×A→ R represents
the reward function, such that the reward R(s, a) is received after executing action a ∈ A
in state s ∈ S. The function Ω : A × S × O → [0, 1] represents the observation function.
Instead of observing the state s′ directly, the agent receives observation o ∈ O with prob-
ability Ω(a, s′, o) = P (o|a, s′). The interaction between the agent and the environment is
visualized in Figure 1. The agent executes action a, after which it receives observation o
and reward R(s, a). Here it is important to note that it does not receive information about
the state s itself.

2.1 Belief States and Belief Updates

In fully-observable MDPs the environment state provides a Markovian signal based on
which the agent can make optimal decisions. However, in POMDPs an observation does
not provide sufficient information to make optimal decisions. All executed actions and
observations encountered in the past can affect the knowledge the agent has about the
current state, and hence a notion of memory is necessary to define an optimal decision
making policy.

For POMDPs a Markovian planning signal can be defined using belief states b rather
than actual states s. A belief state b is a vector of length |S| defining the probability b(s)
that the current environment state is s. In other words, the vector characterizes the current
belief of the agent regarding the actual environment state. A belief state is a sufficient
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statistic for the full history of actions and observations, and therefore there are no other
representations which provide the agent with more information about the history. In a
POMDP it is assumed that the agent has an initial belief b1 before it starts with action
execution. Several POMDP algorithms exploit this assumption while solving a POMDP,
which we further discuss later.

While interacting with the environment the agent updates its belief b. After executing
action a and observing o, the resulting belief boa is defined using Bayes’ rule:

boa(s
′) =

P (o|a, s′)

P (o|b, a)

∑

s∈S

P (s′|s, a)b(s), (1)

where P (o|b, a) corresponds to the probability to observe o after executing action a in
belief b. This probability is calculated as follows:

P (o|b, a) =
∑

s′∈S

P (o|a, s′)
∑

s∈S

P (s′|s, a)b(s), (2)

and in the belief update equation this term serves as a normalizing constant. The notion
of belief is used while interacting with the environment, but it is also used to characterize
POMDP solutions, as discussed in the next two sections for both infinite-horizon problems
and finite-horizon problems.

2.2 Infinite-Horizon Problems

Infinite-horizon POMDPs are used in problem domains where control policies have to be
executed infinitely long. As an example, we consider an elevator control problem (Crites,
1996), in which the control policy needs to ensure that people get moved to the right floor
in a short amount of time. From a decision making point of view this problem is partially
observable, because pressing the button to request an elevator does not provide information
about the destination floor. Short-term performance is important because passengers do
not want to wait too long, and the notion of a finite horizon is not suitable because new
passengers can arrive at any point in time in the future. For infinite-horizon problems with
discounting the following optimality criterion is used:

E

[

∞
∑

t=1

γt−1 rt

]

, (3)

in which a discount factor 0 ≤ γ < 1 is used as a weight for the reward. The discount factor
ensures that short-term reward is considered more important than reward received much
later in time.

The solution of an infinite-horizon POMDP is a policy π : ∆(S) → A mapping beliefs
to actions, in which ∆(S) denotes the continuous set of probability distributions over S.
Similar to infinite-horizon MDPs, the aim is to maximize the expected sum of discounted
rewards. For a given policy π the expected discounted reward V π(b) collected when exe-
cuting π starting from b is defined as:

V π(b) = Eπ

[

∞
∑

k=1

γk−1R(bk, π(bk))

∣

∣

∣

∣

∣

b1 = b

]

, (4)
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whereR(bt, π(bt)) =
∑

s∈S R(s, π(bt))bt(s) denotes the expected reward when executing π(bt)
in belief bt.

For the optimal policy π∗ it holds that V π∗

(b) ≥ V π(b) for each b ∈ ∆(S) and for all
policies π. Similar to MDPs it satisfies the Bellman optimality equation:

V π∗

(b) = max
a∈A

[

∑

s∈S

R(s, a)b(s) + γ
∑

o∈O

P (o|b, a)V π∗

(boa)

]

. (5)

The optimal policy π∗ corresponding to this value function is defined as:

π∗(b) = argmax
a∈A

[

∑

s∈S

R(s, a)b(s) + γ
∑

o∈O

P (o|b, a)V π∗

(boa)

]

. (6)

The value functions introduced in this section provide a conceptual characterization of an
optimal value function and the corresponding optimal policy.

Although discounting can be justified from an application point of view in several do-
mains, in many cases it is only used for mathematical convenience (Hansen, 2007). Dis-
counting can be convenient because it ensures that the sum of an infinite number of rewards,
as shown in Equation 3, becomes equivalent to the sum of a finite number of rewards. This
means that the expectation becomes a well-defined and finite sum, and it means that it
becomes possible to solve infinite-horizon problems by considering only a finite number of
time steps in the future. In the next section we discuss modeling of finite-horizon problems
which do not involve discounting.

2.3 Finite-Horizon Problems

Finite-horizon POMDPs are used in domains where a policy is executed during a finite
number of time steps. As an example we consider an electric vehicle (EV) charging provider
which optimizes day-to-day operations based on finite-horizon forecasts of, e.g., electricity
price and charging demand. In such domains it can be the objective to charge a fleet of
EVs as cheap as possible while accounting for the uncertainty in arrival time and demand.
It is natural to compute a policy which maximizes the expected sum of reward:

E

[

h
∑

t=1

rt

]

, (7)

in which we intentionally count from t = 1 rather than t = 0, such that there are h steps
in total. Although discounting can be applied if there is a finite number of time steps, we
focus in this paper on finite-horizon problems that do not include a discount factor.

In the finite-horizon case the solution is a non-stationary policy π : {1, . . . , h}×∆(S)→
A, which maps beliefs and time steps to actions, and it maximizes the expected sum of
rewards received by the agent. A policy can be seen as a plan which enables the agent to
perform its task in the best possible way, and its quality can be evaluated using a value
function V π : {1, . . . , h} × ∆(S) → R. The value V π(t, b) denotes the expected sum of
rewards that the agent receives when following policy π starting from belief b at time t, and
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it is defined as:

V π(t, b) = Eπ

[

h
∑

t′=t

R(bt′ , π(t
′, bt′))

∣

∣

∣

∣

∣

bt = b

]

, (8)

where bt′ is the belief at time t′ and R(bt′ , π(t
′, bt′)) =

∑

s∈S R(s, π(t′, bt′))bt′(s). For an
optimal policy π∗ it holds that it always achieves the highest possible expected reward
during execution. Formally, it holds that V π∗

(1, b) ≥ V π(1, b) for each belief b and for each
possible policy π. The optimal value function V π∗

(t, b) = maxπ V
π(t, b) is defined by the

following recurrence:

V π∗

(t, b) =

{

maxa∈A
[
∑

s∈S R(s, a)b(s) +
∑

o∈O P (o|b, a)V π∗

(t+ 1, boa)
]

t ≤ h
0 t > h

. (9)

The optimal policy π∗ corresponding to the optimal value function is defined as:

π∗(t, b) = argmax
a∈A

[

∑

s∈S

R(s, a)b(s) +
∑

o∈O

P (o|b, a)V π∗

(t+ 1, boa)

]

, (10)

for 1 ≤ t ≤ h. It returns the value-maximizing action given a time step and belief.

2.4 Vector-Based Value Functions, Backups and Value Iteration

The value functions in the previous sections have been defined over the continuous be-
lief space. When computing value functions this can be inconvenient, because it requires
function representations as well as function manipulations defined over a continuous space.
Fortunately, it has been shown that POMDP value functions have a particular shape which
allows for more efficient representations. In this section we provide an introduction to value
functions for infinite-horizon problems. The connection with finite-horizon problems is made
in Section 4. The notation in this section has been partially derived from Spaan (2012).

It turns out that value functions are piecewise linear and convex (Sondik, 1971). This
means that the value function can be represented using a finite set of |S|-dimensional vec-
tors. This also applies to infinite-horizon problems, because the discount factor γ implicitly
defines an upper bound on the number of time steps that should be considered. A value
function V can be represented as a set of vectors α ∈ V , such that

V (b) = max
α∈V

b · α, (11)

where · denotes the inner product. In this representation V refers to a set of vectors,
and V (b) denotes the function value computed using b and the set of vectors.

Value iteration algorithms can be used to compute a value function V π∗

(b) that char-
acterizes an optimal POMDP solution, as defined in Equation 5. Value iteration executes
a series of dynamic programming stages based on Equation 5 until the value function con-
verges. If the agent executes only one action, then the initial value function V0(b) is defined
as:

V0(b) = max
a∈A

[

∑

s∈S

R(s, a)b(s)

]

= max
{αa

0
}a∈A

αa
0 · b, (12)
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where αa
0(s) = R(s, a) denotes a vector containing the immediate rewards. Hence, we can

define this value function in terms of vectors as V0 = {α
a
0 | a ∈ A}.

Given a value function Vn, value iteration algorithms compute the value function Vn+1

using the Bellman equation. We can abbreviate this as Vn+1 = HVn, in whichH denotes the
Bellman backup operator. For convenience we let αb

n = argmaxα∈Vn
b · α denote the value-

maximizing vector from the set Vn in belief b. Computing all vectors belonging to Vn+1

seems computationally difficult, but given Vn and a belief b we can easily compute the
vector αb

n+1 such that αb
n+1 = argmaxα∈Vn+1

b ·α, where Vn+1 is the unknown set of vectors
representing HVn. We refer to this operation as executing a backup on belief b:

αb
n+1 = backup(b), (13)

such that Vn+1(b) = b ·backup(b). It is important to observe that this vector represents the
gradient of the value function Vn+1 in belief b.

We can derive the computation of backup(b) directly from the Bellman optimality equa-
tion. For convenience we first define

gαn
ao (s) =

∑

s′∈S

P (o|a, s′)P (s′|s, a)αn(s
′) (14)

as the backprojection of a vector αn ∈ Vn based on action a and observation o. The
derivation for the infinite-horizon case with discounting now proceeds as follows:

Vn+1(b) = max
a∈A

[

b · αa
0 + γ

∑

o∈O

P (o|b, a)Vn(b
o
a)

]

(15)

= max
a∈A

[

b · αa
0 + γ

∑

o∈O

P (o|b, a) max
αn∈Vn

(

∑

s′∈S

boa(s
′)αn(s

′)

)]

(16)

= max
a∈A

[

b · αa
0+γ

∑

o∈O

max
αn∈Vn

∑

s′∈S

P (o|a, s′)
∑

s∈S

P (s′|s, a)b(s)αn(s
′)

]

(17)

= max
a∈A

[

b · αa
0+γ

∑

o∈O

max
αn∈Vn

∑

s∈S

b(s)
∑

s′∈S

P (o|a, s′)P (s′|s, a)αn(s
′)

]

(18)

= max
a∈A

[

b · αa
0 + γ

∑

o∈O

max
{gαn

ao }αn∈Vn

b · gαn
ao

]

(19)

= max
a∈A

[

b · αa
0 + γ

∑

o∈O

b · argmax
{gαn

ao }αn∈Vn

b · gαn
ao

]

(20)

= max
a∈A

[

b · αa
0 + γb ·

∑

o∈O

argmax
{gαn

ao }αn∈Vn

b · gαn
ao

]

(21)

= max
a∈A

[

b ·

(

αa
0 + γ

∑

o∈O

argmax
{gαn

ao }αn∈Vn

b · gαn
ao

)]

(22)

= max
a∈A

[

b · gba

]

(23)
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= b · argmax
{gba}a∈A

[

b · gba

]

(24)

with

gba = αa
0 + γ

∑

o∈O

argmax
{gαn

ao }αn∈Vn

b · gαn
ao . (25)

Note that we have applied the definition of the belief update, the identity b·x+b·y = b·(x+y)
and the identity maxα b · α = b · argmaxα b · α in the derivation. Now we can define the
backup operator as follows:

backup(b) = argmax
{gba}a∈A

[

b · gba

]

. (26)

The operator is easy to implement and it provides the value-maximizing vector αb
n+1 ∈ Vn+1

in belief b based on the value function Vn and b itself. It is also common to associate the
maximizing action a with a vector α, which is denoted by a(α).

Value iteration for POMDPs repeatedly computes a value function Vn+1 using the vec-
tors representing the value function Vn from the previous stage. Based on the backup
operator we can define this computation as

⋃

b∈∆(S)

backup(b), (27)

in which ∆(S) represents the continuous space of |S|-dimensional beliefs. However, the
computation requires knowledge about the beliefs b which are needed to compute all vectors
belonging to this set. Since there is an infinite number of beliefs, enumeration of beliefs is
clearly not possible.

Most exact value iteration algorithms address the aforementioned problem by enumerat-
ing all possible vectors that can be generated by the backup operator, rather than enumer-
ating all possible beliefs (Monahan, 1982). The current state of the art is the incremental
pruning algorithm (Cassandra et al., 1997; Walraven & Spaan, 2017), which uses a vec-
tor enumeration procedure interleaved with a procedure that discards vectors that do not
contribute to the value function. However, solving POMDPs to optimality is PSPACE-
complete (Papadimitriou & Tsitsiklis, 1987) and this approach can only be used for rela-
tively small POMDP models.

Point-based value iteration methods (Pineau et al., 2003) have emerged as a popular
approach to address the tractability of solving POMDPs. These methods optimize based
on a finite number of beliefs in a set B, rather than optimizing over the entire continuous
belief simplex ∆(S):

⋃

b∈B

backup(b). (28)

The quality of solutions computed by point-based value iteration algorithms is highly de-
pendent on the choice of B. Several different strategies have been proposed to initialize
and update this set. For example, Perseus (Spaan & Vlassis, 2005) explores the POMDP
environment randomly and stores the belief points it finds. More recent algorithms such as
HSVI (Smith & Simmons, 2005), SARSOP (Kurniawati et al., 2008) and GapMin (Poupart
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et al., 2011) incrementally expand the set B based on heuristic search. This search aims to
find belief points that are reachable during the execution of an (initially unknown) optimal
policy. The relationship between the quality of the heuristic search and the complexity of
solving POMDPs has been studied by Zhang, Hsu, and Lee (2014).

The aforementioned point-based algorithms provide an attractive approach to solve
infinite-horizon POMDPs while providing guarantees on convergence to optimality. How-
ever, these algorithms have not been designed for solving finite-horizon problems, which
raises the question how problems with a finite horizon can be solved. We further discuss
this in the next section.

3. Limitations of POMDP Algorithms in Finite-Horizon Settings

The state of the art in solving POMDPs supports problems which include discounting of
reward. Unfortunately, it turns out that these algorithms do not easily generalize to finite-
horizon problems without discounting. In this section we provide an overview of approaches
that may be used for solving such finite-horizon problems, and we argue why existing
algorithms for infinite horizons cannot be applied with discount factor γ = 1. Throughout
this section finite-horizon planning refers to planning with a finite time horizon without
discounting of reward.

3.1 Solution Strategies for Finite-Horizon Problems

This section gives an overview of approaches that can be used to solve finite-horizon
POMDPs without discounting. For each approach we explain how existing techniques for
MDPs and infinite-horizon POMDPs can be potentially applied, and we argue why these
techniques have limitations when solving finite-horizon problems without a discount factor.

The first approach we discuss treats the POMDP as a fully-observable MDP. Since the
number of reachable beliefs in a finite-horizon POMDP is finite, it is possible to enumerate
these beliefs prior to planning. Recall from Section 2.1 that POMDP belief states provide
a Markovian signal for a POMDP planning task. Therefore, after belief enumeration it is
possible to solve a regular MDP defined in terms of belief states rather than actual states.
This approach is well-defined and it provides an optimal finite-horizon POMDP policy, but
unfortunately it is often intractable due to the large number of beliefs that needs to be
enumerated, which is at most (|A||O|)h.

A second approach based on infinite-horizon algorithms would simply compute an infinite-
horizon policy to take decisions in a finite-horizon problem. This is straightforward, because
one can assume a discount factor, after which an infinite-horizon algorithm is invoked to
obtain a policy. There are two disadvantages associated with this approach. First, invoking
an infinite-horizon algorithm leads to undesirable effects if the algorithm thinks that reward
can be collected late in time, whereas execution ends early due to the finite time horizon.
For example, if a policy has been optimized under the assumption that high reward can be
collected after 20 steps, then the policy is unlikely to be optimal if execution ends after 5
steps. The second disadvantage of the approach are the undesirable effects due to the dis-
count factor that is assumed, which we illustrate using an example. We consider a POMDP
with fully-observable states and deterministic state transitions, as shown in Figure 2. In the
initial state, the agent chooses either action a1 or a2, leading to either the top or bottom
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t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

200

100 105

a1

a2

Figure 2: POMDP in which discounting causes suboptimality

trajectory. The numbers below the transitions correspond to reward, and transitions with-
out a number have zero reward. When casting the problem to an infinite-horizon problem
with γ = 0.95, then a1 is optimal since it gives expected reward 0.950 · 200 = 200, while a2
gives expected reward 0.95 · (100+0.952 ·105) = 185.02. However, a2 is optimal for a finite-
horizon problem where all rewards are equally important, because the bottom trajectory
gives reward 205 while the top trajectory gives 200. This shows that casting a finite-horizon
problem to an infinite-horizon problem with discounting can lead to suboptimal policies.

A third strategy augments the POMDP with a time state variable as part of the state
description. This means that states become time-indexed, and a trap state is entered
at the end of the horizon, resulting in a model with |S| × h + 1 states. More efficient
encodings are possible if not all states are reachable during all steps, but in general we can
conclude that this strategy does not scale well if a large number of time steps needs to be
considered. Although the increase of the model size is linear in the number of time steps,
the augmented POMDP model and solution representations (e.g., alpha vectors) quickly
become too large, which significantly increases the running time and memory requirements
of POMDP algorithms. Augmenting states with a time state variable is not sufficient
to obtain a finite-horizon policy. In addition, it is required to assume γ = 1, but this
assumption leads to implementation issues and undesirable effects in several state-of-the-
art algorithms. This is further discussed in the next section.

A fourth approach would interpret the aforementioned augmented POMDP with a trap
state as a stochastic shortest path problem for Goal POMDPs. The Goal POMDP formula-
tion assumes that the POMDP has a fully-observable goal state that cannot be left, which
is the case when defining the POMDP with a trap state at the end of the time horizon.
Real-Time Dynamic Programming (RTDP) can be used to find solutions to such problems
and it has been generalized to POMDPs as well (Bonet & Geffner, 2009). The resulting
RTDP-Bel algorithm does not include discounting and it can potentially be adapted to
support time-dependent value functions. However, due to discretization of belief states it
does not provide performance guarantees and it does not keep track of an upper bound
on the optimal value function. Existing RTDP extensions for MDPs do account for upper
bounds (Smith & Simmons, 2006), but to the best of our knowledge these upper bounds
have not been applied in RTDP for problems with partial observability.

A fifth approach for solving finite-horizon problems consists of an adaptation of the
algorithm α-min (Dujardin, Dietterich, & Chadès, 2015). This algorithm keeps track of
separate value functions for each time step, and it imposes the additional restriction that
there should be a maximum of N vectors for each time step. The algorithm may be applied
without this restriction and with a low gap tolerance, but in that case it starts to invoke
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a large number of mixed-integer linear programs in order to expand the belief sets, which
are expensive to solve and this leads to scalability problems. Other adaptations of α-min
provide more scalability but they do not provide any performance guarantees (Dujardin,
Dietterich, & Chadès, 2017).

Based on our discussion we can conclude that there are several straightforward ap-
proaches for solving finite-horizon POMDPs without discounting, but all these approaches
are affected by either scalability problems or undesirable effects. In the next section we
describe why state-of-the-art POMDP algorithms cannot be used for finite-horizon models
with a discount factor that is equal to 1.

3.2 Discarding the Discount Factor in Infinite-Horizon Algorithms

As noted in the previous section, the application of infinite-horizon algorithms to finite-
horizon formulations with time-indexed states requires a discount factor γ that is equal
to 1. Unfortunately, many state-of-the-art algorithms for infinite-horizon problems do not
support such a discount factor, and they cannot be modified easily without changing the
characteristics. Next, we discuss for each algorithm why it cannot be used for finite-horizon
planning with the discount factor γ = 1. We also discuss whether the algorithms converge
to optimality, and whether they compute an upper bound on an optimal solution. In our
discussions in this section optimality refers to optimal with respect to an initial belief. This
means that the computed solutions are not necessarily optimal for any initial belief.

GapMin (Poupart et al., 2011) is a point-based value iteration algorithm which computes
both lower bounds and upper bounds on the optimal value function, and it converges in the
limit to an optimal POMDP solution. The algorithm contains several subroutines which
require γ < 1, and the algorithm is not well-defined in case we set γ = 1. Assuming a
discount factor γ < 1 that is arbitrarily close to 1 leads to a situation in which many
subroutines have slow convergence, which is undesirable. Without significant adaptations
GapMin cannot be used with γ = 1.

The point-based value iteration algorithms SARSOP (Kurniawati et al., 2008) and
HSVI (Smith & Simmons, 2005) follow a similar approach as GapMin, in the sense that
they also incrementally expand a set of belief points based on heuristic search starting from
the initial belief. They also produce an upper bound on the optimal value function, and
the algorithms converge to optimality in the limit. The backups and upper bound updates
performed by the algorithms are well-defined for γ = 1. However, the initialization of
lower bounds and upper bounds require γ < 1 and therefore it is necessary to initialize
them differently. Similar to GapMin, without adaptations both algorithms cannot be used
with γ = 1.

Perseus (Spaan & Vlassis, 2005) is a randomized point-based value iteration algorithm
which iteratively performs backups on a set of randomly-sampled belief points. The ini-
tialization of the lower bound requires γ < 1, and therefore this also requires modification.
The algorithm does not keep track of an upper bound on the optimal value function, and it
provides no guarantees on performance, which means that it is not guaranteed to converge
to optimality.

The original PBVI algorithm (Pineau et al., 2003) executes backups on a belief set that
is expanded incrementally. The algorithm can be interpreted as an anytime algorithm,
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Algorithm Upper bound Convergence to optimality Supports γ = 1

GapMin X X

SARSOP X X

HSVI X X

Perseus
PBVI X X

Exact VI X X

RTDP-Bel X

FiVI X X X

Table 1: Comparison of infinite-horizon algorithms and FiVI

and for reaching an optimal solution this boils down to full enumeration of the reachable
belief space. The bounds on the worst-case error assume a discount factor γ < 1, but
the algorithm itself can be used without discounting. In general this is still not desirable
because the number of belief points is potentially large, and it has been shown empirically
that the algorithms GapMin, SARSOP, HSVI and Perseus typically outperform the original
PBVI algorithm.

Exact value iteration supports the discount factor γ = 1 and it always computes an
optimal policy by definition. However, due to its limited scalability it is not desirable to
use the algorithm for problems with large state spaces, which would be the case if we use
a formulation with time-indexed states and a trap state. In contrast to the approximate
methods that we discussed, exact value iteration computes solutions that are optimal for
any initial belief.

An overview of the algorithm characteristics is presented in Table 1, which compares the
algorithms in term of their ability to compute an upper bound, convergence to optimality,
and immediate support for discount factors γ = 1. RTDP-Bel has also been included in
the table, which we briefly discussed in Section 3.1. As can be seen, there is no existing
algorithm which has all three properties simultaneously. In contrast, the algorithm FiVI
presented in the next section does have all these properties, as shown in the table. The
algorithm unifies the desirable characteristics of GapMin, SARSOP and HSVI in such a way
that we obtain a finite-horizon point-based value iteration algorithm for problems without
discounting, which converges to optimality and it also computes both lower bounds and
upper bounds.

4. FiVI: Finite-Horizon Point-Based Value Iteration

In this section we describe FiVI, a point-based value iteration algorithm for solving finite-
horizon POMDPs. The algorithm unifies techniques and concepts from existing state-of-
the-art point-based value iteration algorithms and it provides attractive convergence charac-
teristics and optimality guarantees. This section describes the solution representations used
by FiVI, the actual algorithm, its theoretical properties and relations to existing algorithms.

We start with an overview of the high-level structure of the solution computed by the
FiVI algorithm in Section 4.1, based on time-dependent value functions and time-dependent
backups. In Section 4.2 we explain how time-dependent value upper bounds can be obtained
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in a finite-horizon setting using the sawtooth approximation. A full description of the FiVI
algorithm is provided in Section 4.3, which includes the aforementioned value functions
and upper bounds. The convergence and optimality characteristics of the FiVI algorithm
depend on the belief points used for computing the value functions and upper bounds. This
is the topic of Section 4.4, in which we provide a heuristic search procedure for finding
beliefs, as well as a motivation which explains that FiVI converges to an optimal solution.

4.1 Time-Dependent Value Functions and Backups

Point-based value iteration algorithms compute value functions represented by a finite set
of vectors, as introduced in Section 2.4. For infinite-horizon problems it suffices to keep
track of one individual value function V , as defined in Equation 11, which represents the
stationary policy that can be used to choose actions. In the finite-horizon case the policy
is non-stationary, and in general it is no longer possible to encode the policy using just one
value function. In our FiVI algorithm we use time-dependent value functions Vt, in which t
refers to a time step ranging from 1 to h. Note that we use Vt rather than Vt to avoid
notation conflicts with infinite-horizon value iteration. The value function Vt is represented
by a finite set of vectors Γt and it can be defined as follows:

Vt(b) = max
α∈Γt

b · α, (29)

such that Vt(b) corresponds to the expected reward collected when executing the policy
induced by the value functions Vt, . . . ,Vh starting from belief b.

The vectors that constitute a value function can be computed using a point-based backup
operator, as defined by Equation 26. In the infinite-horizon case the backups are executed
on beliefs in a set B, as shown in Equation 28. Similar to the value functions, the belief sets
can be made time dependent for the finite-horizon case, such that Γt is computed using the
beliefs in the set Bt. In our algorithm we need to keep track of upper bounds v̄ associated
with beliefs b, and therefore the elements of the set Bt consist of pairs (b, v̄) ∈ Bt. The role
of the upper bounds will be further described in the next section. The vector set Γt can be
obtained as follows:

Γt =
⋃

(b,v̄)∈Bt

backup(b, t), (30)

where backup(b, t) denotes a time-dependent backup operator that uses the vectors in Γt+1

to compute a vector belonging to Γt. The time-dependent backup operator corresponds
to the original backup operator for infinite-horizon POMDPs, but it has been formulated
based on multiple time-dependent vector sets rather than one individual vector set. The
time-dependent backup operator backup(b, t) is defined as follows:

backup(b, t) = argmax
{zb,a,t}a∈A

b · zb,a,t, (31)

where

zb,a,t =

{

ra +
∑

o∈O argmax
{zk,t+1

a,o }k
b · zk,t+1

a,o t < h

ra t = h
, (32)

319



Walraven & Spaan

and zk,ta,o denotes the backprojection of vector αk,t ∈ Γt:

zk,ta,o(s) =
∑

s′∈S

P (o|a, s′)P (s′|s, a)αk,t(s′) ∀s. (33)

The vector ra contains the immediate reward for action a. In the remainder of the paper
we assume that the backup operator has access to all vector sets and the reward vectors ra,
such that additional arguments can be discarded from the equations and pseudocode.

Our finite-horizon point-based value iteration algorithm FiVI computes multiple time-
dependent value functions Vt represented by vector sets Γt using the time-dependent backup
operator that we introduced. The actual integration in the algorithm will be explained in
Section 4.3, which discusses the algorithm in more detail.

4.2 Time-Dependent Value Upper Bounds and Bound Updates

Point-based value iteration algorithms typically keep track of upper bounds on the optimal
expected value, which enables assessment of the quality of the computed solution. Our
FiVI algorithm also includes such computations of upper bounds, for which we provide the
required notation and algorithms in this section. The algorithms closely follow the upper
bound computations for infinite-horizon POMDPs, but in order to improve understandabil-
ity we provide a full description in this section.

We consider a time step t and the corresponding belief set Bt. Recall from the previous
section that the pairs (b, v̄) ∈ Bt also contain a value upper bounds v̄ corresponding to
belief b. These upper bounds v̄ can be used to obtain an upper bound for another belief b′

that is not represented in the set Bt, based on an upper bound interpolation using the
existing beliefs in Bt (Hauskrecht, 2000). The interpolation can be obtained using the
following linear program:

min
∑

(b,v̄)∈Bt

cb · v̄

s.t.
∑

(b,v̄)∈Bt

cb · b(s) = b′(s) ∀s

cb ≥ 0 ∀(b, v̄) ∈ Bt.

(34)

which assigns weights to the pairs in Bt and returns a linear combination of the upper
bounds v̄ represented by Bt.

Solving a linear program for every upper bound interpolation can be computation-
ally expensive, and therefore it is more common to use a so-called sawtooth approxima-
tion (Hauskrecht, 2000). This approximation is based on the idea that the optimization
problem can be simplified by imposing the constraint that weights cb are assigned to corners
of the belief simplex, and at most one belief that is not a corner of the belief simplex. A
corner of the belief simplex is a belief in which the belief associated with one state equals 1,
and we also refer to such a belief as a corner belief. Under the additional assumptions that
we made the upper bound interpolation can be computed using a simple procedure that
we call UB, as shown in Algorithm 1, rather than solving a linear program. The algorithm
takes an arbitrary belief set B and a belief b′ as input, and it returns an upper bound
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Algorithm 1: Sawtooth approximation (UB)

input : belief b′, set B containing belief-bound pairs
output: upper bound corresponding to belief b′

1 for (b, v̄) ∈ B \ {(es, ·) | s ∈ S} do
2 f(b)← v̄ −

∑

s∈S b(s)B(es)
3 c(b)← mins∈S b′(s) / b(s)

4 end
5 b∗ ← argmin{b|(b,v̄)∈B\{es | s∈S}} c(b)f(b)

6 return c(b∗)f(b∗) +
∑

s∈S b′(s)B(es)

interpolation for b′ based on the belief-bound pairs in B. In the algorithm es denotes the
corner belief corresponding to state s, and the for loop iterates over all pairs (b, v̄) ∈ B
for which b is not a corner of the belief simplex. Furthermore, B(es) denotes the upper
bound that is currently associated with es in the set B. Our notation closely follows the
notation used by Poupart et al. (2011), and a justification of the procedure has been de-
scribed by Smith (2007). An additional description of upper bound computations has been
provided by Shani, Pineau, and Kaplow (2013).

In the finite-horizon setting the upper bounds associated with beliefs can be updated in
a point-based fashion, similar to executing regular backups on beliefs. We consider a time
step t < h and a belief b that belongs to Bt. The upper bound v̄ in (b, v̄) ∈ Bt can be
updated as follows:

max
a∈A

∑

s∈S

R(s, a)b(s) +
∑

o∈O

P (o|b, a) · UB(boa, Bt+1), (35)

in which the upper bound interpolation is based on the set Bt+1 corresponding to the next
time step. For the final time step t = h it suffices to consider the immediate rewards,
and the upper bound is defined by maxa∈A ra · b. In the next section we combine the upper
bound update scheme and the time-dependent value functions to create our FiVI algorithm.

4.3 Algorithm Description of FiVI

The FiVI algorithm takes a POMDP model as input and computes a solution by executing
a series of iterations. Within an iteration three phases can be distinguished. First the
algorithm executes a procedure to find new belief points. After that, the algorithm computes
a new vector set Γt for each time step t. Finally, the algorithm updates the upper bounds
represented by the belief sets Bt. The full description of the algorithm is provided in
Algorithm 2, which we discuss below in more detail.

On lines 1-5 the algorithm starts with initializing vector sets Γt, belief sets Bt and the
immediate reward vectors ra. Furthermore, the auxiliary variable τ ′ is used to keep track
of the elapsed time, and δ represents an iteration counter. The latter is used in one of our
heuristics in Section 5.

An iteration of FiVI starts with a call to a procedure expand, which is used to find
additional beliefs on line 8. The quality of the solution returned by FiVI and the convergence
of the algorithm completely depends on these beliefs, because these beliefs are used for
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Algorithm 2: Finite-horizon point-based Value Iteration (FiVI)

input : POMDP M , precision ρ, time limit τ
output: sets Γt for each time step t, upper bound vu

1 Γt ← ∅ ∀t
2 Bt ← ∅ ∀t
3 ra ← (R(s1, a), R(s2, a), . . . , R(s|S|, a)) ∀a

4 add corner beliefs to Bt with upper bound ∞ (∀t)
5 τ ′ ← 0, δ ← 0
6 do
7 δ ← δ + 1
8 expand(M, {Γ1, . . . ,Γh}, {B1, . . . , Bh}, r)
9 for t = h, h− 1, . . . , 1 do

10 Γt ← ∅
11 for (b, v̄) ∈ Bt do
12 α← backup(b, t)
13 Γt ← Γt ∪ {α}

14 end
15 for (b, v̄) ∈ Bt do
16 v̄ ← −∞
17 for a ∈ A do
18 v ← ra · b
19 if t < h then
20 for o ∈ O do
21 if P (o|b, a) > 0 then
22 v ← v + P (o|b, a) · UB(boa, Bt+1)
23 end

24 end

25 end
26 v̄ ← max(v̄, v)

27 end

28 end

29 end
30 vl ← maxα∈Γ1

α · b1
31 vu ← upper bound v̄ associated with (b1, v̄) ∈ B1

32 ga ← 10⌈log10(max(|vl|,|vu|))⌉−ρ

33 τ ′ ← elapsed time after the start of the algorithm

34 while τ ′ < τ ∧ vu − vl > ga;
35 return ({Γ1, . . . ,Γh}, vu)

computing the value functions. A more detailed description of the procedure is deferred to
the next section, which provides a detailed motivation and algorithmic description.
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On lines 9-29 the algorithm computes alpha vectors and value upper bounds by iterating
backwards over all time steps. The algorithm starts at the end of the horizon h, and it
proceeds with the time steps h − 1, h − 2, . . . until the initial step is reached. On lines 11-
14 the algorithm computes a new vector set Γt by executing backups based on a belief b
and based on the value function Γt+1 computed in the previous iteration. In this part of
the algorithm we use the value functions and backup operator that we have introduced
in Section 4.1. After computing the new vectors for Γt, the algorithm updates all upper
bounds defined by Bt on lines 15-28. For this purpose it uses Equation 35 and the sawtooth
approximation from Section 4.2.

An iteration of FiVI ends with the computation of the current value lower bound vl and
upper bound vu for the initial belief b1. The difference between these two bounds defines
the current gap. Value iteration stops in case a time limit τ has been exceeded, or in case
the gap is at most one unit at the ρ-th significant digit. The latter can be checked by
computing the maximum allowed gap ga under this criterion, as shown on line 32, and the
algorithm terminates if the current gap is smaller than ga. This condition is also used by
GapMin, and it is more generic than imposing an absolute threshold on the gap.

The solution returned by FiVI consists of alpha vectors in sets Γ1, . . . ,Γh, representing
the lower bound. In addition, the algorithm returns the upper bound vu that corresponds
to the initial belief b1. The gap defined by the lower bound and upper bound implicitly
defines a guarantee on the quality of the computed solution.

4.4 Belief Points and Convergence of the Algorithm

The computation of vectors and upper bounds assumes that we have a set of beliefs Bt for
each time step. However, the performance of the algorithm and the quality of computed
solution are highly dependent on the actual belief points for which backups are executed.
Computing high-quality policies requires coverage of the region of the belief space that is
reachable under the execution of an optimal policy. Unfortunately, the optimal policy and
the corresponding reachable belief region are initially unknown, which means that these
reachable belief points need to be found while computing a policy.

The algorithm FiVI incrementally expands the belief sets using heuristic search, which
is guided by the current gap between the value lower bound and upper bound. Our heuristic
search procedure is similar to the procedures found in HSVI, SARSOP and GapMin. Below
we describe why the action and observation selection strategies in our belief search steer
the algorithm in the direction of an optimal solution.

The gap between the lower and upper bound of belief b1 at time 1 implicitly defines the
amount of uncertainty regarding the optimality of the solution. It is important to note that
regret of the returned solution is bounded by the gap of the initial belief b1. This means
that the heuristic search procedure should choose actions and observations in such a way
that backups and upper bound updates effectively reduce the overall gap.

In order to decide which action needs to be chosen, we first look at the effect of backups
and upper bound updates on the gap associated with a belief. For the lower bound the
backup is defined by Equation 9, and it maximizes over actions a. We define V (t, b, a) as
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the new expected value when choosing action a in belief b at time t:

V (t, b, a) =
∑

s∈S

R(s, a)b(s) +
∑

o∈O

P (o|b, a)V (t+ 1, boa). (36)

In a similar way we can define the potential upper bound U(t, b, a) that is considered for
action a and belief b at time t in the update defined in Equation 35:

U(t, b, a) =
∑

s∈S

R(s, a)b(s) +
∑

o∈O

P (o|b, a) · UB(boa, Bt+1), (37)

Since both Equation 9 and Equation 35 maximize over actions, the new gap associated with
belief b at time t is defined by:

max
a∈A

U(t, b, a)−max
a∈A

V (t, b, a). (38)

It can be seen that the new gap is determined by the actions a that maximize U(t, b, a)
and V (t, b, a). This suggests that the heuristic search procedure should choose one of these
two maximizing actions in order to affect the gap associated with b. An action a should
be chosen that maximizes U(t, b, a), because if a is suboptimal then its upper bound will
eventually be lower than the upper bound associated with another action, which will change
the action choice later. This behavior cannot be achieved using the action a that maxi-
mizes V (t, b, a) because the lower bound can only increase and therefore it is not possible to
detect the potential suboptimality of this action choice. The action selection strategy that
we use is also known as the IE-MAX heuristic (Kaelbling, 1993) and it ensures the conver-
gence of the algorithm. A theoretical analysis of the action selection rule has been provided
by Ross, Pineau, and Chaib-Draa (2008) for general online heuristic search algorithms for
POMDPs. The action selection rule ensures that the computed policy defines an ε-optimal
action within finite time, which implies that the algorithm converges to optimality in the
limit1. The action selection strategy that we use is identical to the strategy used in HSVI,
SARSOP and GapMin for infinite-horizon problems.

After selecting an action the search procedure chooses a branch in the search tree that
corresponds to an observation. It is important to note that the lower bounds and upper
bounds associated with all reachable beliefs in time steps t > 1 contribute to the gap as-
sociated with the initial belief b1. The reason is that both the lower bound computation
and the upper bound update follow the structure of the Bellman equation, as shown in
Equations 9 and 35. If one of the bounds associated with a reachable belief is not tight, it
also contributes to the gap associated with the initial belief b1, and therefore it is impor-
tant to execute backups and updates on such reachable beliefs. Our algorithm chooses an
observation leading to a belief with maximum gap in the next time step t+ 1:

argmax
{o∈O | P (o|b,a)>0}

{ UB(boa, Bt+1)− max
α∈Γt+1

α · boa }. (39)

A similar criterion, weighted appropriately by the discount factor, is also used by infinite-
horizon algorithms.

1. From a theoretical perspective it is required to use the exact upper bound computation in order to ensure
that convergence results are unaffected. If the sawtooth approximation is used, then it is important that
exact bounds are computed periodically, rather than using the approximation in every iteration.
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Algorithm 3: Belief expansion (expand)

input : M, {Γ1, . . . ,Γh}, {B1, . . . , Bh}, r

1 b← b1
2 for t = 1, . . . , h− 1 do
3 a← argmaxa∈A{ ra · b+

∑

{o∈O | P (o|b,a)>0} P (o|b, a) · UB(boa, Bt+1) }

4 o← argmax{o∈O | P (o|b,a)>0}{ UB(b
o
a, Bt+1)−maxα∈Γt+1

α · boa }

5 Bt+1 ← Bt+1 ∪ {(b
o
a,∞)}

6 b← boa
7 end

The full description of the search procedure expand is shown in Algorithm 3. The
algorithm performs a forward search starting from the initial belief, based on the action
and observation selection rules that we described in this section. The belief points that are
found during the search are added to the belief sets used by FiVI. The belief-bound pairs
are added to the set Bt+1 rather than Bt because the beliefs always correspond to the next
time step. It is not required to consider the final time step t = h in the for loop. The search
procedure is invoked in each iteration of FiVI in order to add new beliefs, which ensures
that the FiVI algorithm iteratively reduces the gap of the solution.

Based on the construction of the procedure expand, we can analyze the number of
iterations performed by FiVI. The expand procedure finds at most (|A||O|)h new beliefs,
and there are no iterations in which it does not find a new belief before convergence. This
means that the total number of iterations of FiVI is O((|A||O|)h). The same bound applies
to the space requirements of the algorithm, because the algorithm stores the beliefs and
the corresponding vectors in memory. In practice it can be expected that the number of
iterations is much lower than this worst case bound, since the expand procedure steers
the search in the direction of beliefs reachable under the execution of an optimal policy.
However, without making assumptions about the domain the bound cannot be tightened.

5. Backup and Update Heuristics

The point-based algorithm FiVI executes backups to compute new vector sets Γt in each
iteration. This approach is clean and simple, but it can be relatively inefficient. For example,
the algorithm constructs the new value functions from scratch by executing backups on all
beliefs. Furthermore, the size of the Bt sets grows during the execution of the algorithm,
and therefore an increasing amount of time is required to execute all backups.

The upper bound updates executed by the algorithm (lines 15-28) can also be considered
inefficient, because in each iteration the algorithm computes a new upper bound for each
belief. The upper bound interpolation function UB computes the upper bounds based on all
beliefs, while only a few of these beliefs eventually affect the returned upper bound.

In the remainder of this section we address the aforementioned issues by discussing a
strategy to enhance the efficiency of backups, and we identify a dependency structure which
allows for more efficient upper bound updates.
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Algorithm 4: Perseus Belief Selection (PBS)

input : vector set Γt, belief set Bt

output: new vector set Γt after executing backups

1 Γ← Γt, Γt ← ∅, B ← Bt

2 while B 6= ∅ do
3 (b, v̄)← randomly selected pair from B
4 α← Backup(b, t)
5 α′ ← argmaxα′∈Γ α

′ · b
6 if α · b ≥ α′ · b then
7 Γt ← Γt ∪ {α}
8 else
9 Γt ← Γt ∪ {α

′}
10 end
11 B ← {b ∈ B | maxα∈Γt α · b < maxα∈Γ α · b}

12 end
13 return Γt

5.1 Perseus Belief Selection (PBS)

In this section we present a strategy to improve the efficiency of backups, which employs
a randomized belief selection method similar to the randomized backup stage found in
Perseus (Spaan & Vlassis, 2005). The improve-only principle of this backup stage allows
us to perform backups on randomly-selected points only, while ensuring that the newly
computed Γt set is at least as good as in the previous iteration. A description is shown in
Algorithm 4, which replaces lines 10-14 of our algorithm. The algorithm keeps track of a
set B containing non-improved beliefs. The key improvement follows from the fact that one
backup may improve the value for multiple beliefs. As a result, the set B shrinks quickly
and it may not be required to execute backups for all beliefs.

5.2 Dependency-Based Bound Updates (DBBU)

In this section we improve the efficiency of upper bound updates performed during the
execution of FiVI. Our preliminary observation is that we do not need to compute new
upper bounds for beliefs with zero gap, because for such beliefs the upper bound is already
the tightest possible bound. This means that we can mark beliefs with zero gap, and such
beliefs will not be taken into account in remaining iterations of FiVI while computing new
upper bounds. Unless stated otherwise, the implementations of our algorithms will always
ignore beliefs with zero gap when computing new upper bounds.

Our main observation is that Algorithm 2 executes many upper bound interpolations
when updating the bounds on lines 15-28. For several beliefs boa there is a call to the
function UB, which computes an upper bound interpolation based on the corner beliefs and
just one additional belief (b∗, v̄) ∈ Bt+1 (see line 5 of Algorithm 1). This structure is visually
depicted in Figure 3. It shows a belief pair (b, v̄) ∈ Bt for which an upper bound is updated
in the loop starting on line 15 of Algorithm 2. In order to compute the new upper bound,
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(b, v̄) ∈ Bt

UB(bo1
a1
, Bt+1)

UB(bo2
a1
, Bt+1)

UB(bok
al
, Bt+1)

...

(b∗, v̄) ∈ Bt+1

(b∗, v̄) ∈ Bt+1

(b∗, v̄) ∈ Bt+1

a1, o1

a1, o2

al, ok

Figure 3: Dependencies between a belief (b, v̄) ∈ Bt and beliefs (b∗, v̄) ∈ Bt+1 used for upper
bound interpolation

the algorithm needs several upper bound interpolations for different successor beliefs boa. For
clarity we denote these beliefs by bo1a1 , b

o2
a1
, . . . , bokal in the figure, indicating that the successor

beliefs used for interpolation are different.

Each interpolation computed by the function UB in Algorithm 1 is based on one be-
lief (b∗, v̄) ∈ Bt+1. The arrows induce a dependency graph between the beliefs of subse-
quent steps, and this graph implicity indicates how upper bounds have been propagated
from t = h back to t = 1. It turns out that the dependency graph remains relatively
constant during the execution2. In other words: when computing a new upper bound for
a belief (b, v̄) ∈ Bt, it is often selecting the same beliefs (b∗, v̄) ∈ Bt+1 in the calls to the
function UB. We propose to exploit this dependency structure to reduce the number of
beliefs considered by UB.

An overview of our Dependency-Based Bound Update (DBBU) method is shown in
Algorithm 5. Once in θ iterations of point-based value iteration we keep track of the
dependencies between beliefs, as visualized in Figure 3. When updating the upper bound v̄
for a pair (b, v̄) ∈ Bt, these dependencies can be determined by looking at the beliefs b∗ used
in the calls to UB on line 22 of Algorithm 2. We store all beliefs b∗ that were used in the
set Bb. We periodically determine the dependencies, because in general we cannot assume
that the dependency graph remains constant. The reason is that the algorithm iteratively
adds new beliefs, and such beliefs may be used for interpolation as well.

In all other iterations we still compute a new bound for each belief pair (b, v̄) ∈ Bt, but
we replace the calls to UB(boa, Bt+1). Rather than computing the interpolation based on all
beliefs in Bt+1, we use a subset B∗

t+1 ⊆ Bt+1, where B∗
t+1 contains all beliefs b∗ defined

by the dependency graph (e.g., when updating for (b, v̄) ∈ Bt this would be the set Bb).
Typically this set is much smaller than Bt+1, and if the dependency graph is constant then
it also contains the beliefs that would be used by an interpolation based on Bt+1. As a
result, the function UB iterates over much fewer beliefs.

Beliefs that were found after the last construction of the dependency graph are always
included in B∗

t+1. For this purpose the algorithm defines the auxiliary variable B′
t+1 when

constructing the graph, which contains all beliefs that were part of Bt+1 when constructing
the graph. This variable is used in the definition of B∗

t+1 on line 9, such that it includes
new beliefs that are part of Bt+1 which were not part of B′

t+1 yet.

2. A similar observation has been made for the calls to the exact upper bound interpolation in Gap-
Min (Poupart et al., 2011), in which the convex combination remains fairly constant. The presented al-
ternative uses a so-called augmented POMDP, but it is important to note that it still requires |S||A||O|+1
calls to UB, and it requires the fast-informed bound, which does not directly apply to finite-horizon set-
tings. GapMin does not focus on the dependency structure of the upper bound update.
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Algorithm 5: Dependency-Based Bound Updates (DBBU)

input : belief sets Bt and Bt+1, iteration δ, interval θ

1 if δ mod θ = 0 then
2 for (b, v̄) ∈ Bt do
3 Lines 16-27 from Algorithm 2
4 Bb ← set containing beliefs b∗ used in UB calls

5 end
6 B′

t+1 ← Bt+1

7 else
8 for (b, v̄) ∈ Bt do
9 B∗

t+1 ← {(b, v̄) ∈ Bt+1 | b ∈ Bb ∨ ((b, v̄) ∈ Bt+1 ∧ (b, v̄) /∈ B′
t+1)}

10 Lines 16-27 from Algorithm 2, where UB uses B∗
t+1 rather than Bt+1

11 end

12 end

It is important to note that DBBU can be easily combined with PBS, because DBBU
affects the upper bound updates of FiVI, while PBS only changes the procedure to execute
backups on beliefs. The influence of the interval parameter θ on the performance of DBBU
will be studied in the next section.

6. Experiments

In this section we present our experimental evaluation. We start with a comparison of
multiple variants of FiVI, in which we test the influence of our strategies PBS and DBBU
on runtime, convergence and solution quality. After that, we provide a more in-depth
study of the behavior of PBS and DBBU, and we provide a comparison with 3 alternative
approaches which may be used for finite-horizon problems.

6.1 Performance of FiVI with PBS and DBBU

In the first set of experiments we compare standard FiVI, FiVI augmented with PBS, and
FiVI augmented with PBS and DBBU. For these variants of the algorithm we use the
names VI, PBS and DBBU, respectively. We let the algorithms run for at most 15 minutes,
after which execution is terminated. Furthermore, we stop algorithm execution if the gap
between the lower bound and upper bound drops below 0.01. Since FiVI is an anytime
algorithm, we can assess which variant of the algorithm provides the best solution given the
fixed amount of computation time that is available.

We test our algorithms with multiple planning horizons h, which means that we dis-
card the default discount factors defined by the domains. We use multiple domains from
pomdp.org, which we solve with horizons h = 5, 10, 15, 20. The domains have been chosen
such that the algorithm is able to reduce the gap to a value close to 0 within the time
limit of 900 seconds. This is important for testing whether the dependency graph during
algorithm execution becomes constant, and it enables us to test the effects of our heuristics
until convergence of the algorithm. An overview of the domain properties is provided in
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4x5x2 AircraftID Hallway Network

|S| 39 12 60 7
|A| 4 6 5 4
|O| 4 5 21 2

Table 2: Properties of the domains involved in the experiments

Table 2. For DBBU we consider the parameters θ = 10, 20, 30, 40, which we append to the
names of the algorithms. We compare the algorithms by measuring the total runtime, the
lower bound on the expected reward of the computed policy, as well as the gap associated
with the computed policy. Each algorithm is executed 10 times, such that we can report
the mean and standard deviation for these measures. Prior to running the algorithms, we
intuitively expect that PBS improves the performance of VI since it is likely that it executes
fewer backups. Furthermore, we expect that DBBU improves the performance even more,
because in that case it iterates over fewer beliefs when computing upper bounds.

The results of our experiment are shown in Tables 3 and 4, in which each entry represents
the mean based on 10 runs of the algorithm, and the small entries denote the standard
deviation. Based on the runs in which the time out of 900 seconds was not reached, we
can conclude that PBS consistently improves the performance of plain FiVI, meaning that
it needs less time to reach a solution with a gap below 0.01. The variants of the algorithm
which include DBBU become even faster, and they typically need even less time. This is
especially noticable when increasing the horizon to, e.g., h = 15 and h = 20. In these
cases the running time of DBBU becomes significantly lower than the running time of
PBS, which confirms our initial expectations. The variants of the algorithm with PBS and
DBBU include randomization, but the low standard deviations of the lower bounds and
gaps indicate that it has very limited influence on the quality of the solution returned.

As can be seen in the table, the choice of the interval θ influences the performance
of DBBU, but the results do not allow us to identify a generic choice for this parameter
which provides the best performance throughout all domains. It should be noted, however,
that DBBU becomes faster than FiVI with only PBS, regardless of the choice of θ. As a
general rule we can say that setting θ too high (e.g., much higher than 40) is unlikely to
give good performance because then potential changes in upper bounds are not taken into
account quickly during the execution of the algorithm. In the Hallway domain with horizon
h = 5 we can also see that our heuristics improve the performance of plain FiVI. For the
horizons h = 10, 15, 20 we observe that the lower bounds and gaps of PBS and DBBU are
slightly better when the algorithm reaches the timeout. However, it should be noted that
the domain is difficult to solve, which means that it takes a long time to reach a solution with
a gap that is lower than the tolerance. This makes it hard to derive conclusions regarding
algorithm performance based on those results.

In Figure 4 we visualize how the gap decreases over time during one execution of the
algorithm. From these graphs we can derive two conclusions about the performance of our
two strategies PBS and DBBU. First, in the variants of FiVI which include either PBS or
DBBU the gap tends to decrease faster, meaning that it approaches an optimal solution
faster. Second, our bound update strategy DBBU almost always improves the performance
of FiVI with PBS. The tables and graphs together confirm our initial expectation that
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VI PBS DBBU10 DBBU20 DBBU30 DBBU40
4x5x2 Time (s) 0.915 0.307 0.202 0.197 0.196 0.203

0.049 0.011 0.025 0.006 0.003 0.007

h = 5 LB 0.429 0.429 0.429 0.429 0.429 0.429
0.000 0.000 0.000 0.000 0.000 0.000

Gap 0.003 0.003 0.003 0.003 0.003 0.003
0.000 0.000 0.000 0.000 0.000 0.000

4x5x2 Time (s) 13.541 5.234 2.741 2.808 2.818 2.905
0.253 0.171 0.152 0.146 0.066 0.065

h = 10 LB 1.119 1.119 1.119 1.119 1.119 1.119
0.000 0.000 0.000 0.000 0.000 0.000

Gap 0.010 0.010 0.010 0.010 0.010 0.009
0.000 0.001 0.000 0.000 0.000 0.000

4x5x2 Time (s) 112.401 39.147 17.756 17.64 17.726 18.746
0.495 1.021 0.576 0.452 0.401 0.679

h = 15 LB 1.619 1.619 1.619 1.619 1.619 1.619
0.000 0.000 0.000 0.000 0.000 0.000

Gap 0.007 0.009 0.009 0.009 0.009 0.009
0.000 0.001 0.001 0.001 0.001 0.001

4x5x2 Time (s) 346.417 141.535 70.575 68.119 67.922 70.798
2.245 7.571 3.046 3.730 4.138 3.732

h = 20 LB 2.256 2.256 2.256 2.256 2.256 2.256
0.000 0.000 0.000 0.000 0.000 0.000

Gap 0.009 0.009 0.009 0.009 0.009 0.009
0.000 0.001 0.000 0.01 0.001 0.001

VI PBS DBBU10 DBBU20 DBBU30 DBBU40
AircraftID Time (s) 0.031 0.014 0.019 0.013 0.013 0.013

0.029 0.004 0.014 0.001 0.002 0.002

h = 5 LB -45.393 -45.393 -45.393 -45.393 -45.393 -45.393
0.000 0.000 0.000 0.000 0.000 0.000

Gap 0.002 0.002 0.004 0.003 0.004 0.003
0.000 0.001 0.001 0.001 0.001 0.001

AircraftID Time (s) 1.068 0.450 0.456 0.432 0.460 0.450
0.059 0.047 0.060 0.024 0.052 0.034

h = 10 LB -95.240 -95.241 -95.240 -95.240 -95.240 -95.241
0.000 0.000 0.000 0.000 0.000 0.000

Gap 0.010 0.010 0.009 0.009 0.009 0.009
0.000 0.001 0.000 0.001 0.000 0.001

AircraftID Time (s) 18.837 8.582 4.958 5.141 5.436 5.877
0.168 1.033 0.413 0.236 0.451 0.623

h = 15 LB -149.467 -149.467 -149.467 -149.467 -149.467 -149.467
0.000 0.000 0.000 0.000 0.000 0.000

Gap 0.010 0.010 0.010 0.010 0.010 0.010
0.000 0.000 0.001 0.000 0.000 0.000

AircraftID Time (s) 163.189 78.369 29.956 29.895 31.219 33.127
2.356 4.647 1.658 2.247 1.746 2.192

h = 20 LB -208.013 -208.013 -208.013 -208.013 -208.013 -208.013
0.000 0.000 0.000 0.000 0.000 0.000

Gap 0.010 0.010 0.010 0.010 0.010 0.010
0.000 0.000 0.000 0.000 0.000 0.000

Table 3: Algorithm comparison for domains 4x5x2 and AircraftID

PBS improves the performance of plain FiVI, and our expectation that DBBU improves
the performance even more. Furthermore, our experiment shows that FiVI is an effective
method to compute finite-horizon solutions while providing guarantees on the quality of the
resulting solution.
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VI PBS DBBU10 DBBU20 DBBU30 DBBU40
Hallway Time (s) 9.843 5.045 6.358 6.370 6.523 6.498

0.466 0.219 0.276 0.213 0.286 0.296

h = 5 LB 0.098 0.098 0.098 0.098 0.098 0.098
0.000 0.001 0.001 0.000 0.000 0.000

Gap 0.009 0.009 0.009 0.009 0.009 0.009
0.000 0.000 0.00 0.000 0.000 0.000

Hallway Time (s) 909.567 903.979 904.373 904.200 903.358 902.969
4.671 3.390 3.380 2.492 2.502 2.185

h = 10 LB 0.327 0.334 0.335 0.335 0.334 0.334
0.000 0.000 0.000 0.000 0.000 0.000

Gap 0.104 0.087 0.083 0.082 0.083 0.083
0.000 0.003 0.002 0.002 0.002 0.002

Hallway Time (s) 911.973 908.061 904.740 904.405 904.415 905.049
5.962 3.659 3.136 2.191 2.638 2.830

h = 15 LB 0.628 0.632 0.635 0.635 0.634 0.635
0.001 0.001 0.002 0.002 0.001 0.001

Gap 0.272 0.260 0.255 0.256 0.257 0.256
0.001 0.003 0.002 0.003 0.002 0.003

Hallway Time (s) 916.264 906.485 905.811 905.738 908.350 906.481
5.809 4.881 2.717 2.744 5.132 3.907

h = 20 LB 0.902 0.918 0.921 0.920 0.920 0.919
0.000 0.003 0.002 0.003 0.003 0.002

Gap 0.430 0.403 0.398 0.399 0.399 0.400
0.000 0.004 0.003 0.004 0.004 0.003

VI PBS DBBU10 DBBU20 DBBU30 DBBU40
Network Time (s) 0.014 0.004 0.006 0.004 0.003 0.003

0.012 0.001 0.002 0.002 0.001 0.001

h = 5 LB 81.137 81.137 81.137 81.137 81.137 81.137
0.000 0.000 0.000 0.000 0.000 0.000

Gap 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000

Network Time (s) 0.341 0.149 0.095 0.097 0.107 0.110
0.066 0.006 0.004 0.006 0.004 0.004

h = 10 LB 151.18 151.18 151.18 151.18 151.18 151.18
0.000 0.000 0.000 0.000 0.000 0.000

Gap 0.010 0.009 0.009 0.009 0.008 0.009
0.000 0.001 0.001 0.001 0.001 0.001

Network Time (s) 32.000 22.141 5.612 5.041 5.375 5.863
0.194 1.790 0.275 0.381 0.362 0.337

h = 15 LB 224.616 224.616 224.616 224.616 224.616 224.616
0.000 0.000 0.000 0.000 0.000 0.000

Gap 0.010 0.010 0.010 0.010 0.010 0.010
0.000 0.000 0.000 0.000 0.000 0.000

Network Time (s) 901.721 901.124 267.056 204.782 114.482 142.049
0.682 0.544 62.270 66.242 12.793 23.324

h = 20 LB 298.149 298.149 298.149 298.149 298.149 298.149
0.000 0.000 0.000 0.000 0.000 0.000

Gap 0.018 0.014 0.010 0.010 0.010 0.010
0.000 0.001 0.000 0.000 0.000 0.000

Table 4: Algorithm comparison for domains Hallway and Network

6.2 Number of Backups Executed by PBS

In our second experiment we study the hypothesis that PBS executes fewer backups due
to the potential to skip beliefs for which the value function has improved. We measure the
reduction of the number of backups due to PBS as follows. We let #beliefs total denote the
total number of beliefs that has been added so far, counted across all time steps involved.
Furthermore, we let #num backups denote the total number of backups executed by PBS.

331



Walraven & Spaan
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Figure 4: Gap during the execution of FiVI

Now the reduction of the number of backups can be expressed as follows:

−100×

(

#num backups−#beliefs total

#beliefs total

)

. (40)

In Figure 5 we use this metric to visualize the reduction of the number of backups for each
iteration of FiVI. These results confirm that PBS executes much fewer backups than plain
FiVI, which also explains why PBS can run faster than plain FiVI.

Although PBS accelerates the iterations of FiVI, it is important to note that FiVI with
PBS may need more iterations to reach a solution of the same quality. The explanation
for this is that executing backups on all beliefs may result in a better value function than
the value function obtained when executing backups on only a few beliefs. As we have
concluded from Figure 5, an iteration with PBS generally runs faster, but as a consequence
of the behavior of PBS the total number of iterations may increase. This can be seen
in Table 5, which shows the number of iterations of FiVI performed until termination.
However, based on the initial results in Table 3 and Table 4 we can conclude that the
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Figure 5: Reduction of the number of backups

gain introduced by PBS dominates the additional runtime introduced by running a few
additional iterations.

6.3 Dependency Graph Construction in DBBU

Our bound update strategy DBBU is based on the intuition that the dependency structure
of the beliefs does not change much during the execution of value iteration. In order to test
whether this is indeed the case in our domains, we execute an experiment in which we keep
track of the number of times that all the dependencies remain constant when constructing
a new dependency graph. To be more specific, we let DBBU compute new dependency
graphs in each iteration and we measure the number of graph constructions in which the
dependencies remain the same compared to the previous iteration. We let #graph denote
the total number of graph constructions in an iteration and #graph unchanged denotes the
number of times that the dependency graph associated with a belief does not change. The
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Domain h Iterations VI Iterations PBS

4x5x2 5 21 21
10 92 94
15 225 225
20 332 345

AircraftID 5 4 5
10 50 55
15 138 134
20 267 267

Hallway 5 9 10
10 124 186
15 96 138
20 81 114

Network 5 5 5
10 70 68
15 381 421
20 997 1229

Table 5: Number of iterations of FiVI until termination

total number of unchanged dependency graphs within an iteration now corresponds to:

100×

(

#graph unchanged

#graph

)

. (41)

Figure 6 visualizes this percentage as a function of the iterations of FiVI, which con-
firms that the dependency graphs remain almost always constant during the execution of
FiVI. This result implies that the upper bounds returned by UB based on B∗

t+1 are almost
always the same as the upper bounds returned by UB based on Bt+1 (see Algorithm 5),
while iterating over only a small subset of beliefs during the computation of upper bound
interpolations in UB. From this experiment we can conclude that the upper bound updates
in FiVI take less time due to DBBU, and in many cases our strategy does not affect the
computed upper bounds.

6.4 Comparison with Alternative Methods

In our final experiment we present a comparison with three alternative methods which may
be used to compute solutions to finite-horizon problems. These methods do not provide
performance guarantees and they have several limitations. From a practical point of view
it can be suitable to use them (e.g., if strict performance guarantees are not required).
Therefore, we want to show how such methods perform when solving the instances used in
our previous experiments. We want to emphasize that the methods have not been designed
for finite-horizon problems, and they have not been presented as such in the literature.

The first method we consider starts with sampling reachable beliefs in the belief space
by exploring the environment randomly during a fixed number of episodes. After that, it
performs only one iteration of FiVI to compute value functions and upper bounds. It never
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Figure 6: Unchanged dependency graphs as a function of the number of iterations

executes heuristic search to find additional beliefs. This method is simple to execute, but it
does not provide any performance guarantees because exploring the environment randomly
does not necessarily provide the belief points that are needed to compute a potentially
optimal value function. We let the algorithm sample beliefs during 1000 episodes, and the
algorithm is denoted by S1000.

The second method we consider is a finite-horizon version of RTDP-Bel (Bonet &
Geffner, 2009). The only difference with the infinite-horizon version is that we use sep-
arate value functions for each time step. RTDP-Bel discretizes beliefs in order to represent
value functions in memory, and due to this discretization it does not necessarily converge
to optimality. During our experiments we use discretization parameter D = 10 because
this parameter setting gives us good results, and we execute the algorithm for 900 seconds,
similar to the previous experiments. For more details about RTDP-Bel we refer to our
discussion in Section 3.2.

The third method we consider is the infinite-horizon algorithm GapMin which computes
an infinite-horizon policy with γ = 0.99, which we subsequently evaluate during simulation
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VI PBS DBBU S1000 RTDP-Bel GapMin

4x5x2 LB 2.256 2.256 2.256 2.256 2.256 2.118
h = 20 Gap 0.009 0.009 0.009 0.237 N/A N/A

AircraftID LB -208.013 -208.013 -208.013 -208.013 -208.765 -208.708
h = 20 Gap 0.010 0.010 0.010 1.096 N/A N/A

Hallway LB 0.902 0.918 0.921 0.972 0.078 0.974
h = 20 Gap 0.430 0.403 0.398 0.293 N/A N/A

Network LB 298.149 298.149 298.149 298.128 292.934 291.305
h = 20 Gap 0.018 0.014 0.010 13.679 N/A N/A

Table 6: Comparison with random belief sampling, RTDP and infinite-horizon GapMin

runs. In Section 5 we already concluded that this approach is not suitable for finite-horizon
problems, and in this section we validate empirically whether this is indeed the case. Similar
to RTDP-Bel and the previous experiments, we use a time limit of 900 seconds.

We present the results of our experiment in Table 6, which shows the lower bound and
the associated gap. The results for VI, PBS and DBBU have been copied from the previous
experiments. For DBBU we selected the variant with the highest lower bound. For RTDP-
Bel and GapMin we do not obtain a lower bound, and therefore the reported number is
the mean reward measured during 1 million simulation runs. Below we discuss our most
important observations and conclusions for each alternative method.

The mean reward of the solutions computed by RTDP-Bel is close to the lower bounds
computed by FiVI, which shows that RTDP-Bel can be an effective and simple method to
compute finite-horizon solutions. However, in general the algorithm does not keep track of
upper bounds, which means that it is impossible to assess whether a solution computed by
RTDL-Bel is close to optimal or not.

The mean reward of the solutions computed by GapMin is slightly lower than the lower
bounds computed by FiVI in the domains 4x5x2, AircraftID and Network. This confirms
that a policy computed for an infinite-horizon problem does not always perform well if the
actual problem has a finite time horizon. In the Hallway domain the infinite-horizon policy
performs very well. This seems surprising, but there is a very intuitive explanation which
shows why this is the case. Upon reaching the goal the agent restarts from the initial belief,
and an infinite-horizon policy tries to reach the goal as many times as possible in order
to maximize its expected reward. In practice this means that the infinite-horizon policy
tries to reach the goal as fast as possible, which is also the best strategy in case there is
only a finite number of steps available. Similar to RTDP-Bel, it is important to note that
the algorithm does not compute an upper bound for the finite-horizon case, which prevents
assessment of policy quality in general.

For the belief sampling approach S1000 we observe that the lower bounds are very
close or identical to the lower bounds found by the variants of FiVI in the domains 4x5x2,
AircraftID and Network. However, the associated gap is significantly larger than the gaps
returned by FiVI, which means that S1000 did not find beliefs that are needed to reduce the
gap effectively. In order to provide a better comparison we execute another experiment in
which we give VI, PBS and DBBU a time limit that equals the total runtime of S1000. This
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S1000 VI PBS DBBU10

4x5x2 Time (s) 26.661 26.661 26.661 26.661
h = 20 LB 2.256 2.249 2.256 2.256

Gap 0.237 0.358 0.181 0.114

AircraftID Time (s) 25.520 25.520 25.520 25.520
h = 20 LB -208.013 -208.013 -208.013 -208.013

Gap 1.096 0.035 0.020 0.011

Hallway Time (s) 830.610 830.610 830.610 830.610
h = 20 LB 0.972 0.903 0.916 0.912

Gap 0.293 0.429 0.407 0.408

Network Time (s) 5.412 5.412 5.412 5.412
h = 20 LB 298.128 298.148 298.149 298.149

Gap 13.679 0.702 0.596 0.247

Table 7: Solution quality for VI, PBS and DBBU10 with time limit equal to S1000 runtime

allows us to investigate whether the FiVI variants compute a better solution than S1000
within the same amount of time. The results of this comparison are shown in Table 7. In
previous experiments we found that the standard deviation of the lower bound and gap
is negligible, and therefore we report the results for 1 run. In the Hallway domain S1000
provides a better solution than the FiVI variants without belief sampling, which means
that it has found reachable beliefs leading to a better solution, which were not found yet by
the FiVI algorithm within its time limit. In the domains 4x5x2, AircraftID and Network
our algorithm computes solutions with a smaller gap than the solution returned by S1000,
which means that our algorithm performs better than the belief sampling approach. For
S1000 in general we can conclude that it may work well in some domains, but it samples
an excessively large number of reachable beliefs, which becomes intractable if the POMDP
model is large.

To conclude, our experiment has shown that the belief sampling approach, RTDP-
Bel and GapMin may be suitable for planning in finite-horizon settings. However, the
algorithms do not provide performance guarantees and sampling a large number of beliefs
can be computationally expensive (both the sampling itself and executing backups on those
beliefs). FiVI, on the other hand, provides performance guarantees and typically it uses
much fewer beliefs to compute the solution. Finally, the experiment confirms our observation
that the algorithms are not suitable for solving finite-horizon problems in general, as we
discussed in Section 3.

7. Conclusions

Finite-horizon POMDPs naturally arise in application domains in which policies need to be
executed during a finite number of time steps. For example, in condition-based maintenance
it can be important to optimize maintenance during the finite lifespan of a machine while
the actual condition of the machine is not fully observable (Besnard & Bertling, 2010;
Byon & Ding, 2010). Unfortunately, computing finite-horizon POMDP solutions turns out
to be more complicated than intuitively expected. In the literature several approximate
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POMDP algorithms have been presented which form the current state of the art, such as
the class of point-based value iteration algorithms. These algorithms have been designed
based on the assumption that an infinite horizon with discounting is considered, but due
to this assumption the algorithms do not easily generalize to finite-horizon settings without
discounting of reward. In other words, state-of-the-art approximate POMDP algorithms
cannot be used to solve finite-horizon problems efficiently.

In this paper we presented FiVI, which is a generic point-based value iteration algo-
rithm for finite-horizon problems. FiVI unifies several insights from the existing point-
based algorithms SARSOP (Kurniawati et al., 2008), HSVI (Smith & Simmons, 2005) and
GapMin (Poupart et al., 2011). FiVI is a point-based value iteration algorithm which com-
putes time-dependent value functions, and it leverages a heuristic search procedure to find
new belief points incrementally. It is an anytime algorithm which converges to an optimal
finite-horizon POMDP solution. In addition to the algorithm itself we also presented two
strategies which further improve the algorithm performance. First, we observed that we can
employ randomized backup stages similar to the infinite-horizon algorithm Perseus (Spaan
& Vlassis, 2005). Second, we made the updates of value upper bounds more efficient by
exploiting the insight that these updates typically depend on only a few beliefs that remain
constant during execution. Both strategies are complementary, in the sense that they focus
on two different steps in FiVI that are computationally difficult, and therefore the strate-
gies can be used simultaneously. In a series of experiments we tested the performance and
characteristics of FiVI, which shows that the algorithm is an effective method for solving
finite-horizon problems without discounting of reward.

Multiple directions of future work can be pursued to improve our algorithm. The main
computational bottleneck of FiVI arises if the POMDP models have a large number of
states, and in case there is a large number of beliefs required to reach a solution within
the solution quality tolerance. The first problem can be addressed by implementing the
algorithm based on sparse representations for alpha vectors. The second problem is more
difficult since the convergence of the algorithm is dependent on the ability to sample belief
points that are required to reach an optimal solution. It may be possible to derive a
more efficient belief sampling scheme which replaces Algorithm 3. For example, domain-
specific knowledge may be used to bias the heuristic search, or multiple promising outcomes
can be selected during the forward search, similar to work by Zhang, Hsu, Lee, Lim, and
Bai (2015). In infinite-horizon algorithms such as GapMin this is addressed by implementing
a breadth-first search which prioritizes beliefs that are encountered in an early stage of policy
execution. In the finite-horizon setting without discounting it can be expected that this is
less effective because all rewards collected during policy execution are weighted equally.
This leaves a gap for additional research. Another interesting avenue of future research is
the application to POMDPs with a factored problem representation, which may provide
additional computational advantages.
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