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Abstract

We propose an approach for approximating electrostatic charge distributions with a small number of point charges to
optimally represent the original charge distribution. By construction, the proposed optimal point charge approximation
(OPCA) retains many of the useful properties of point multipole expansion, including the same far-field asymptotic behavior
of the approximate potential. A general framework for numerically computing OPCA, for any given number of
approximating charges, is described. We then derive a 2-charge practical point charge approximation, PPCA, which
approximates the 2-charge OPCA via closed form analytical expressions, and test the PPCA on a set of charge distributions
relevant to biomolecular modeling. We measure the accuracy of the new approximations as the RMS error in the
electrostatic potential relative to that produced by the original charge distribution, at a distance ~22| the extent of the
charge distribution–the mid-field. The error for the 2-charge PPCA is found to be on average 23% smaller than that of
optimally placed point dipole approximation, and comparable to that of the point quadrupole approximation. The standard
deviation in RMS error for the 2-charge PPCA is 53% lower than that of the optimal point dipole approximation, and
comparable to that of the point quadrupole approximation. We also calculate the 3-charge OPCA for representing the gas
phase quantum mechanical charge distribution of a water molecule. The electrostatic potential calculated by the 3-charge
OPCA for water, in the mid-field (2.8 Å from the oxygen atom), is on average 33.3% more accurate than the potential due to
the point multipole expansion up to the octupole order. Compared to a 3 point charge approximation in which the charges
are placed on the atom centers, the 3-charge OPCA is seven times more accurate, by RMS error. The maximum error at the
oxygen-Na distance (2.23 Å ) is half that of the point multipole expansion up to the octupole order.
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Introduction

Point multipole expansions are widely used to gain physical

insight by providing a simplified expression for a complex

distribution of sources of potential fields, such as electrostatic

potential due to a charge distribution. Many familiar physics

concepts are introduced using the framework of point multipoles

because point multipoles provide a means of decoupling the

underlying features of a source distribution from the observation

point. Furthermore, since each successive term in the multipole

expansion decays more rapidly with distance than the previous

term, the impact of high order terms becomes small in the far-field,

i.e. at distances R such that R&R0, where R0 is the distance of the

furthest charge from the expansion center. This property has

allowed the point multipole expansion to simplify many practical

calculations. For example, algorithms such as the fast multipole

[1], local reaction field [2], and fitted point multipole (FPM) [3]

methods, use point multipoles to reduce the computational

complexity of calculating pairwise interactions between large

charge distributions. However, at distances not much larger than

R0, the accuracy of the low order point multipole approximation

deteriorates quickly as one approaches the charge distribution,

necessitating introduction of higher order terms. This, in turn,

may lead to cumbersome algebra and the need to introduce

further approximation [4]. Since, in practice, the potential often

needs to be calculated in regions where the assumption R&R0

does not hold, the point multipole expansion with only one or two

lowest order terms may be suboptimal for some practical

calculations. For example, in atomistic molecular simulations,

amino acids interacting inside a single protein are often only

several (1–5) times R0 apart. For a typical amino acid group within

a folded protein such as lysozyme R0&5 Å, and the distance

between amino acid groups ranges from 1R0 to 10R0. The value

of R0 and the distance at which the potential due to the charge

distribution is evaluated, is, of course, problem dependent.

Furthermore, compared to point charge approximations, it is

generally more difficult to implement point multipole approxima-

tions into existing molecular modeling software, especially for

commonly used implicit solvent models.
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Arguably, one of the most successful point multipole based

approximations is the fast multipole method [1]. The fast

multipole method partitions the system into a hierarchical set of

cubic lattices. Electrostatic interactions between charges within a

lattice and in neighboring lattices (the near-field) are treated

exactly, while a truncated multipole expansion is used for

electrostatic interactions due to atoms in the more distant lattices

(the mid- and far-field). The size of the lattices used in the

multipole expansion varies, with a larger lattice size being used for

more distant lattices [5–7]. This technique reduces the complexity

of the computation of pairwise interaction from O(N2) to less than

O(Nlog(N)), where N is the number of interacting particles [1].

Many improvements to the original technique have been made

[6,8–11]. Overall, the fast multipole method has the advantage of

lower computational complexity compared to the full pairwise

computation, and has a well defined error bound [1]; the method

is used in many areas of physics. However the fast multipole

method has not been widely adopted in biomolecular simulations,

most likely due to its algorithmic complexity, and the discontinu-

ities in calculated potential inherent in the method. [12,13] The

local reaction field [2] and fitted point multipole (FPM) [3]

methods have also not been widely utilized in the context of

biomolecular modeling, again most likely due to their algorithmic

complexity.

Here we investigate an alternative to the point multipole

expansion for approximating charge distributions, which we call

optimal point charge approximation (OPCA). Unlike the fast

multipole method, which uses a set of point multipoles to represent

the original charge distribution, the OPCA approximates a charge

distribution using a given number of point charges. These point

charges are chosen so that they optimally reproduce the lowest

order multipoles in the expansion of the original distribution.

Since OPCAs have a finite size, as opposed to being point-like,

they may provide better representation of the original spatially

extended charge distribution than a single-center truncated point

multipole expansion. In particular, a more accurate representation

of the potential in the mid-field may be expected. We prove below

that the 1-charge and 2-charge OPCAs are at least as accurate as

the equivalent order point multipole approximations, i.e. the point

monopole and dipole approximations. Throughout this work we

refer to point monopole, dipole, and quadrupole approximations

as the truncated point multipole expansions upto the monopole,

dipole, and quadrupole order, respectively.

We show that in general it is always possible to numerically

determine the OPCA, however, for many practical applications,

such as molecular dynamics simulations, analytical expressions are

needed. Although it is not always possible to derive a practical

analytical expressions for OPCAs, in certain cases we show that

reasonable, robust and fairly simple approximations to the OPCAs

can be derived, which we refer to as the practical point charge

approximation (PPCA). The 2-charge OPCA is one such case for

which a practical analytical expression is not readily evident for

arbitrary charge distributions. For this case we have derived an

approximation to the OPCA, the 2-charge PPCA. In what follows

we evaluate the accuracy of our approximations for a set of charge

distributions relevant to biomolecular modeling at a distance

R&2R0. The accuracy at such distances is most critical for

multiscale approximations [14,15] such as the hierarchical charge

partitioning method [16]. For smaller distances, multiscale

approximations generally use the exact charge distribution in

their computations. From a practical standpoint, PPCAs may also

be easier than the fast multipole protocol to implement in

applications that already utilize point charges, i.e. in many

molecular dynamics packages [17,18].

The rest of this work is organized as follows. We first review the

multipole expansion concept to orient the reader and provide a

convenient notational reference. Next, we describe the theoretical

basis for the optimal point charge approximation. We then use this

theoretical formalism to derive closed-form expressions for the

optimal and the practical point charge approximations for the 1-

and 2-charge cases. The accuracy of the 2-charge PPCA was

evaluated for a practical application relevant to biomolecular

modeling. We also calculated the 3-charge OPCA for approxi-

mating a quantum mechanical charge distribution for a water

molecule; the resulting OPCA reproduces the electrostatic

potential in the mid-field with greater accuracy than the point

octupole expansion. Potential uses and future work are discussed

in ‘‘Conclusions’’.

Methods

Multipole Expansion
Here we will give a brief overview of the formalism of the point

multipole expansion. Since many practical applications, such as

molecular dynamics simulations, use point charges, for notational

simplicity we will consider discrete charge distributions, but our

main results also hold for continuous distributions.

Consider a set of N point charges qn (n~1,2,:::,N) located at

positions rn around some chosen origin. Then the potential W(R),

of this distribution at a point R from that origin is given by the

familiar Coulomb potential

W(R)~
1

4pE0

X

N

n~1

qn

DDR{rnDD
ð1Þ

For distances RwR0 where R~DDRDD and R0~max(DDrnDD), a

Taylor series expansion of the potential above gives the classic

multipole expansion. In Cartesian coordinates we obtain

W(R)~
1

4pE0
(
1

R
qz

1

R2

X

i~x,y,z

R̂Ripiz
1

R3

X

i,j~x,y,z

R̂RiR̂RjQij

z
1

6

1

R4

X

i,j,k~x,y,z

R̂RiR̂RjR̂RkOijkz . . . ):

ð2Þ

where

q~
X

N

n~1

qn ð3Þ

pi~
X

N

n~1

qnrn,i ð4Þ

Qi,j~
1

2

X

N

n~1

qn(3rn,irn,j{(rn)
2dij) ð5Þ
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Oi,j,k~

X

N

n~1

qn(15rn,irn,jrn,k{3(rn)
2(rn,idjkzrn,jdikzrn,kdi,j)) ð6Þ

q,p,Q,O are known as the monopole, dipole, quadrupole and

octupole moments respectively, R̂Ri,R̂Rj ,R̂Rk, with i,j,k~x,y,z, are

the unit vectors along the x,y, or z coordinates, and dij is the

Kronecker delta. The multipole moments are symmetric tensors

where the lowest order non-vanishing multipole is origin

independent.

The Optimal Point Charge Approximation (OPCA)
For a given set of N original charges qn (n~1,2,:::,N), we want

to determine the position and magnitude of K point charges �qqk
(k~1,2,:::,KvN) such that the potential due to these smaller

number of point charges, �WW(R) best approximates the potential of

the original distribution, W(R). Our criterion for the ‘‘best

approximation’’ is as follows: the optimal point charge approxi-

mation (OPCA) minimizes the error in the multipole expansion for

the K point charges relative to the multipole expansion for the

original distribution of N charges. The precise error metric is

defined below.

The error metric. Determining the best representative

charge distribution is contingent upon the definition of the error

metric used. In general, we are concerned with obtaining the best

representation of the original potential at any arbitrary point in

space outside the distribution. Thus, for the error metric, D, one

typically chooses the root mean square (RMS) of the error in

potential over some volume V (or surface) excluding the volume

V0 containing the charge distribution being approximated, i.e.

D
2
~

1

V 6 [V0

ð

V=[V0

DW(R){�WW(R)D2dV ð7Þ

In principle, one can derive the optimal charge placement

f�qqk,�rrkg by minimizing the integral given in Eq. (7) with respect to

the values of the new charges, f�qqkg and their positions f�rrkg.
However, as the number of charges in the representative

distribution grows, this equation can be expensive to minimize

numerically, let alone to find closed-form analytic expressions for

the placement and magnitude of the charges composing the

representative distribution. In addition, the choice of the

integration volume is somewhat arbitrary. Furthermore – and,

perhaps, most importantly – charges chosen in this manner are not

guaranteed to have the same multipole moments as the original

distribution [19]. This can lead to misinterpretation of the

properties of the distribution and, potentially, to unphysical

results. At the very least, we would like the new approximate

representation to inherit the same asymptotic behavior of the

corresponding point multipole expansion of the same order, but

with greater accuracy expected from a spatially extended

distribution that can better mimic the original charge distribution.

To simplify the problem, we recast Eq. (7) in spherical

coordinates and consider the error inside a spherical shell centered

on the chosen multipole expansion center, and with arbitrary

outer radius ~RRwR0, where R0 is defined as before, i.e. the distance

from the expansion center to the outermost point charge. The

error metric now becomes

D
2
~

3

4p(~RR3{R3
0)

ð

~RR

R0

ð

2p

0

ð

p

0

DW(R){�WW(R)D2R2 sin (h)dhdwdR ð8Þ

where h and w are the usual spherical coordinate inclination and

azimuth angles.

In spherical coordinates, the multipole expansion is given by

W(R)~
1

E0

X

?

‘~0

X

m~‘

m~{‘

1

2‘z1

Ym
‘ (h,w)

R‘z1
qm‘ ð9Þ

qm‘ ~
X

N

n~1

qnr
‘
nY

m
‘ (hn,wn)

� ð10Þ

where Ym
‘ are the standard spherical harmonics, � denotes the

complex conjugate, qm‘ are the spherical multipole moments, and ‘
is the multipole order. Using this expansion as our error metric,

Eq. (8), becomes

D
2
~

3

4p(~RR3{R3
0)

ð

~RR

R0

ð

2p

0

ð

p

0

1

E0

X

?

‘~0

X

m~‘

m~{‘

1

2‘z1

Ym
‘ (h,w)

R‘z1
(qm‘ {qm‘ )

�

�

�

�

�

�

�

�

�

�

2

R2 sin (h)dhdwdR

ð11Þ

where qm‘ and qm‘ are the spherical moments of the original and

representative charge distributions respectively. Since the spherical

harmonics are orthonormal, Eq. (11), can be further simplified to

the following form [20],

D
2
~

3

4pE0(~RR3{R3
0)

ð

~RR

R0

X

?

‘~0

1

2‘z1ð Þ2R2‘

X

m~‘

m~{‘

Dqm‘ {qm‘ D
2dR ð12Þ

Calculating the optimal point charge

approximation. The position and magnitude of the represen-

tative point charges in OPCA for a given order K are calculated

by sequentially minimizing each term in the error expansion Eq.

(12), starting with the lowest order (monopole) term. From the

structure of Eq. (12) we see that minimizing the difference between

the successive multipole moments of the original N-charge and the

optimal K-charge distributions is equivalent to minimizing the

total error in electrostatic potential. Note that the procedure does

not depend on the parameter R, and thus the method does not

require explicit integration over a given region. This removes a

degree of arbitrariness in defining the ‘‘error surface’’ inherent in

several other methods currently used in practice. The use of the

multipole expansion as reference allows for the sought after

distinct separation of terms by the rate at which they decrease as a

function of R, i.e. the monopole term falls off as
1

R
, the dipole falls

off as
1

R2
, etc. A representation that makes terms up to order l in

Eq. (12) equal to zero will produce total error whose leading term

falls off as 1=Rlz1. For K~N, which is the number of charges in

the original distribution, the OPCA exactly reproduces the

Optimally Placed Point Charges
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electrostatic potential due to the original distribution. This is in

contrast to the point multipole expansions, which generally require

an infinite number of terms to exactly reproduce a given charge

distribution.

Note that minimizing the error metric, Eq. (12), minimizes the

error in electrostatic potential for the far-field where R&R0, but

not necessarily in the mid-field. In the mid-field (R&2R0), the

contribution due to higher order terms in the multipole expansion

can, in principle, be greater than the contribution due to lower

order terms. Therefore, minimizing the lowest order terms in the

expansion error does not guarantee minimization of the total error

in the mid-field: these errors are investigated below for charge

distributions most relevant to biomolecules. In the following

analysis, for convenience, we have dropped the 1=4p0 factor in Eq.

(2) and (12) and switched from SI to atomic units.

Analytical Expressions for 1- and 2-charge OPCAs
The minimization of the error metric in Eq. (12), which is

required to find an OPCA, can be done numerically for any given

number of K representative point charges. A numerical procedure

for calculating the OPCA representation may be particularly

useful in situations where the charge distributions are relatively

static and thus the optimal representation does not need to be

recalculated. For example, during restrained molecular dynamics

simulations, components of the molecule may not move. The

OPCA for these components do not need to be recalculated. For

applications where the OPCA needs to be recalculated frequently,

such as in unrestrained molecular dynamics simulations, one

would like to find closed-form analytical expressions that can be

used to compute OPCAs at a reduced computational cost and

provide derivatives for force calculations.

In the following sections, we apply the general framework

developed above to derive simple analytical expressions for the 1-

charge OPCA. Note that the 1-charge OPCA is only applicable to

a charge distribution with a non-zero net charge, since the

monopole moment for a neutral charge distribution is zero. The 2-

charge case is more complex: the optimal point charge approx-

imation may result in imaginary charge values for some charge

distributions (see Eq. (22) below), and can not be cast in a closed-

form formula for some other distributions. Therefore, we derive

more practical analytical expressions that approximate the 2-

charge OPCA with a reasonable accuracy.

1-charge Optimal Point Charge Approximation for
Charged Distributions
By definition, the 1-charge OPCA consists of a single charge. As

long as the OPCA charge has magnitude �qq~
PN

n~1 qn, i.e. is

equal to the total charge of the original distribution, the monopole

term of the error expansion, Eq. (12), will be zero. Now, the

remaining parameter, namely the position of the charge, is chosen

to minimize the dipole term in the error expansion. In this

particular case, the dipole term can be made identically zero by

solving

px{�qq:x~0 ð13Þ

py{�qq:y~0 ð14Þ

pz{�qq:z~0 ð15Þ

for x,y,z where px,py,pz are the x,y,z components of the dipole

moment p of the original distribution. Solving the above equations

we have

�qq~q ð16Þ

�rr~
p

q
ð17Þ

So, a charge of magnitude �qq placed at �rr (center of charge)

defines the 1-charge OPCA.

2-charge Optimal and Practical Point Charge
Approximations
The 1-charge OPCA is the smallest set of point charges required

to eliminate the monopole and the dipole term of the error

expansion in Eq. (12) for systems with non-zero net charge.

However, an error reduction further than the dipole order is often

desired for higher accuracy. In such cases, the 2-charge OPCA

(K~2) is the next step. In deriving an analytical expression for the

2-charge OPCA, the goal is to eliminate the error terms up to the

dipole order in Eq. (12), and to minimize the quadrupole and,

ideally, the higher order terms.

Due to important differences in the characteristics of charge

distributions with zero and non-zero net charges, it is necessary to

treat these two cases separately. For charged systems, the

monopole and the dipole error terms are eliminated if two point

charges with total charge equal to the original net charge are

positioned so that their center of charge coincides with the center

of charge of the original distribution. For uncharged systems,

however, the monopole and dipole terms in the error expansion

are eliminated when a pair of charges of equal magnitude but

opposite sign are aligned with the direction of the original dipole

moment. In other words, to eliminate the error terms up to the

dipole in the charged case the location of the center of charge of

the 2 charges is constrained, while in the uncharged case the

direction of the dipole moment of the 2 charges is constrained.

This leads to two different solutions for the two cases.

2-charge approximation for uncharged

distributions. For net zero charge distributions, the optimal

point charge approximation consists of two charges �qq1~�qq and

�qq2~{�qq located at positions �rr1 and �rr2 respectively. Thus, it takes 7

parameters, q, and the x,y,z components of �rr1, and �rr2, to uniquely

define a 2-charge OPCA. By setting

�qq(�rr1{�rr2)~
X

N

n~1

qnrn ð18Þ

the dipole term in the error is zero. Now, we will rewrite the

positions �rr1 and �rr2 in the following form:

�rr1~�ddz

P

qnrn

2�qq

�rr2~�dd{

P

qnrn

2�qq
ð19Þ
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where �dd represents the geometric center between the two charges

of the OPCA. We can see that these positions satisfy relation (18)

automatically. By writing the positions of the charges in this

manner, we have divided the process of determining the remaining

parameters which define the OPCA into two steps, namely,

finding the optimal placement of the charges, �dd, and finding the

optimal magnitude of the charge, �qq. Note that finding the optimal

charge value fixes the separation between the two charges, since

the dipole moment of the representative distribution has been

constrained to equal the original dipole moment.

The placement of the geometric center �dd of the charges

composing the 2-charge OPCA that minimizes the quadrupole

term of the error expansion, is given by

�ddk~
2

3p2

X

i~x,y,z

Qkipi{

P

i,j~x,y,z

Qjipipj

4p2

0

B

@

1

C

A
pk

0

B

@

1

C

A
ð20Þ

where k~x,y,z, the �ddk’s are components of �dd, pi,pj ,pk are the

components of the dipole moment (Eq. (4)), and Qki,Qkj are the

components of the quadrupole moment (Eq. (5)). This optimal

position, known as the center of dipole, was derived previously

[20] for a different purpose, namely for matching point multipole

expansions between different charge distributions. Now, unlike the

point dipole approximation, the 2-charge OPCA has physical size

and thus an additional parameter with which to further minimize

the error with respect to the given potential. In other words, Eqs.

(20) and (18), determine only 6 of the 7 parameters required to

define the 2-charge OPCA. Since the quadrupole moment is the

lowest order non-zero term remaining in the error expansion, by

choosing the optimal charge value we want to further minimize

the quadrupole term in the error. However, for any charge value �qq

an OPCA placed at the center of dipole has no quadrupole

moment as can be seen by setting N~2, substituting the center of

dipole, Eq. (20), and q1~{q2~�qq into Eq. (19), and then

substituting these variables into Eq. (6). Thus, the quadrupole term

in the error, Eq. (12) is unaffected by the choice of the charge

magnitude �qq, and the quadrupole term has already been globally

minimized. Therefore, to uniquely define the charge �qq, we follow

the OPCA procedure and globally minimize the next term in the

error expansion, namely the octupole term. Specifically, if we

consider the ‘~3 term of Eq. (12), using the connection formula

from spherical multipoles to Cartesian multipoles we can compute

X

i,j,k~x,y,z

L

L�qq
Oijk{Oijk

� �2
~0 ð21Þ

where Oijk and Oijk are components of the octupole moments, in

Cartesian coordinates (Eq. (6)), of the original distribution and the

2-charge OPCA respectively, for an expansion computed about

the center of dipole. By noting that Oijk is a function of �qq, we find

that Eq. (21) is satisfied when �qq?? or if the charge value is given

by

�qq~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3p6

2
P

i,j,k~x,y,z Oijkpipjpk

s

ð22Þ

Thus, Eqs. (19), (20) and (22) define the 2-charge OPCA for the

net zero charge case (figure 1), i.e. defines the best placement of

charges such that the error metric (Eq. (12)) is minimized.

In some cases, it is possible that

X

i,j,k~x,y,z

Oijkpipjpk

 !

ƒ0 ð23Þ

In this case, the charge given by Eq. (22) is imaginary, which is

unphysical. This situation occurs when the orientation of the

dipole with respect to the octupole moment of the original charge

distribution is such that increasing the distance between the

charges of the 2-charge OPCA always increases the error. In this

case, Eq. (21) is formally satisfied only for �qq??. In a practical

calculation, a 2-charge OPCA with inequality (23) is constructed

by fixing the separation between the charges DD�rr1{�rr2DD to a small

value (figure 2(a)), while increasing the OPCA charge accordingly

to maintain the dipole moment of the original distribution (Eq.

(18)). All of the OPCA charges have real values. If inequality (23)

holds, the 2-charge OPCA does not offer an accuracy advantage

in the far-field over the optimal point dipole approximation,

however, the 2-charge OPCA can always mimic the point dipole

approximation to arbitrary precision and thus the two distributions

will produce equivalent error. Thus, even if inequality (23) holds,

the 2-charge OPCA represents the optimal placement of two point

charges and is at least as accurate as the point dipole

approximation in the far-field where R&R0. However, in the

mid-field, such a charge placement may sometimes be slightly less

accurate than the optimal point dipole approximation.

For the charge distributions described in the Results section

below, we found that setting DD�rr1{�rr2DD~R0=4 to determine the

value of �qq in Eq. (18), instead of the much more complex Eq. (22),

results in the electrostatic potential that is on average within 4% of

the optimal K~2 OPCA solution (figure 2(b)). Therefore, for

practical applications, it may be computationally more efficient to

use an empirically determined value for DD�rr1{�rr2DD even for cases

where the inequality (23) is not satisfied and a true optimal

placement of 2-charge can be found via Eqs. (20) and (22).

Another important practical consideration is that the contribution

of each term in the error expansion, Eq. (12), is smaller than the

previous term only if R&R0. This is not necessarily true in the all-

important mid-field regime where R&2R0. For example, for some

charge distributions, the center of dipole d may be located at

R§2R0. For such cases, the error for the optimal point dipole

approximation [20,23] (point dipole approximation placed at the

center of dipole) and the 2-charge OPCA can become large at

R&2R0. To ensure that our 2-charge approximation is reasonably

accurate in the mid-field for such cases, we introduce an addition

condition: the optimal charge positions are restricted to be within

the 1.5 times the maximum extent of the original charge

distribution R0, from the center of geometry.

Thus, for distributions with zero net charge, the 2-charge

practical point charge approximation (PPCA), which approxi-

mates the 2-charge optimal point charge approximation (OPCA),

is determined through the following 4 steps: (i) The two point

charges comprising the PPCA are placed such that their center of

geometry coincides with the center of dipole (Eq. (20)). (ii) The

separation between the charges is fixed at DD�rr1{�rr2DD~R0=4. (iii)
The position and magnitude of two charges are then determined

by Eq. (18) and (19). (iv) In the rare cases when the point charges

for the PPCA are at a distance greater than 1:5R0 from the center

of geometry, the center of dipole for the PPCA is shifted towards

the center of geometry for the original charge distribution so that

the point charges lie within 1:5R0. The constants in conditions

(ii) and (iv) above were determined empirically for charge
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distributions relevant to biomolecular modeling, see the Results

section below.

2-charge approximation for charged distributions. The

2-charge OPCA consists of two charges �qq1 and �qq2. By setting

q~�qq1z�qq2 ð24Þ

Figure 1. Example of a 2-charge optimal point charge approximation (OPCA). For a sample charge distribution–a neutral amino acid (C-
terminal arginine at physiological pH), including the associated NH-CH-COO backbone atom. (a) The green square represents the center of dipole
(COD), with dipole moment p shown by the arrow. The two diamonds represent the two point charges, q1 and q2 , of the OPCA. The atomic partial
charges are represented as spheres rendered using VMD [21]. The sphere colors range from red to blue representing the charge range of {1e to
z1e, where e is the atomic unit of charge. The charge values for partial charges DqDw0:2e are shown next to the atoms. As a visual reference, the
backbone heavy atoms are labeled and covalent bonds are included in the figure. (b) Error in electrostatic potential for the 2-charge OPCA, point
dipole, and point quadrupole with center of dipole as the expansion center. The error is calculated relative to the exact computation, on a circle at a
distance 2R0 , in the plane shown. Here, R0 is the size of the charge distribution defined as the distance from its center of geometry to the outermost
charge. The inset image shows the electrostatic surface potential rendered using GEM [22].
doi:10.1371/journal.pone.0067715.g001

Figure 2. Accuracy of the 2-charge practical point charge approximation (PPCA) for charge distributions with a net zero charge.
Accuracy is calculated as the RMS error relative to the exact computation, at a distance of 10 Å (&2R0) from the center of geometry. RMS error for the
2-charge PPCA (Eq. (18)) is shown as a function of the distance between the two charges of the PPCA DD�rr1{�rr2DD. The RMS error for the 2-charge PPCA is
compared to that of the point dipole approximation with an optimal center of expansion. (a) Cases where Eq. (23) is true. (b) Cases where Eq. (23) is
false. This figure also includes the 2-charge optimal point charge approximation (Eq. (22)) for comparison. Connecting lines are shown to guide the
eye.
doi:10.1371/journal.pone.0067715.g002
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where q is the net charge of the original distribution, the monopole

order error term in Eq. (12) becomes zero. If we set the center of

charge as the center of expansion for the point dipole approxi-

mation, and choose the charges for the 2-charge OPCA such that

the center of charge for the OPCA coincides with the center of

charge for the original distribution, then

p~�qq1:�rr1z�qq2:�rr2~0 ð25Þ

where �rr1 and �rr2 represent the position vectors for charges 1 and 2

respectively, of the 2-charge OPCA. Note that, with the choice of

center of charge as the multipole center of expansion, the K~2

OPCA is guaranteed to be at least as accurate as the point dipole

approximation, as measured by the error metric defined by Eq.

(12). Thus, to simplify the derivations, we will use the center of

charge as the origin for the coordinate system.

The next non-vanishing error term to be minimized is the

quadrupole, i.e.

min(
X

i,j~x,y,z

Qij{Qij

� �2

) ð26Þ

where �QQij and Qij are the quadrupole moments of the OPCA and

the original charge distribution respectively, about the center of

charge. The quadrupole tensor defines a unique, orthogonal set of

principal axes in three-dimensional space. Since the two point

charges of the 2-charge OPCA define a single line, the quadrupole

potential can be expected to be best approximated by the 2-charge

OPCA with the charges positioned along the principal axis that

has the largest absolute principal value (figure 3). Since the

quadrupole tensor Q is a real symmetric matrix, its principal

values can be determined by the eigenvalue decomposition

Qv~lv ð27Þ

where l is a principal value (eigenvalue) with the corresponding

principal axis (eigenvector) v. Let l be the largest principal value.

Then, by placing the 2-charge OPCA along v, and setting the

component of quadrupole moment for the 2-charge OPCA along

the principal axis v equal to the largest principal value l for the

original distribution, we obtain from Eq. (5) for the quadrupole

moment

l~�qq1�rr
2
1z�qq2�rr

2
2 ð28Þ

where �rr1 and �rr2 are the magnitude of the �rr1 and �rr2 vectors with

center of charge as the origin.

Substituting the values for �qq2 and �rr2 from Eq. (24) and (25)

respectively, we arrive at:

�qq1~
ql

lzq�rr21
ð29Þ

The above equation does not provide a unique solution since �rr1
is still unknown. Minimizing the error in the next order multipole

term in Eq. (12), the octupole moment, results in quartic equations

which may produce imaginary charge values. Therefore, for

practical applications, as with the uncharged case, an empirical

approximation may be more appropriate. Specifically, we set

�rr1~aR0 where a is an empirical parameter. Consider for example

a typical charge distribution (a glutamic acid) from the sample

charge distributions described in the Results section below. For

this charge distribution, figure 4 shows that in the mid field

(R~2R0), with the choice of �rr1&1:6R0 this practical point charge

approximation (PPCA) is on average more accurate than the point

dipole and point quadrupole approximations. For the represen-

tative sample charge distributions described in the next section, the

PPCA was found to be the most accurate for �rr1~1:5R0.

By placing the 2-charge PPCA along the principal axis with the

largest principal value, we eliminate the error due to the largest

component of the quadrupole tensor l. Furthermore, since the

quadrupole tensor is traceless, the other two principal values la,lb
in Q and �lla,�llb in �QQ, are of the opposite sign to l, and

DlaD,DlbD,D�llaD,D�llbDƒDlD. Therefore, the error due to the other two

components of the quadrupole tensor are reduced as well, i.e.

((la{�lla)
2
z(lb{�llb)

2)ƒ((la)
2
z(lb)

2). As an illustration, con-

sider the example of figure 3(b): the error due to smaller

components of the quadrupole tensor shown in figure 3(b) are

smaller than the ones in figure 3(c), as

((5:92{4:20)2z(2:48{4:20)2)v(5:922z2:482).
Thus, for a charge distribution with net non-zero charge, the

practical point charge approximation is determined by Eq. (29),

with r1~1:5R0. The constant of 1.5 was empirically determined

for the set of sample charge distributions described in the following

section.

Results and Discussion

We consider here two potential applications for the optimal and

practical point charge approximations developed above – the

approximation of atomic partial charge distributions for amino

acid groups within proteins, and the approximation of the charge

distribution of water molecule.

Atomic Level Biomolecular Modeling
Molecular modeling is commonly used to study the structure,

function and activity of biological systems [24–26]. A common

computational bottleneck in biomolecular modeling is the

calculation of long-range electrostatic interactions: due to slow

decay of these interactions with distance, simply ignoring them

beyond a certain cut-off distance may lead to unacceptable

accuracy loss [16,27]. Multiscale approximations are one class of

methods used to speed up these calculations [5,7,16], where near-

field interactions are treated exactly, while an approximation of

the charge distribution is used for mid- and far-field computations.

Since the error introduced by such approximations is generally

very low in the far-field, understanding the mid-field error of such

approximations, including ours, is most relevant. In the context of

biomolecular modeling, we consider the lower bound of the mid-

field to be no less than 2 times the extent of the charge distribution

(2R0); the mid-field for amino acid groups is therefore greater than

5 Å.

We have applied the 2-charge practical point charge approx-

imations (PPCA) developed above to the computation of

electrostatic potential for a set of 1188 amino acid groups in five

representative biomolecules that span a large range of sizes: a

monomer from the virus capsid (Protein Databank (PDB) ID

1A6C) with 513 groups, the villin headpiece protein (PDB ID

1VII) with 36 groups, calcium switch protein (PDB ID 1UWO)

with 91 groups, chaperonin GroEL (PDB ID 2EU1) with 524

groups, and myoglobin (PDB ID 1YMB) with 24 groups. The

amino acid groups include their associated backbone atoms, NH-

CH-CO for non-terminal groups, NH2-CH-CO for N-terminal

groups, and NH-CH-COO for C-terminal groups. Atomic partial

charges were taken from the AMBER force field parameters [28].
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The electrostatic potential was calculated in the mid-field (for two

values: R~10 Å&2R0 and R~15 Å&3R0) where the approx-

imation is likely to be least accurate. The electrostatic potential

was computed at discrete points on a sphere of radius R, centered

at the center of geometry. The spherical surface was discretized

into 7200 grid points at which the electrostatic potential was

calculated. The RMS error was calculated over all grid points and

Figure 3. Illustration of a 2-charge practical point charge approximation (PPCA). For a sample charge distribution with non-zero net
charge (a glutamic acid group within a protein with net charge~{1e, where the group includes the associated NH-CH-CO backbone atoms). (a) The
original charge distribution with its quadrupole tensor (Eq. (5)) shown below. The atomic partial charges are represented as spheres rendered using
VMD [21]. The sphere colors range from red to blue representing the charge range of {1e toz1e. The charge values for partial charges DqDw0:2e are
shown next to the atoms. As a visual reference, the backbone heavy atoms are labeled and covalent bonds are included in the figure. The green
square shows the center of charge (COCh). (b) The principal axes, v1, v2, v3 of the original charge distribution with the center of charge as origin
(green square). Its quadrupole tensor, with the coordinate system aligned to the principal axes (Eq. (27)), is shown below. Here v1 is the principal axis
with the largest principal value. Analogous to the concept of ellipsoid of inertia in Mechanics used to characterize mass distribution, an ‘‘ellipsoid of
charge’’ can be imagined here that helps visualize the charge distribution characterized by the quadrupole tensor. (c) The 2-charges of the PPCA (red
diamonds) are placed such that the quadrupole moment for the PPCA equals the component of the quadrupole moment for the original charge
distribution along v1. The quadrupole tensor produced by the 2-charge PPCA, with the coordinate system aligned to the principal axes, is shown
below. The values of charges are in atomic units (e), and e:Å2 is the unit for the quadrupole tensors.
doi:10.1371/journal.pone.0067715.g003

Figure 4. Accuracy of the 2-charge practical point charge approximation (PPCA) as a function of the distance �rr1 from the center of
charge. For the sample charge distribution shown in figure 3. Accuracy is calculated as the RMS error, relative to the exact computation, at a distance
of 2R0 , where R0 is the maximum extent of the charge distribution from the center of geometry. The point dipole and point quadrupole
approximations with center of charge as the center of expansion are shown for comparison. The vertical dashed line represents the value �rr1&1:6R0

that produces the lowest RMS error for the 2-charge PPCA in this case. Connecting lines are shown to guide the eye.
doi:10.1371/journal.pone.0067715.g004

Optimally Placed Point Charges

PLOS ONE | www.plosone.org 8 July 2013 | Volume 8 | Issue 7 | e67715



all the amino acid groups in the sample as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

N DW{Wref D
2=N

q

,

where W and Wref are the electrostatic potential calculated using

the approximations and the reference (original) charge distribu-

tions, respectively, and N is the number of grid points. The 2-

charge PPCA was compared to the optimal point dipole and the

point quadrupole approximations. The center of expansion for the

point dipole approximation for uncharged and charged distribu-

tions are chosen to be the center of dipole and center of charge,

respectively, which are known to be optimal [20] for the

corresponding point multipole expansions. For the point quadru-

pole approximation, we found that the choice of center of

geometry as the center of expansions for uncharged cases, and the

center of charge for charged cases, produced the most accurate

result, on average, in the mid-field. Accordingly, we use these

points as the expansion centers for the point quadrupole

approximation.

In the mid-field (R~10 Å&2R0) the RMS error

(0:0053+0:0030 e/Å) for the 2-charge PPCA is comparable to

the point quadrupole approximation RMS error (0:0054+0:0027
e/Å), and 23% less than the optimal point dipole approximation

RMS error (0:0069+0:0074 e/Å), for the charge distributions

considered here, figure 5. On the other hand, when electrostatic

potential is calculated at a distance R~15 Å, the RMS error

(0:00026+0:00016 e/Å) for the 2-charge PPCA is 34% less than

the optimal point dipole approximation RMS error

(0:00039+0:00026 e/Å), while being 53% higher than the point

quadrupole approximation RMS error (0:00017+0:00011 e/Å).

These results reflect the fact that the 2-charge PPCA is always at

least as accurate as the optimal point dipole approximation,

whereas the PPCA can only try to minimize the error in the

quadrupole term unlike the point quadrupole approximation,

which eliminates the error in the quadrupole term. As the distance

from the charge distribution increases, the accuracy of the

multipole expansion, and, specifically, the accuracy of the point

quadrupole approximation improves. This is evident from the

errors at a distance R~15 Å(figure 5(b)) which are an order of

magnitude lower compared to the errors at a distance R~10 Å

(figure 5(a)). Note that the set of amino acid groups used here

consist of approximately 20% charged and 80% uncharged

distributions.

Figure 5(a) also shows that the 2-charge PPCA is on average

significantly more accurate than the point dipole and quadrupole

approximations for net non-zero charge distributions, compared to

net zero charge distributions. Thus, the 2-charge PPCA should be

significantly more accurate than the point dipole and quadrupole

approximations for molecular structures that contain a significant

portion of charged amino acids. And this is precisely the type of

structures where the use of long-range cut-offs may lead to large

errors. Also note that the standard deviation in RMS error for the

2-charge PPCA (0.0030 e/Å) is comparable to that of the point

quadrupole approximation (0.0027 e/Å) and is less than half of

that of the optimal point dipole approximation (0.0074 e/Å).

Thus, the 2-charge PPCA is a considerably ‘‘tighter’’ approxima-

tion than the equivalent order optimal point dipole approxima-

tion. The higher standard deviation in RMS error for the point

dipole approximation is primarily due to the cases where the

center of dipole, for charge distributions with zero net charge, falls

outside the extent of the original charge distribution. In these cases

the ‘‘optimal’’ center of expansion for the point dipole approxi-

mation can be very close to the point at which the electrostatic

Figure 5. Accuracy of the 2-charge practical point charge approximation (PPCA). For a sample set of charge distributions relevant to
biomolecular modeling. Accuracy of the point dipole and point quadrupole approximations are shown for comparison. Accuracy is calculated as the
RMS error relative to the exact computation. (a) Error calculated at a distance of 10 Å&2R0 where R0 is the maximum extent of the charge
distribution from the center of geometry. (b) Error calculated at a distance of 15 Å&3R0 from the center of geometry. Error bars show the maximum
and minimum absolute error. The upper values for the error bars that are cut off at the top are 0.14 and 0.006 in the left and right panels,
respectively.
doi:10.1371/journal.pone.0067715.g005
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potential is approximated, resulting in large errors. This source of

error is explicitly removed from the PPCA.

Optimal Point Charge Approximation for Water Molecule
Water is critical for life [29,30], and is one of the most

extensively studied molecules[31–34]. Accurate yet computation-

ally efficient description of the solvent environment is essential for

realistic biomolecular modeling. Commonly used simple fixed

point charge models of water have achieved a reasonable

compromise between accuracy and speed, but these are by no

means perfect [35,36]; the search for more accurate yet

computationally facile models continues [4,37,38]. The ability of

a given model to reproduce electrostatic properties of the highly

polar water molecule is critical to success of the model [4].

Obviously, any reasonable model needs to account for the large

dipole moment of water molecule in order to reproduce dielectric

properties of the liquid state. But higher moments are important

too: for example, one of the components of the water quadrupole

tensor is large, and was shown to have strong effect on the liquid

water structure seen in simulations [39]. The octupole order terms

have also been shown to be of importance: for example, these

affect water structure around ions [40]. An intricate interplay

between the dipole, quadrupole and octupole moments gives rise

[41] to the experimentally observed charge hydration asymmetry

of aqueous solvation – strong dependence of hydration free energy

on the sign of the solute charge. Thus, accurate yet computation-

ally facile representations of the complex charge distribution of

water molecule should be of interest.

As an illustration of the OPCA approach, we show here that the

3-charge OPCA can accurately reproduce a quantum mechanical

charge distribution of the water molecule up to the octupole

moment. The specific charge density for the electron distribution

of the water molecule used here (Fig. 6(a)) was determined by the

CCSD method with aug-cc-pCVTZ basis set [43–45] at exper-

imental equilibrium geometry in the gas phase. The electron

charge density distribution was calculated for a box with side

length of 4 Å and resolution of 0:05 Å. The resulting multipole

moments of water molecule in the gas phase are comparable to

available experimental values [46] (Table 1). We stress, however,

that the specific charge distribution is used here only to illustrate

the OPCA method and its capabilities; in what follows, no claims

regarding suitability of this distribution for simulation of liquid

phase water [39] are made.

Since the water molecule is neutral, it can not be represented by

a 1-charge OPCA. A 2-charge OPCA can accurately represent the

dipole moment but not the quadrupole and octupole moments of

the distribution, which are important for an accurate representa-

tion of water [36,39–41]. Therefore, we calculate the 3-charge

OPCA, as follows. In general, the 3-charge OPCA consists of three

charges �qq1,�qq2, and �qq3, located at r1,r2, and r3, representing 12

independent variables. But in the case of water any solution must

respect the C2v symmetry of the molecule, which reduces the

number of independent variables to 10 (by assuming �qq1~�qq2 and

�zz1~�zz2). Following the general procedure outlined in the

‘‘Calculating the optimal point charge approximation’’ section

above, we first eliminate the monopole term in the error expansion

Eq. (12), by setting

q~�qq1z�qq2z�qq3~0 ð30Þ

where q~0 is the monopole moment of the original charge

distribution for water. Then, we eliminate the dipole term in the

error expansion via

pi~r1i�qq1zr2i�qq2zr3i�qq3, i~x,y,z ð31Þ

where pi are the x,y, or z component of the dipole moment and

r1i,r2i,r3i are the x,y, or z components of r1, r2 and r3. Note that in

the coordinate system standard for water molecules (figure 6(a)), pz
is the only non-zero component of the dipole moment. Finally, we

eliminate the quadrupole term in the error expansion, Eq. (12), by

setting

Qi,j~

1

2
�qq1(3r1ir1j{(r1)

2dij)z�qq2(3r2ir2j{(r2)
2dij)z�qq3(3r3ir3j{(r3)

2dij)
� 	

i,j~x,y,z

ð32Þ

where Qi,j are the terms in the quadrupole tensor of the original

charge distribution. Note that in the coordinate system chosen

(figure 6(a)), all off-diagonal terms in the quadrupole tensor are

zero, i.e. Qij~0,i=j. Thus, we are left with a total of 9

independent equations –1 for the monopole q, 3 for the dipole

terms px,py, and pz, and 5 for the terms in the symmetric traceless

quadrupole tensor, Qxx,Qyy,Qxy,Qxz, and Qxz – to solve for 10

variables. This is an under-determined system of equations,

leaving one additional variable. Solving the above set of equations

results in the following solution, with �qq1 as the remaining variable.

�qq2~�qq1 ð33Þ

�qq3~{2�qq1 ð34Þ

�xx1~�xx2~�xx3~�yy3~0 ð35Þ

�zz1~�zz2 ~
(Qzz{Qxx)

3pz
z

pz

4�qq1
ð36Þ

Table 1. Multipole moments of a water molecule in the gas
phase.

QM (this

work)

3-charge

OPCA Experimental

Dipole(D) pz 1.81 1.81 1.86

Quadrupole(DÅ) Qzz 0.08 0.08 0.11

Qxx 22.53 22.53 22.625

Qyy 2.45 2.45 2.515

Octupole(DÅ2) Ozzz 21.35 21.17 NA

Oxxz 21.25 21.44 NA

Oyyz 2.61 2.61 NA

The computed values for the quantum mechanical (QM) charge distribution
and the 3-charge OPCA are compared to the corresponding experimental
values [46]. The coordinate system is that of Figure 6(a). Due to the symmetry,
for the octupole tensor Oxxz =Oxzx =Ozxx and Oyyz =Oyzy =Ozyy . Components
of multipole moments with a value of zero are not shown. 1 debye (D) = 0.2082
eÅ.
doi:10.1371/journal.pone.0067715.t001
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�zz3~
(Qzz{Qxx)

3pz
{

pz

4�qq1
ð37Þ

�yy1~{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(Qyy{Qxx)

3�qq1

s

ð38Þ

�yy2~z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(Qyy{Qxx)

3�qq1

s

ð39Þ

The value for �qq1 is determined numerically to minimize the

octupole term in the error expansion, Eq. (12). The resulting

OPCA charges are �qq1~13e,�qq2~13e, and �qq3~{26e, located at

(0, 20.16, 0.49), (0, 0.16, 0.49), and (0, 0, 0.47) Å, respectively,

(Fig. 6). (The conversion factor of 0.2082 eÅ/debye is used to

convert the multipole moments in table 1 to atomic units (eÅ, eÅ2,

etc.) used in Eq. (33) – (39).)By construction, the multipole

moments from the 3-charge OPCA and the quantum mechanical

charge distribution are identical up to quadrupole order, as shown

in (Table 1). The tight clustering of the 3 OPCA charges away

from the oxygen nucleus is unexpected – in many commonly used

water models the charges are placed on atom centers. Mathemat-

ically, the clustering results from minimizing the error at the

octupole level, used to determine the value of q1 in Eq. (33)–(39).

For fixed dipole and quadrupole moments, the extent of the

OPCA charge distribution is controlled by the octupole moment of

the original charge distribution. The small distance between the

opposite OPCA charges necessitates their large magnitude to

ensure correct dipole moment of the charge distribution. Although

the position and magnitude of the OPCA charges may appear

unusual, the OPCA representation may be more accurate than the

atom-centered alternative. For example, when we place the point

charges on atom centers, and adjust the corresponding charge

magnitudes so that the error at the dipole order is eliminated, the

RMS error in electrostatic potential at 2.8 Å around the oxygen

atom center is 0.0073 e/Å, which is many times larger than the

RMS error for the 3-charge OPCA (0.0010 e/Å), as shown in

Fig. 6(b). Note that the OPCA representation is designed to best

approximate multipole moments of the original charge distribu-

tion; it remains to be seen whether this strategy leads to accurate

reproduction of other physical properties of water. A water model

based on the OPCA representation will be presented in a separate

study.

Figure 6(b) compares the error in electrostatic potential

calculated by the 3-charge OPCA with the error produced by

the point multipole approximations, relative to the exact

computation using the original charge distribution. (Error

calculations exclude any points that fall within the extent of the

original charge distribution.) The error shown in figure 6(b) is

calculated on a circle, in the plane of the water atoms (y-z plane),

at R~2:8 Å from the oxygen atom, which approximates the

oxygen-oxygen (contact) distance between two closest water

molecules. The overall RMS error in electrostatic potential

calculated on a R~2:8 Å spherical surface centered at the oxygen

atom is 0.0010 e/Å with maximum error of 0.0027 e/Å for the 3-

Figure 6. 3-charge optimal point charge approximation (OPCA) for water molecule. (a) The quantum mechanical electron charge density
is visualized by a light blue to red colormap representing the charge density range of 0 to {1 e per 0:05|0:05|0:05 Å3 . The figure shows a 3 Å |

3 Å slice of the charge distribution in the y-z plane of the water atom centers. The origin is located at the center of the oxygen atom, the water atoms
lay in the y-z plane, and the z-axis bisects the hydrogen atoms. The blue dots represent the water atom centers and the red and blue squares
represent the 3 OPCA charges. The central OPCA charge has a value of {26e and the other two are 13e each. (b) The error in electrostatic potential
relative to the exact computation, calculated at 2|R0~2:8 Å from the oxygen atom, in the y-z plane. In this case R0 is chosen to be 1:4 Å, the mean
van der Waals radius of water [42], and 2|R0 approximates the distance between the oxygen atoms in two closest water molecules. For comparison,
we show the error for the 4 lowest point multipole approximations as well as for a commonly used approximation which places point charges on
atom centers. To match the dipole moment of the original charge distribution, the charge placed at the oxygen position equals {0:64e, while the
charges on the hydrogen centers are 0:32e each. The same relative ordering of errors is seen in the x-z and x-y planes (not shown).
doi:10.1371/journal.pone.0067715.g006
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charge OPCA, compared to 0.0015 e/Å with maximum error of

0.0041 e/Å for the point octupole expansion. The overall RMS

error in electrostatic potential at R~2:23 Å (experimental oxygen-

Naz distance [47] ) is 0.0036 e/Å (1.20 kcal/mol) with maximum

error of 0.0042 e/Å (1.39 kcal/mol) for the 3-charge OPCA

compared to 0.0065 e/Å (2.16 kcal/mol) with maximum error of

0.0074 e/Å (2.46 kcal/mol) for the point octupole expansion.

Conclusions

Truncated point multipole expansions are a widely used

approach to approximate potentials produced by complex charge

distributions. However, if only the lowest order terms in the

multipole expansion are kept, as is often done in practical

calculations, the point multipole expansion can produce consid-

erable error in the mid-field. Furthermore, implementation of such

approximations into existing electrostatic models that were

originally developed for point charge distributions, e.g. pairwise

implicit solvent models, presents many challenges. In this work, we

have introduced an alternative to the point multipole expansion–

the optimal point charge approximation (OPCA). An OPCA

consists of a given number of point charges which are optimally

placed to best reproduce the electrostatic potential due to the

original charge distribution. By construction, OPCAs retain many

of the useful properties of point multipole expansions, in particular

they retain the asymptotic behavior of the point multipole

expansion. At the same time, an expansion based on OPCAs

can be more accurate than the point multipole expansion of the

same order.

We have provided a general framework for calculating OPCAs

to any order. We have also derived closed-form analytical

expressions for the 1-charge OPCA, and closed-form analytical

expressions that approximate the 2-charge OPCA with reasonable

accuracy – the 2-charge practical point charge approximation

(PPCA). We note that higher order closed-form, analytical OPCAs

may be challenging to derive, but for some applications, lower

order OPCAs may be sufficient. The analytical expressions

derived here for the 1-charge and 2-charge OPCAs, are

guaranteed to be at least as accurate as the corresponding point

multipole expansion of the same order. These analytic expressions

not only provide physical insight but are more computationally

efficient than the numerical minimization procedures that are in

general required to obtain the optimal point charge approxima-

tion. Thus, these analytic expressions may be particularly useful in

applications such as molecular dynamics where computational

speed is critical.

For a set of sample charge distributions relevant to biomolecular

modeling, the 2-charge PPCA was found to be on average 23%
more accurate than the point dipole approximation, and

comparable in accuracy to the point quadrupole approximation

in the mid-field (electrostatic potential evaluated at 2 times the

extent of the charge distribution). The standard deviation in RMS

error for the 2-charge PPCA was also 59% lower than that of the

point dipole approximation and comparable to that of the point

quadrupole approximation, suggesting that the approximation

offered by the PPCA is ‘‘tighter’’ than that of the point dipole.

We also calculated the 3-charge optimal point charge approx-

imation to represent a (quantum mechanical) gas phase charge

distribution of water molecule. The electrostatic potential approx-

imated by the 3-charge OPCA in the mid-field (2.8 Å from the

oxygen atom) is on average 33.3% more accurate than that of the

point octupole approximation. Interestingly, the positions of the

3 OPCA charges are quite different from atom center charge

placements based on simple point charge models such as SPC or

TIP3P. Further investigation is necessary to determine if and how

such a 3-charge approximation can be used in practical

applications.

Representing complex charge distributions by a small number

of point charges is not, by itself, a novel idea. There are a number

of methods, such as RESP [48], CHELP [49], CHELPG [50],

CHELMO [19], Finite Point Charge (FPC) [3], coarse graining

[16,51,52] and others [53] that empirically fit a set of point

charges to a given charge distribution by minimizing various error

metrics in electrostatic potential over some volume or surface

surrounding the charge distribution. However, a key difference

between the above methods and the optimal point charge

approximation introduced here, is that the OPCAs (and their

practical approximations, PPCAs) inherit the physically appealing

asymptotic properties of the point multipole approximation, i.e.

the error in potential is guaranteed to fall off at least as fast as

1=Rkz1, where R is the distance from the origin and k is the

highest order of the multipole terms retained in the expansion. In

contrast, fitting the representative charges to minimize electrostatic

error over some arbitrary volume or surface (e.g. molecular

surface) does not guarantee the above asymptotic behavior, and

can potentially lead to relatively large errors outside the volume or

surface used for fitting.

Furthermore, in comparison to point multipoles, expansions

based on PPCAs have many desirable properties that may be

useful in practical computations; in particular, their mathematical

form – the sum of Coulombic contributions from point sources – is

simpler than that of the conventional point multipole expansion

and is amenable to common speed-up schemes such as the

generalized Born implicit solvent model [54]. Thus, PPCAs may

be easier to implement into existing molecular dynamics protocols.

The optimal point charge approximation presented here is a

new concept; thus its many applications and potentially useful

properties remain unexplored in this proof-of-concept work. We

expect OPCA/PPCA to have utility in coarse-grained [51,55] and

multi-scale methods [16], especially in dynamics [27] where

analytic expressions and the simplicity of the algorithms is key.

The approximations we have introduced provide a systematic way

of deriving approximate charge distributions that have the

potential to be both computationally efficient and produce an

accurate representation of the original electrostatic potential. To

further improve the representation of the original potential via

OPCAs, future work may consider partitioning the original charge

distribution into several domains, and finding OPCA/PPCA for

each of them separately, similar to the distributed multipoles

approach [56–58]. Further exploration of the mathematical and

physical properties of OPCAs is also desirable. Finally, the 3-

charge OPCA for a charge distribution representing water

molecule is quite accurate to the octupole order. This accuracy,

combined with the simplicity of a 3-charge OPCA, is noteworthy.
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