
Provided by the author(s) and University College Dublin Library in accordance with publisher 

policies. Please cite the published version when available.

Title Point Cloud Data Conversion into Solid Models via Point-Based Voxelization

Authors(s) Hinks, Tommy; Carr, Hamish; Truong-Hong, Linh; et al.

Publication date 2013-05

Publication information Journal of Surveying Engineering, 139 (2): 72-83

Publisher American Society of Civil Engineers

Item record/more information http://hdl.handle.net/10197/4863

Publisher's version (DOI) 10.1061/(ASCE)SU.1943-5428.0000097

Downloaded 2022-08-22T20:18:38Z

The UCD community has made this article openly available. Please share how this access 

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information, please see the item record link above.

https://twitter.com/intent/tweet?via=ucd_oa&text=DOI%3A10.1061%2F%28ASCE%29SU.1943-5428.0000097&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F4863


Page 1 

 

POINT CLOUD DATA CONVERSION INTO SOLID MODELS VIA POINT-BASED 

VOXELIZATION 

Tommy Hinks
(1)

, Hamish Carr
(2)

, Linh Truong-Hong
 (3)

, and Debra F. Laefer
(4)* 

(1)
 PhD, School of Computer Science & Informatics, University College Dublin (UCD), 

CSI/A0.09, Belfield, Dublin 4, Ireland. Email: tommy.hinks@ucd.ie 

(2)
 Senior Lecturer, School of Computing, Faculty of Engineering, University of Leeds, EC 

Stoner Building 6.06, UK. Email: h.carr@leeds.ac.uk 

 (3)
 PhD, Urban Modelling Group (UMG), School of Civil, Structural and Environmental 

Engineering (SCSEE), UCD, Newstead G67, Belfield, Dublin 4, Ireland. Email:  

linh.truonghong@gmail.com 

(4)
* Associate Professor, Lead PI, UMG, SCSEE, UCD, Newstead G25, Belfield, Dublin 4, 

Ireland. Email: debra.laefer@ucd.ie, corresponding author 

 

ABSTRACT 

Automated conversion of point cloud data from laser scanning into formats appropriate for 

structural engineering holds great promise for exploiting increasingly available aerially- and 

terrestrially-based pixelized data for a wide range of surveying related applications from 

environmental modeling to disaster management. This paper introduces a point-based 

voxelization method to automatically transform point cloud data into solid models for 

computational modeling. The fundamental viability of the technique is visually demonstrated 

for both aerial and terrestrial data. For aerial and terrestrial data, this was achieved in less 

than 30 seconds for data sets up to 650k points. In all cases, the solid models converged 

without any user intervention when processed in a commercial Finite Element Method 

program.   
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INTRODUCTION 

Laser scanning has achieved great prominence within the Civil Engineering community in 

recent years for topics as divergent as coastline monitoring (Olsen et al. 2009 and 2011), 

airport layout optimization (Parrish and Nowak 2009), and ground displacement 

identification for water system risk assessment (Stewart et al. 2009). Additionally, there has 

been strong motivation to obtain further functionality from laser scanning and other remote 

sensing data including three-dimensional (3D) volume estimation for mining (Mukherji 

2011), road documentation (Dong et al. 2007) structural identification (Shan and Lee 2005; 

Zhang et al. 2011), and emergency planning (Laefer and Pradhan 2006). Furthermore, 

computational responses of city-scale building groups are increasingly in demand for 

heightened urbanization, disaster management, and microclimate modeling, but input data are 

typically too expensive due to the need for manual surveying. Furthermore, current software 

tools for transforming remote sensing data into computational models have one or more of 

following problems:  a low degree of reliability; an inability to capture potentially critical 

details; and/or a need for a high degree of human interaction. To date, a seamless, automated, 

and robust transformation pipeline from remote sensing data into city-scale computational 

models does not exist. This paper lays the groundwork for key advancements in such a 

pipeline. Herein, the proposed procedure reconstructs building façades from point clouds, 

which is a fundamental step for generating city-scale, computational models. 

FAÇADE RECONSTRUCTION 

In recent years, developments in laser scanning technology and flight path planning allow 
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ALS to acquire point cloud data quickly and accurately at a city-scale, thereby having the 

potential for reconstructing 3D building surfaces across an entire city in nearly real-time. A 

number of approaches based on semi-automatic (e.g. Lang and Forstner 1996) and automatic 

(e.g. Henricsson et al. 1996) approaches have been proposed to reconstruct building models 

from such data sets, but automatically extracting highly detailed, accurate, and complex 

buildings still remains a challenge (Haala and Kada 2010). The semi-automatic procedures 

need human operator intelligence. The automatic visual modeling of urban areas from ALS 

data tends to extract sample points for an individual building by applying segmentation 

techniques and then reconstructs each building individually. In such cases, vertical façade 

surfaces are not portrayed in detail, and outlines may be of relatively low accuracy, unless 

ground planes are integrated, which requires either a priori information or manual 

intervention. Unfortunately, the effectiveness of engineering modeling often depends largely 

on the geometric accuracy and details of the building models, thus the current mismatch.  

Presently, commercial products are generally semi-automatic (Laefer et al. 2011), while in 

the computer graphics and photogrammetry communities, research has focused on automated 

surface reconstruction from dense and regular sample points [e.g. (Hoppe 1994; Kazhdan et 

al. 2006)]. Unfortunately, ALS data are often sparse and irregular and may contain major 

occlusions on vertical surfaces due to street- and self-shadowing (Hinks et al. 2009). 

Dedicated urban modeling, surface reconstruction approaches generally use the major 

building planes (Chen and Chen 2008) and can be described as either model-driven or data-

driven. Model-driven techniques use a fixed set of geometric primitives, which are fitted to 

the point data. Such techniques can be effective when a data set is sparse, since the fitting of 

geometric primitives does not require complete data. In contrast, data-driven techniques 

derive surfaces directly from the point data and are capable of modeling arbitrarily shaped 

buildings. Generally, data-driven approaches are more flexible than model-driven approaches 



Page 4 

 

but are often sensitive to noise in the input data.  

For strictly visual representation, model-driven approaches can be effective. For example, 

Haala et al. (1998) proposed four different primitives and their combinations to derive 

automatically 3D building geometry of houses from ALS and existing ground planes. 

Similarly, Maas and Vosselman (1999) introduced an invariant moment based algorithm for 

the parameters of a standard, gabled-roof house type, which allowed for modeling 

asymmetric elements such as dormers. However, these efforts assume homogenous point 

distributions, which is unrealistic. You et al. (2003) also adapted a set of geometric primitives 

and fitting strategies to model complex buildings with irregular shapes, but the approach 

required user intervention and generated only limited wall details. Hu et al. (2004) also used a 

combination of linear and non-linear fitting primitives to reconstruct a complex building, in 

which aerial imagery was used to refine the models.  

In contrast, many data-driven techniques operating on ALS data reconstruct roof shapes 

directly from sample points of roof planes. Subsequently, the remainder of the building is 

simply extruded to the ground level from the roof shape outlines. Vosselman and Dijkman 

(2001) used a Hough transform for extraction of plane faces (roof planes) from the ALS data, 

and then 3D building models were reconstructed by combining ground planes and the 

detected roof planes. Hofmann et al. (2003) introduced a method to extract planar roof faces 

by analyzing triangle mesh slopes and orientations from a Triangular Irregular Network 

(TIN) structure generated from ALS data. More recently, Dorninger and Pfeifer (2008) used 

an -shape approach to determine a roof outline from point clouds of the roof projected onto 

a horizontal plane. Also, Zhou and Neumann (2010) created impressive buildings for a large 

urban area by using a volumetric modeling approach, in which roof planes were determined 

based on a normal vector obtained from analysis of grid cells belonging to roof layers. 
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However, these models are also extruded and lack vertical wall details.  

Therefore, this paper presents an automated approach to convert point clouds of individual 

buildings into solid models for structural analysis by means of computational analysis, in 

which the point clouds that were semi-automatically segmented from LiDAR data become 

the input (Figure 1). Notably, this proposed approach focuses on reconstructing solid models 

by using voxel grids with the critical parameter as either the voxel size or the number of 

voxel grids; for more details on collecting aerial and terrestrial laser scanning and on 

segmenting point clouds see Truong-Hong (2011) and Hinks (2011). 

SOLID MODELING 

To generate building models directly from point cloud data for engineering simulations [(e.g. 

finite element method (FEM)] there are three dominant methods:  (i) Constructive Solid 

Geometry (CSG), where objects are represented using Boolean combinations of simpler 

objects; (ii) Boundary Representations (B-Reps), where object surfaces are represented either 

explicitly or implicitly, and (iii) spatial sub-division representations, where an object domain 

is decomposed into cells with simple topological and geometric structure, such as regular 

grids and octrees (e.g. Goldman 2009; Hoffmann and Rossignac 1996); there are many 

extensive treatises available for in-depth considerations of this topic (see e.g. Böhm et al. 

1984; Rossignac and Requicha 1984,1999). 

Generating solid models automatically from point cloud data is particularly important 

because the cost of manually creating solid models of existing objects is far greater than the 

associated hardware, software, and training costs. As such, spatial sub-division 

representations are used extensively for creating solid models of buildings, in which regular 

grids or octrees are employed to decompose an entire object into non-overlapping 3D 
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regions, commonly referred to as voxels. Voxels are usually connected and describe a simple 

topological and geometric structure. In grids, a volume is sub-divided into smaller regions by 

appropriate planes parallel to the coordinate system axes, typically using a Cartesian 

coordinate system. An initial voxel bounding all point data recursively divides a volume into 

eight sub-voxels, organized in a hierarchical structure (Samet 1989). Voxels may be labeled 

white, black, or gray based on their positions (Figure 2). Black voxels are completely inside 

the solid, while white voxels are completely outside. Voxels with both black and white 

children are gray (Hoffmann and Rossignac 1996). 

In an application of spatial sub-division for surface reconstruction, Curless and Levoy (1996) 

presented a volumetric method for integrating range images to reconstruct an object’s surface 

based on a cumulative, weighted, signed-distance function. Unfortunately, the approach is not 

suited for arbitrary objects. In related work, Guarnieri et al. (2005) built a triangulated mesh 

of an object’s surface by combining a consensus surface (as proposed by Wheeler et al. 

1998), an octree representation, and the marching cubes algorithm (Lorensen and Cline 

1987). This multi-faceted algorithm can reduce the effect of the noise due to surface 

sampling, sensor measurements and registration errors. However, for optimal results, the 

method requires modification of parameters that heavily depend on input data characteristics, 

such as the voxel size or the threshold value for the angle or the distance between two 

consecutive neighbor range viewpoints. 

VOXELIZATION 

Critical to octree/quadree representations for further processing is voxelization. This term 

describes the conversion of any type of geometric or volumetric object such as curve, surface, 

solids or computed tomographic data into volumetric data stored in a 3D array of voxels 
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(Karabassi et al. 1999). Initially, a voxel grid divides a bounded, 3D region into a set of cells, 

which are referred to as voxels. The division is typically conducted in the axial directions of a 

Cartesian coordinate system. Before voxelization, three pairs of coordinate values ([xmin, 

xmax], [ymin, ymax], [zmin, zmax]) are created along the three axes (X, Y and Z), defining a global 

system (Figure 3). The basic idea of voxelization algorithm is to examine whether or not 

voxels belong to the object of interest, and to assign a value of 1 or 0, respectively (Karabassi 

et al. 1999); a further description of voxel grids is available in Cohen and Kaufman (1990).  

An initial voxel bounding all point cloud data in 3D Euclidean space R
3
 are sub-divided into 

subset voxels by grids along x-, y-, and z- coordinates in a Cartesian coordinate system. Each 

voxel in the subset is represented by an index v(i, j, k), where  i  [0;Nx-1], j  [0;Ny-1], and 

k  [0;Nz-1] (Figure 3). With the dimensions of individual voxels (x, y, z), a number of 

voxels (Nx,Ny, Nz) along each direction are given in Equations 1-3: 
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The voxel has eight associated lattice vertices associated with six rectangular faces (Figure 

3). Each interior voxel has 26 neighboring voxels with 8 sharing a vertex, 12 sharing an edge, 

and 6 sharing a face. Conversely, an exterior or interior voxel on a hole’s boundary often has 

only 17 neighboring voxels (4 sharing a vertex, 8 sharing an edge, and 5 sharing a face). 

Moreover, most existing voxelization techniques operate on surface representations of 
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objects, where a significant part of the problem is to identify through which voxels the 

surfaces pass. Such methods are referred to as surface-based voxelization (e.g. Cohen-Or and 

Kaufman 1995) (Figure 4a to 4b to 4c). In contrast, the point-based voxelization in this paper 

operates directly on the point data and does not require a derived surface (Figure 4a to 4c). 

Point-based voxelization is conceptually much simpler than surface-based voxelization 

algorithms, and while the mechanisms are well-known, they have not been applied to 

generating solid modeling of buildings from LiDAR data. 

As abovementioned, each voxel is classified as active or inactive corresponding to binary 

values based on the sample points within that voxel (Equation 4): 
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
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n

n

v
Tnifinactive

Tnifactive
)n(f      (4) 

where the argument n is the number of points mapping to a voxel, and Tn is a user-specified 

threshold value. Typically, Tn = 1, which means that voxels containing at least one mapping 

point are classified as active and all others as inactive. More sophisticated density-based 

classification functions can be designed. An example is shown in Figure 5. 

PROPOSED CONVERSION OF VOXELIZED MODELS INTO SOLID MODELS 

To reconstruct vertical surfaces of building models, a voxel grid is used to divide data points 

in a bounded 3D region into smaller voxels. Important façade features such as windows and 

doors are subsequently detected based on a voxel’s characteristic, where an inactive voxel 

represents the inside of an opening. Consequently, building models are converted into an 

appropriate format for computational processing.  
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An object is defined by its surface boundary, which must then be converted into an 

appropriate solid representation compatible with commercial computational packages. 

Although many schemes are available, B-Reps are herein adopted because of their 

compatibility to commercial structural analysis software (e.g. ANSYS software) (Laefer et al. 

2011). The proposed method defines both the geometry and topology of an object by a set of 

non-overlapping faces, which approximate the boundary of the solid model. This section 

presents a brief description of the B-Rep scheme implemented in the proposed approach; for 

more details see Goldman (2009). Geometry is defined by key (singular) points, with each 

point representing a specific location in space. Topology is defined by connections between 

key points. When used together they can define a solid model (Figure 6). Data structures for 

describing B-Reps often capture the incidence relations between a face and its bounding 

edges and an edge and its bounding vertices, which ensure topological consistency. The 

vertices are stored in a table with their associated coordinates. Edges are represented by 

reference to vertices and adjacent edges.  

Key points are represented by a 3D coordinate of a singular point. An edge is defined as the 

connection between exactly two key points, for example, the edge eij = {Pi, Pj} is the edge 

with starting point Pi and end point Pj. Notably, edges have an orientation; as such eij = -eji. 

Thus, the edges eij and eji would be flipped. Edge flipping is important when defining an 

orientable face for distinguishing the inside from the outside.  

Similarly, faces represent surfaces of a solid model, which are connections between edges. 

The faces are further connected to form volumes. A face is defined as a list of edges f = {e01, 

e12, . . . , e(n-2)(n-1)} that involves closed paths. A face comprised from three key points is a 

triangle, while quads have four key points (herein assumed to lie in the same plane). The 

number of key points defines the "order" of the polygon. Two faces are connected, if there is 
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an edge in the first face that exists in a flipped form in the second face. Again, this implies a 

consistent face orientation. Depending on the orientation of the face’s edges, the normal 

direction (or the face orientation) is given by the right-hand rule (Figure 7). 

Larger models are comprised of smaller volume elements. Each volume element is bounded 

by a set of faces. These faces must have consistent orientations, such that there is a clearly 

defined volume interior. The solid models created herein use cubic volume elements arranged 

in a regular grid. Using non-overlapping cubes, connected at the faces provides a simple, yet 

effective, means of creating solid models. Each cube has six faces, and adjacent cubes share 

faces. The faces are established so that normal directions are facing outward, away from the 

center of the cube.  

EXPERIMENTAL TESTS AND DISCUSSION 

The long-term goal of this research is to develop a pipeline of solutions to automatically 

transform city-scale data sets from aerial and terrestrial point clouds into solid models 

appropriate for engineering usage (Figure 1). The applicability of this process is shown with 

relevant data sets acquired in the city center of Dublin, Ireland. The grid voxel approach is 

herein implemented to reconstruct building models from the LiDAR data, in which a value of 

one sample point is predefined as the threshold for classifying active and inactive voxels in 

the subset voxels. An active voxel represents a portion of a solid wall, and an inactive one is 

either inside an opening or outside the façade.  

The proposed method offers a new, data-driven approach to convert point cloud data into 

solid models (Figures 1c-d). However, as the building detection step (Figure 1b) is not 

currently in the automated portion of the pipeline, any input data clearly outside the plane of 

the façade (Figure 8a) should be removed either manually or semi-automatically within the 
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proprietary software accompanying the terrestrial scanner or via a segmentation technique for 

the case of the aerial data. These relatively distant points can contain disturbing elements that 

are irrelevant for the structural analysis of the façade. An example of the dataset without any 

cleaning is shown in Figure 8a and its processing in Figure 8b. Extraneous points represent 

floors, interior walls, advertisement panels, and stray floating voxels. See Appendix A for 

more information on the pre-processing. 

Application to ALS Data 

The aerial data was acquired according to the detailed procedures outlined in Hinks et al. 

(2009), which enabled a significantly improved capture of façade data compared to existing 

ALS methods. For that, ALS data of the building at 32 Westmoreland St., Dublin, Ireland 

was selected as input (Figure 9). The voxel size of 0.5 m was defined for reconstructing a 

building model (Figure 9c). The ALS data fully converged without any manual intervention, 

and the building model was able to be imported directly into the FEM program ANSYS 

(ANSYS Academic Research Release 13.0) for mesh generation (Figure 9d). Subsequently, a 

reasonable stress distribution of the building subjected to self-weight was achieved as shown 

in Figure 9e. Despite that relative success, the solid model and the subsequent FEM mesh are 

far from being geometrically accurate representations of the actual building (Figures 9d and 

e) because of the relatively low density of ALS sampling points. 

Application to TLS Data 

Ground-based TLS data, acquired with a Trimble GS200 3D Scanner (Trimble, 1999), was 

also used in experimental tests to investigate the influence of sampling point density on the 

quality of reconstructed building models. In the experimental tests, the datasets were 

manually cleaned of all data involving internal walls/objects and of all vehicles or trees in 
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front of the buildings, leaving only points acquired on the actual facades by using proprietary 

software, RealWorks Survey (RealWorksSurvey 2005) associated with the Trimble GS200 

scanner (Truong-Hong 2011). The voxel size was experimentally set to either one-half or 

one-quarter of the minimum opening size, 0.4m, which was obtained from general building 

knowledge (Pu and Vosselman 2007). Figures 10-12 show the generation of building models 

from three sets of TLS point clouds using the two aforementioned voxel sizes; a detailed 

discussion of these buildings and their datasets is available in Laefer et al. (2011).   

In order to evaluate the quality of reconstructed building models from the TLS data, the 

boundary lines of the actual building geometry were superimposed on the resulting solid 

models (Figures 10c-d, 11c-d and 12c-d). When using the TLS data (Figures 10-12) vastly 

superior results were obtained compared to the ALS data, although the geometries are still 

not fully reflective of the actual conditions. Additionally, the bounding box is often larger 

than the actual façade, while the reconstructed openings are usually smaller than expected 

(Figures 10c-d, 11c-d and 12c-d). Boundaries of the façade and its openings can match real 

ones when a small voxel size is used, but a few holes appear in the solid wall. As such, with 

0.1 m as the voxel size, the detected boundary is significantly improved, but the number of 

holes increases, because in some areas the voxel size may be less than the distance between 

sample points (Figures 10d, 11d, and 12d).  

Despite improvements, models reconstructed from TLS data still exhibit notable problems:  

(1) unexpected openings in the solid model due to occlusions (Figures 10c-d) or several holes 

in the solid wall due to the defined size of the voxel (Figures 10d, 11d, and 12d); (2) poorly 

matched geometries compared to actual openings (Figures 10c-d, 11c-d and 12c-d); (3) stray 

elements (as seen in several doorways in Figure 12c-d); and (4) fragment voxels (Figure 
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12d). This indicates that the remaining issues are not simply ones that can be overcome with 

additional data density. 

DISCUSSION 

To circumvent shadowing based problems for ALS data acquisition, flight path optimization 

has been proposed (Hinks et al. 2009). For TLS data, this problem is less acute due to the 

relatively small scale of most manmade objects (e.g. bus, telephone box, advertisement 

panel) and can be surmounted by scanning a façade at multiple times or from more than one 

location. This latter solution was adopted herein, where the scanner position was assigned a 

local coordinate system for each scan. The point clouds were registered and merged by using 

RealWorks Survey program associated with the Trimble scanner. This step transformed the 

point clouds from multiple local coordinate systems into a unique global coordinate system. 

Thus, a building model reconstructed from point clouds with multiple, original, local 

coordinate systems was still successful for computational modeling. This is notable as to 

date, although there are commercial solutions to convert point cloud data into voxels, none 

are compatible for solid model generation. 

The proposed approach was implemented in MatLab script (MathWorks 2007) and run on a 

HP Compaq nx6320 Laptop with Intel (R) Core (TM) 2 CPU speed 2GHz with 2 Gb RAM. 

Data points with x-, y-, and z-coordinates were used for all experimental tests. The 

registration and other data preparation took approximately 5 minutes for each TLS dataset 

(Figure 10-12); the maximum running time for the algorithm was only 19.6 sec for a dataset 

with 32,980 voxels (Building 2 Westmoreland St. with 0.1 m of voxel size). Predictably, the 

processing time was proportional to the number of voxels in the model.  

The time complexity of this algorithm depended primarily on the cost of setting up and 
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maintaining the voxelization, and on the cost of processing each sample point. Given a 

voxelization with V = 256 x 256 x 256 = 16,777,216 voxels, the storage and setup cost would 

be O(V) for an array implementation with access cost of O(1) per voxel. Moreover, since the 

voxelization is a regular array, the adjacencies to be stored are linear in the number of voxels, 

again at a cost of O(V). When each of the N samples is processed, it is optionally stored in 

the corresponding voxel at an O(1) cost. The adjacencies of the voxel can be updated directly 

at this stage, or extracted separately in a post-processing step. Given O(1) access cost and a 

bounded number of adjacencies, this step is O(N) if performed immediately, or O(V) if 

performed during post-processing. The overall complexity of the algorithm is, therefore, 

O(V+N). Hence, the time cost is acceptably small, and no further optimization is required at 

present. The computation is more likely to be dominated by N than by V for large data sets, 

since a voxel with only a few sample points is only questionably solid for the purpose of 

FEM modeling. Thus, for practical purposes this algorithm is linear with the number of 

sample points. 

There are, however, two critical parameters that affect the quality of building models:  

sample point threshold and voxel size (for TLS data) or subdivision along each axis (for ALS 

data). The building models reconstructed from ALS data were sensitive to the sample point 

threshold, because the data were irregular and sparse. A higher threshold number increased 

the quantity of holes and floating voxels when the voxel size was held constant (Figure 13 for 

a 0.4m voxel size). An improperly sized voxel is also problematic, as an unduly small voxel 

may increase the number of unexpected holes, because the size may be less than the distance 

between two adjacent points (Figure 14). Conversely, an overly large voxel can fail to detect 

openings. For example, in a dataset with an opening size of 0.4 m, if the voxel size is also set 

at 0.4 m, it is possible that no opening would be detected. The problem is overcome by 

setting the voxel size to 0.2 m. The initial values in this study were selected based on the 
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evaluation of 400 urban facades showing window widths 0.3-1.9 m and heights 0.5-2.4 m 

(Ripperda, 2008).   

Ultimately, selection of these factors should be automated. So while the fundamental 

processes are shown to be sound with both ALS and TLS data, pre-processing steps to 

segregate the relevant data and feature detection algorithm are still both clearly needed, as are 

overcoming the complexities of “full 3D” modeling of a building with multiple surfaces. 

These items must be considered under future work. 

Also of note is that in this implementation, there is no further feature detection approaches 

currently integrated, which leads to holes due to occlusions to be treated as real openings 

(doors and windows). This drawback can be solved by implementing a subsequent feature-

detection step to distinguish whether or not a hole reflects a realistic feature. Furthermore, 

since a cubic voxel is used, the proposed algorithm is limited to rectilinear facades and 

openings. Thus the existence of wedged or arched windows is not explicitly depicted. 

However, this approximation generates only limited divergences in computational modeling 

results (Truong-Hong 2011). Conversely, the voxel format has further benefits. As noted by 

Mosa et al. (2012), a voxel-based representation of LiDAR data has the additional advantage 

of immediate compatibility with an octree storage format, which would support the 

simultaneous storage of semantic data, such as the red-green-blue color information typically 

collected during laser scans. 

CONCLUSIONS 

A voxelization-based method has been proposed to transform point cloud data from aerial 

and terrestrial laser scanning data of building façades into solid models for computational 

modeling. The proposed method is fast and offers a high degree of automation in 
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reconstructing building models from LiDAR data and the resulting solid models are fully 

compatible for importation into commercial FEM programs for computational mesh 

generation, although only for two-dimensional representation. The approach is nearly 

automatic, as it requires only the pre-selection of the number of grids along each direction 

(for ALS data) or the selection of a voxel size (for TLS data). Experimental tests on one 

aerial and three terrestrial datasets for different buildings in the city center of Dublin, Ireland 

illustrate both the potential advantages and the remaining shortcomings of the approach. 

Specifically, further work was identified as being needed for (1) better shape detection of 

openings, (2) gaining the ability to distinguish real openings from data occlusions, and (3) 

increasing the level of automation, particularly related to initial data selection and 

segregation, as well as its expansion into full three-dimensional modeling.  
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APPENDIX A 

The original scanned data sets from multiple scanner stations were registered and then 

primarily cleaned of irrelevant points using the RealWorks Survey program associated with 

the Trimble scanner. The processing was as follows: 

First, point clouds were registered by selecting at least three reference points on the source 

and target datasets for merging the point clouds from multiple scanner stations (Figure A1), 

in which shape geometries of the facade (e.g. window corners or ledges) were selected as the 
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reference points instead of using special targets or nails. Then, the in-built segmentation 

technique within the RealWorks Survey program clusters points that are on the same plane 

(Figure A2). That step supports the efficient, automatic removal of irrelevant portions of the 

point cloud (e.g. internal walls/objects or advertisement panel). The processing time for 

merging and cleaning was typically less than 5 minutes for each dataset presented herein. 

However, the dataset may contain a few irrelevant points close to the façade’s vertical 

surface. These points were removed by using a Matlab script based on a histogram, where the 

data points exporting from the RealWorks Survey program are used to generate the histogram 

along to z-axis (depth direction of the building). Notably, x- and y-coordinates are 

respectively parallel to width and height directions of the façade, while the z-coordinate is 

parallel to a depth direction. As such, the data points of the facade belong to the peak of the 

histogram and the process was removed all points out of the interval ±20 cm from the facade 

surface. Furthermore, there are several approaches that can be used to segment point clouds 

instead using the commercial software. For example, with TLS data Pu and Vosselman 

(2011) used the planar, surface-growing algorithm, while Martinez et al. (2012) choose the 

RANSAC algorithm to extract geometric features. 
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Figure 1. Workflow of the proposed approach 

(*)Note: Collection and preparation of LiDAR data involves multiple steps outside the scope 

of this paper’s scientific contribution. These generally include planning, collection, 
registration and filtering; see Truong-Hong (2011) and Hinks (2011) for further details. 

 

Figure 2. Octree representation 

 

Figure 3. Voxel grid spanning a volume in a 3D space bounded by (xmin, xmax), (ymin, ymax), 

and (zmin, zmax) 

Note:  

- (x, y, z) are voxel size 
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- (Nx, Ny, Nz) are the number of voxels in each direction 

 

Figure 4. Point-based voxelization avoids surface reconstruction and operates directly on 

point data 

 

Figure 5. A voxelization model of the front building of Trinity College Dublin, Ireland, 

created by a voxel grid 

Note: 
(*)

nmax is the largest number of points mapping to a single voxel 

 

Figure 6. Solid model components 
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Figure 7. Face orientation as dictated by the right-hand rule 

 
 

a. 3D point clouds b. Voxelisation model 

Figure 8. A building model reconstructed from 3D point clouds without cleaning irrelevant 

points 

     
a. Photo of 

Building 

b. LiDAR data c. Voxelization 

model 

d. Solid model e. FEM results 

Figure 9. Solid model reconstruction of 32 Westmoreland from ALS data 
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a. Photo of Building 

1 (4.95m length x 

12.16m height) 

b. Point cloud after 

cleaning (9000 

pts/m
2
) 

c. Solid model 

representation with 

voxel size = 0.2m (*) 

d. Solid model 

representation with 

voxel size = 0.1m (*) 

Figure 10. Solid model reconstruction of 2 Anne St. South from TLS data 

* Note: Superimposed boundary lines of the façade and its openings are from a manual 

survey of the selected building 

 

 
   

a. Photo of Building 

2 (4.9m length x 

13.28m height) 

b. Point cloud after 

cleaning (400 pts/m
2
) 

 

c. Solid model 

representation with 

voxel size = 0.2m (*) 

d. Solid model 

representation with 

voxel size = 0.1m (*) 

Figure 11. Solid model reconstruction of 5 Anne St. South from TLS data   
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* Note: Superimposed boundary lines of the façade and its openings are from a manual 

survey of the selected building 

 

 

 

a. Photo of Building 2 (19.36 m length x 17.0 

m height) 

b. Point cloud after cleaning (175 pts/m
2
) 

  
c. Solid model representation with voxel size 

= 0.2m (*) 

d. Solid model representation with voxel 

size = 0.1m (*) 

Figure 12. Solid model reconstruction of 2 Westmoreland St. from TLS data   

* Note: Superimposed boundary lines of the façade and its openings are from a manual 

survey of the selected building 
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a. Point threshold = 1 b. Point threshold = 3 c. Point threshold = 6 

Figure 13. Voxelization models with various thresholds 

 

   
a. Expected opening in TLS 

data shown in green lines 

b. Voxelisation model with 

0.4m of voxel size 

c. Voxelisation model with 

0.2m of voxel size 

Figure 14. Voxelization models with various defined voxel sizes 
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a. Point clouds of station 1 b. Point clouds of station 2 

Figure A1. Registering and merging point clouds of Building 1 from two scanner stations 

  

a. Full point clouds of Building 1 b. Cleaned of irrelevant sample points 
(*)

 

Figure A2. Illustration of merging and cleaning irrelevant sample points of Building 1 
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* Pink regions represent irrelevant points  

 

 

 


