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ABSTRACT For the issue of using the center of gravity during down-sampling, some points of their feature

will be lost. We propose a new method, FWD(Farthest point Weighted mean Down-sampling), this method

uses down-sampling to find the center of gravity, it is added to the furthest point sampling and performed

ten iterations. The obtained 11-point distance is weighted average to find the feature point. Influences of

environmental noise and self-noises on the subsequent processing of point cloud are considered. A PWB

(Principal component analysis Wavelet function Bilateral Filtering) method is proposed. The normal vector

of points is calculated by PCA. The distance between two points in the optimal neighborhood is obtained

by the particle swarm optimization(PSO) method. This method performs wavelet smoothing and utilizes

the Gaussian function to retain the edge eigenvalues. FWD simplified 90840 points in 48 seconds in the

case of retaining the complete feature points. Compared with other latest methods, better results have been

obtained. PWB reached de-noising precision of 0.9696 within 72.31s. Accuracy of de-noising is superior to

the latest method. The loss of feature points is completed by FWD, the removal of noise is by PWB. Images

of de-noising precision prove the priority of the method. The verification shows that the feature points are

retained and the noise is eliminated.

INDEX TERMS Furthest point sampling, down-sampling, principal component analysis (PCA), wavelet

function, bilateral filtering, particle swarm optimization (PSO).

I. INTRODUCTION

In machine vision applications, point cloud acquisition can

contain excessive noise due to the surrounding environment,

equipment, lighting, etc. Regarding the removal of noise,

the latest research is mainly divided into traditional methods

and methods of artificial neural network.

Researches based on artificial neural networks have made

considerable progress, a batch normalization de-noising net-

work was designed by Tian et al. [1], the problems of

covariant displacement and small batches are solved, but

the method is only suitable for high-light images, it is

not suitable for low-light and blurred images. The separa-

ble noise orthogonal transform feature was introduced into

the neural de-noising framework by Shin et al. [2]. Com-

pared with single-input networks, multi-input networks have

good de-noising characteristics. CNN de-noising framework

based on residual learning was proposed by Shi et al. [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Shiping Wen .

The problem of super-resolution de-noising is solved. But

the processing effect of Gaussian noise is not a good.

In other aspects, the framework of neural network has also

been enhanced. Four multi-layer network embedding algo-

rithms based on non-negative matrix factorization (NMF)

were proposed by Lu et al. [4], clustering and accuracy are

improved, but the dimension of space needs to be predefined.

In other methods, the appropriate Lyapunov-Krasovsky func-

tion is used to optimize the feedback neural network [5],

the coefficient of this method can be further optimized. The

updated algorithm of the framework also includes sun’s [6]

feedback controller based on sliding mode control. Two

quantized control schemes are proposed with uniform quan-

tizer and logarithmic quantization by Sun et al. [7]. There

are other studies [8]–[12]. In a word, these methods have

achieved certain results, but there is still room for improve-

ment in blurred images, Gaussian noise removal, frame

optimization, etc.

The traditional method has also made a lot of pro-

gressing. The problem of pixel intensity values being
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contaminated by different types of noise was solved by

Elhoseny and Shankar [13]. He proposed the optimal BF

model and MI classification denoising approach, which

removes excess noise but is computationally intensive. The

conventional iterative denoising method also takes a long

time. Li et al. [14] used an adaptive bilateral filter that retains

the edge eigenvalues. However, it takes a long time to per-

form the adaptive configuration and may lose parts of the

point cloud data when scaling the model. The point cloud

image is affected by noise in the geometric space and color

space. Chinthaka et al. [15] achieved ideal denoising charac-

teristics through GLR and GTV point cloud processing, but

the execution time is relatively slow. Because point cloud

data obtained from external light sources inevitably contains

noise, Zeng et al. [16] used the prior of the patch flow for

denoising, which retains better edge characteristics. However,

the method only achieves good results when the image is

low-pass filtered and, in other situations, ideal denoising is

not achieved.

In this research, aiming at the defects of environmental

noise and existing de-noising methods, a method combin-

ing FWD and PWB was proposed by us. We have con-

sidered the optimization of parameters in the method. The

best de-noising effect is guaranteed. In order to optimize

the coefficients, new calculation methods are introduced.

The result of sampling is judged by using the amount of noise

removal. The de-noising effect is compared in the experimen-

tal model and the benchmark data by using the de-noising

accuracy(Pd ), de-noising recall rate(Rd ), peak signal to noise

ratio(PSNR), structural similarity index(SSIM), Information

Fidelity Criterion(IFC). The results are compared with differ-

ent latest methods.

Evaluation parameters have achieved higher results, more

accurate than other methods. This method is superior to other

existing methods based on artificial neural networks and

traditional methods.

II. POINT CLOUD PROCESSING

A. POINT CLOUD ACQUISITION

In this paper, we obtain point cloud information about an

object and environment under test conditions using a Tuyang

FMB10 1X depth camera. The initial image used in the

experiment was obtained through the Point Cloud Learning

platform in C++ based on Visual Studio 2015.

B. POINT CLOUD PREPROCESSING

There are many measurement errors in the point cloud

obtained for this article. For example, there are many outliers,

zigzag convex points, and holes on the surface of the point

cloud. Image segmentation will be hindered due to excessive

point cloud data; therefore, the preprocessing used in this

paper involves point cloud reduction and denoising.

1) SIMPLIFICATION OF A POINT CLOUD

The point cloud acquired by the three-dimensional imaging

device is divided into a chaotic point cloud, linear point

cloud, and geometric point cloud. The point cloud is geo-

metric and cluttered by the depth camera. The burden is

increased by the huge amount of point cloud data. A series of

algorithms [17]–[22] is adopted without reducing the feature

data. Noise is recognized and feature data is retained. For

streamlined three-dimensional (3D) point clouds, optimized

down-sampling and geometric sampling have been used in

recent studies. However, a single downsampling cannot be

used to ideally streamline the point cloud in the bump feature.

A 3D voxel grid is constructed and the center of gravity

obtained. Some key points are easily missed; for example,

those points have key features on the 3D voxel grid. The prin-

ciple of point cloud curvature is adopted by single geometric

sampling and eligible point clouds are filtered by setting

angle thresholds. It cannot be applied to the selection of point

clouds in a plane. Therefore, we propose a new sampling

method that is suitable for both planar and uneven situations.

A simplified algorithm FWD (Farthest Point Weighted

Mean Down-sampling) is proposed based on optimized

down-sampling, and single sampling is improved on. After

constructing the 3D voxel grid, we find the center of gravity.

The farthest-point sampling method in uniform sampling is

combined with down-sampling and is then weighted. The

processing steps are as follows:

(1) A 3D voxel grid is constructed, and the center of

gravity O of all points is found in the grid.

(2) The farthest sampling point is used in uniform sam-

pling and the center of gravity O is used as the initial

point. We look for the point O1 on the 3D voxel grid

that is farthest from O. Let us take this point O1 as

the initial point. The farthest point O2 is found in

the 3D voxel grid except O, we proceed in turn until

we obtain O10. Because characteristics and efficiency

are guaranteed at the same time. When fewer points

are taken, the faster the speed. Therefore, this article

temporarily takes 1∼20 points to conduct experiments

separately. The result is shown in Fig 1.

(3) Eleven points (O and O1 − O10) are weighted and

averaged to obtain the weighted average d, which is

taken as the voxel streamlined feature point; that is,

the desired point.

d =
b1a1+···+bnan

10
(1)

where d represents the weighted average, that is the

voxel point sought. The distance value from the start-

ing point to the furthest point is represented by an
(where n is 1–10, and n≤ 10). The number of the same

an is represented by bn.

2) POINT CLOUD DE-NOISING

Low- and high-frequency noise exist in the initial point cloud

obtained in the experiment. High-frequency noise can be

divided into marginal outliers, isolated outliers, and biased

outliers. The next point cloud processing stage will be hin-

dered by these point clouds. Therefore, point cloud denoising
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FIGURE 1. Here, Q represents the number of points removed and M
represents the number of points selected. Because the amount of
calculation needs to be minimized, the value of M cannot be too large,
so use values of 1 to 20 for the follow-up test. When 10 is used,
the number of removals is 90,840, which is larger than in other cases.

needs to be carried out. In the latest de-noising scheme, large-

scale outliers are removed by the improved c-means method

(FCM) [23]. High-frequency noise is reduced by bilateral

filtering. The outliers are judged by setting thresholds in

the plan. Good results were achieved. However, the method

assumes that the point cloud follows a Gaussian distribution,

and other circumstances are not considered. Residual noise is

caused. The point cloud denoising methods of the optimized

PCA and bilateral filter are used by us.

a: AN OPTIMIZED PCA METHOD

A vertex P of the point cloud is taken and k-means sam-

pling [24] is used. A threshold is set to 3, according to an

experimental analysis of the threshold value (Fig 2). The

value principle is based on the amount of de-noising, where

more gives a better effect. A threshold of 3 gives the best

effect. When the point is less than or equal to this threshold

in the field, P is an isolated outlier or an edge outlier and can

be removed directly from the point cloud. As shown in Fig 3,

A is an isolated outlier, while B and C are marginal outliers.

When the point in the field is >3, this shows that the dot is

adjacent to most pixels. Valid feature points are judged and

will not be removed directly; for example, D.

The outliers are moved by the optimized principal compo-

nent analysis (PCA)method of Zhang et al. [25]. The 3Dfield

is reduced to 2D through PCA. The principle of 3D reduction

to 2D is to project the 3D field onto a 2D plane according to

certain rules to obtain the tangent plane of the point cloud.

The subsequent steps are as follows:

(1) The y-direction of the coordinate system where the

point cloud to be measured is found, and the tangent

plane parallel to the y-direction is taken. The normal

vector of this plane is taken as the normal of the point

cloud.

(2) Let a point on the tangent plane be p, and pi be the

k-nearest neighbor of p. Then, a covariance matrix can

FIGURE 2. Here, L represents the amount of noise removed and Num
represents the size of the threshold. When the threshold is too high,
noise points will be mistaken for feature points. Therefore, the threshold
cannot be too large. We tried values of 1–10.

FIGURE 3. Here, A is an isolated outlier, B and C are two different
marginal outliers, D is the effective feature point.

be derived and solved.

Cov =
1

m









pi − p1
pi − p2

· · ·
pi − pk

















pi − p1
pi − p2

· · ·
pi − pk









T

(2)

(3) The minimum value (n) of the eigenvalue and eigen-

vector is taken as the normal vector of the tangent

plane.

b: A BILATERAL FILTERING ALGORITHM OPTIMIZED WITH

WAVELET FILTERING

In the filtering process, the pixel relationships in the defini-

tion domain are not considered by the latest Gaussian filtering

and mean filtering processes. Image blur is caused at the

edges of pixels. Filtering in the spatial domain and definition

domain can be achieved by bilateral filtering at the same time

to achieve edge protection, noise reduction, and smoothing.

Theweighted averagemethod is adopted by the basic bilateral

filtering. The pixel values in the area of a point are weighted

and averaged as a pixel, which will cause blurring of the

edges. The parameters have to be optimized in the method.
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There are various latest optimization algorithms. A novel

learning rate method was proposed by Ren et al. [26], the

convergence speed of EBP is improved, but the learning rate

still has room for improvement. The evolutionary extreme

learning machine is optimized by Niu et al. [27], the param-

eters are optimized by the gravity search algorithm, the ideal

result is achieved, but the calculation result of VMD may be

biased. A new PSO based on evolutionary extreme learning

machine was proposed by Feng et al. [28]. The algorithm is

optimized. It has achieved satisfactory results in forecasting,

but there is the problem of premature convergence. The PSO

algorithm has achieved certain results. In research, PSO is

utilized to optimize bilateral filtering.

A new PSO wavelets bilateral filtering (PWB) method

is proposed, which is based on PSO and a bilateral filter

optimized by wavelets. Bilateral filtering is a process that

raises the point coordinates. It is added to the fourth vector

(pixel value) based on the coordinates. A point Ai is selected

in the spatial domain R, and correspondingly expressed as

(iAi
, jAi

, zAi
, IAi

), where IA represents the pixel value of A.

The weight coefficient α is optimized by pixel processing.

This achieves noise removal and feature retention.

The point Ai is selected in the point cloud with position

coordinates (iAi
, jAi

, zAi
). The selected points are added to

the pixel value (iAi
, jAi

, zAi
, IAi

) in the space and the distance

between two pixels is measured by the Euclidean distance.

Another point is that Aj (iAj
, jAj

, zAj
, IAj

) is taken in the k

neighborhood according to the Equation:
∥

∥Aj − Ai

∥

∥

=
√

(

iAj
−iAi

)2+
(

jAj
− jAi

)2+
(

zAj
− zAi

)2+
(

IAj
− IAi

)2

(3)

Assume that the difference in coordinate values is constant;

when its pixel difference is larger, its d value is larger. The

magnitude of the influence is judged by the distance. This

has a big influence when the difference is larger, making the

point clouds blur easily; on the contrary, the impact is small.

The most suitable points are obtained by optimized

PSO [29]. Inertia coefficient is improved by adopting non-

linear weighting strategy [30]. The PSO is used to find the

point that minimizes
(

IAj
− IAi

)

, And the point cannot be Ai.

The principle of PSO refers to Equation 4,5, the current

position and speed of this point are xi and vi. The opti-

mal position P is found, the global optimal position is Pid,t,

the local optimal position is Pgd,t. The position and velocity

of each generation of particles are z and m, respectively.

xid,t+1 = xid,t + β · vid,t+1, 1 ≤ i, d ≤ n (4)

vid,t+1 = ϕ · vid,t + c1 · r1 ·
[

Pid,t − xid,t
]

+ c2 · r2 · [Pgd,t − xid,t], 1 ≤ i, d ≤ n (5)

where, the weighting factor is ϕ, when it is large, the ability

of global search is strong, when it is small, the ability of local

search is strong. c1 and c2 are non-negative, they are accel-

eration constants. r1 and r2 are random numbers in the range

of [0, 1]. β is a limiting parameter which constrains the flight

speed of particles. The inertia coefficient is optimized by the

non-linear weighting strategy, it is shown in Equation 6:

ϕ = (ϕmax − ϕmin) ·
(

id

M

)3

+ (ϕmax − ϕmin) ·
(

id

M

)2

+ (ϕmax − ϕmin) ·
(

id

M

)

(6)

In Equation 6: The maximum and minimumweights are ϕmax

and ϕmin respectively. The number of iterations is id. The total

number of iteration steps is M. The validity of the algorithm

has been verified by Ren [30].

Optimal value of
(

IAj
− IAi

)

is obtained by PSO. The value

of
(

IAj
− IAi

)

is guaranteed to decrease and the influence of

domain pixels is improved upon filtering.

Bilateral filtering is performed according to the following

formula:

A′ = Ai + αN (7)

where A′ are the points that obtained through optimized

bilateral filtering, Ai is a point in the original point cloud, α

is the weighting factor, N is the normal vector after taking

the weighted average of pixels in the domain of A. N is

parallel to the plane obtained by PCA. The acquired point

is moved in the defined direction. This method can avoid

the loss of points better than the normal vector movement

approach of Zhang et al. [25]. The experimental analysis of

this comparison result is in the fourth chapter of this article.

The filtering weight coefficient is α, which is calculated as:

α=

∑

AjǫL(Ai)
FC

(∥

∥Aj−Ai

∥

∥

)

FS
(∥

∥〈ni − nj〉−1
∥

∥

)

〈Aj−Ai, nj〉
∑

AjǫL(Ai)
FC

(∥

∥Aj − Ai

∥

∥

)

FS
(∥

∥〈ni − nj〉 − 1
∥

∥

)

(8)

where L(Ai) is the immediate point of Ai and Aj is a point

in L(Ai). The distance between two points is represented by
∥

∥Aj − Ai

∥

∥. The inner product of two normal vectors is repre-

sent by 〈ni−nj〉, ni is the normal vector of Ai, nj is the normal

vector of Aj. Fc is the smoothing weighting factor of point

Ai in relation to its immediate neighbors. FS is the feature

reservation weight of point cloud Ai in the normal vector

ni factor for its domain point. When the pixels at the two

points differ greatly, the weight function coefficient is small.

Point cloud smoothing is convolved by wavelet filtering [31],

as shown in Equation 9:

FC1

(

iAi
, jAi

, zAi

)

= FC0

(

iAi
, jAi

, zAi

)

G
(

iAi
, jAi

, zAi
, σc

)

(9)

G
(

iAi
, jAi

, zAi
, σc

)

=
1

√
2πσc

3





∂2

∂i2Ai

e
−

i2
Ai

+j2
Ai

+z2
Ai

2σ2c

+
∂2

∂j2Ai

e
−

i2
Ai

+j2
Ai

+z2
Ai

2σ2c

+
∂2

∂z2Ai

e
−

i2
Ai

+j2
Ai

+z2
Ai

2σ2c



 (10)
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where σc is the standard variance of the Gaussian function.

It is the scale of thewavelet function. The coordinate values of

point cloud Ai are
(

iAi
, jAi

, zAi

)

. The smoothing effect can be

changed by varying the magnitude of σc. FC1
can be obtained

by finite window convolution; we set the window at 5∗5∗5.

FC1

(

iAi
, jAi

, zAi

)

=
∑2

k=−2

∑2

m=−2

∑2

h=−2
FC0

(

iAi

+ k,jAi
+ m,zAi

+ h
)

G (k,m, h,σc)

(11)

The variance of the Gaussian function is σc. When the

value of σc is larger, the amplitude of the Gaussian func-

tion is expanded in the time domain and the frequency i is

reduced in the frequency domain, the greater the selectivity

of the field of point Ai. The smoothing effect of the point

cloud is determined by the size of σc. We take a σc value

for convolution to obtain the image smoothing effect. If the

expected result is not reached, another value of σc is taken.

When the result reaches the expected value, the experiment is

stopped.

A one-dimensional Gaussian function is adopted as the

retention function of edge features.

FS = e
−

z2
Ai

2σ2s (12)

The distance vector from point Ai to the domain point is d1,

and d1 is projected as d2 in the direction of the normal vector

of the field point Ai. The influencing factor of d2 is σS.

The entire process of the optimized bilateral filtering algo-

rithm is shown in the following seven steps:

(1) A point Ai is taken in the point cloud.

(2) The k neighborhood of Ai is obtained, a point Aj is

taken in the field.

(3) The optimal value of
∥

∥Aj − Ai

∥

∥ is found. Optimal

values are obtained through the optimized PSO.

(4) The pixel’s normal vector N is obtained by the opti-

mized PCA algorithm.

(5) Equation 11 is calculated, the value of σc is selected

for convolution, and the optimal smoothing parameter

FC is obtained.

(6) Equation 12 is adopted to retain the edge features,

which conforms to the standard one-dimensional

Gaussian function. The σS value is selected and the FS
value is derived.

(7) Filtering result A′ is calculated, A′ = Ai + αN.

III. EXPERIMENT AND ANALYSIS OF RESULTS

A. DATASETS

In this paper, we obtain point cloud information about an

object and environment under test conditions using a Tuyang

FMB10 1X depth camera. The datasets for the verification

of the effect on the basic data sets are Stanford University’s

scan dataset, RGB-D dataset, SET5, SET14 and BSDS100.

Fig 4 presents some examples of partial datasets.

FIGURE 4. Here, A, B, C, D, E, F are some examples of Stanford University
scan data sets. G and H are two examples of RGB-D data sets.

B. POINT CLOUD STREAMLINING

The original point cloud was collected by C++ based on

Visual Studio 2015. The point cloud was sampled by the

FWD method on Matlab and C++ platforms. Feature points

were optimized and retained by a weighted average. The

original and simplified point cloud diagram obtained by the

FWD method is shown in Fig 5.

FIGURE 5. Point cloud image processed by FWUS.

The point cloud data is obtained three times, shown as

Fig 5 A, B, and C. The outline of the object can be roughly

recognized by the point cloud in the figure. The acquired

point cloud is affected by factors from the outside world

and the camera itself. For example, the image acquired is

seriously affected by noise due to excessive light and dense

point clouds in B. The following effects are obtained using

the FWD method. In Fig 5, panel D is the processed result of

panel A, while panel E is the processed result of panel B, and

panel F is the processed result of panel C. The points around

the feature points indicating the same features are removed

by the FWD method. The most representative point cloud is

found by a combination of the 3D voxel grid and the furthest

point sampling.
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In a short period of time, the threemodels reduced the point

cloud dataset by 90%, as shown in Table 1. The streamlining

of point clouds mainly depends on the accuracy with which

feature points are retained. While points representing shape

features are preserved, extra points can be deleted. The data

in Table 1 corresponds to the processing results of Fig 5. The

basic characteristics of the object are preserved. Another cri-

terion for streamlining is timeliness [32]. It can be seen from

Table 1 that the FWD method takes less time to eliminate a

lot of points.

TABLE 1. Basic information of point cloud processing.

In Fig 6, the original point cloud obtained is A, while

the point cloud obtained by processing of the original with

down-sampling is B. Point cloud C was obtained by the

fractal algorithm, while point cloud D was obtained through

the FWDmethod. It can be seen from Fig 6 that the results of

the FWDmethod are more simplified. Experiments show that

under the same model, the FWD method is more streamlined

and better than the latest fractal method. When point cloud

models are the same, the FWD algorithm is significantly bet-

ter than the fractal algorithm and the original downsampling

method in terms of the final number of removed points. From

Table 2, the FWD method is significantly better than the

other two methods in terms of the number of point clouds

removed per minute. Good results have been achieved in

the simplification of the uneven sphere point cloud. This

solves the problem of it being difficult to achieve optimal

simplification on an uneven surface and a plane at the same

time.

FIGURE 6. Here, the original data is represented by A. The result of the
original down-sampling process is represented by B. The result of Fractal
bubble algorithm is represented by C. The result of FWD processing is
represented by D.

The research method has achieved ideal results on the

experimental datasets. In the next work, we examine the

performance of FWD on the benchmark dataset. It is shown

in Fig. 7

TABLE 2. Basic information of point cloud processing.

FIGURE 7. Here, the column where ‘input’ is represented the original
image of the input. The column where’BD’ is located represents the image
processed by basic down-sampling. The column where’FB’ is located
represents the image processed by algorithm of fractal bubble. The
column where ‘MC’ is located represents the image processed by MC [22].
The column where’FWD’ is located represents the image processed by
FWD.

Fig 7 shows the simplified processing of point cloud

images by four methods of latest and different. It can be seen

from the results that the four methods can clearly see the

shape characteristics of the point cloud. The characteristics

of the point cloud are kept intact. In the case where the

elementary point cloud shape features are saved, the most

sparse point cloud image is obtained by FWD. It holds the

smallest number of point clouds. Because the number of point

clouds is small, it can reduce the computational burden for

subsequent processing.

It can be seen from the results of the experimental model

and basic data set that the FWD proposed by the study is
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superior to the latest other methods. FWD has achieved ideal

results.

C. DE-NOISING OF A POINT CLOUD

The parameters are optimized by the improved PSO in

this study. The most suitable value is obtained through the

set principle. After different iterations, different de-noising

effects are obtained separately. When the target value is

achieved, the iteration stops. The latest and better method for

optimization parameters is proposed by Ren. Now, we com-

pare the PWBmethod with it. The effect of PWB is explored.

Our research takes the correlation between the de-noising

accuracy and number of iterations as evaluation criteria, it is

shown in Fig 8.

FIGURE 8. Here, The red line indicates the de-noising precision curve
after PWB processing. The blue line represents the de-noising precision
curve processed by the method of Ren.

The de-noising effect is judged in terms of the de-noising

precision Pd and the de-noising recall rateRd . The number of

noise points removed during the experiment is Nq, the point

cloud noise to be removed is Ns. The total number of dele-

tions is Ny, which includes the number of noise points and

feature points.

Pd =
Nq

Ns
(13)

Rd =
Nq

Ny
(14)

From Fig 8 and table 3, at 2584 iterations, the optimal

value was obtained by the method of Ren. When iterating

2171 time, the same optimal value was obtained by the

method proposed by the study. Regarding the time it takes in

order to reach the optimal value, the method proposed by the

study is less than that of Ren. It can be seen that the method

proposed by the study is superior to Ren’s method. The ideal

optimization result was obtained by PWB.

TABLE 3. The precisions of de-noising are compared by PWB and Ren’s
method at different iteration times.

In the subsequent experiment, we verify the processing

effect of PWB on data sets obtained by the experiment and

benchmark data sets respectively. First of all, the experimen-

tal dataset is verified by us.

We de-noise the simplified point cloud using five meth-

ods, including de-noising of the original threshold, Asokan’s

optimized bilateral filter method [34], the non-iterative dual-

threshold de-noising method [35], Zhang’s PCA and bilateral

filter method, and the PWB method proposed in this article.

The sphere point cloud is set toM, which is located directly

in front of Fig 9. The effect of M’s feature retention is used as

the standard for desiccation. In Fig 9, According to the exper-

imental data results in Table 3, when the de-noising numbers

are 162,354, the speed of PWB is significantly better than that

of the other methods. The speed of PWB is 72.31 seconds.

The efficiency is 10 times higher than the original threshold

denoising method, zhang takes 2.6 times longer than PWB.

Therefore, the proposed method has achieved good results on

the experimental datasets.

FIGURE 9. Here, A represents the original image, B represents the result
of original threshold de-noising, C is the result is obtained using Anju
Asokan’s optimized bilateral filter, D represents the method of Zhang
Feng’s PCA and bilateral filter, E was obtained by the non-iterative
dual-threshold de-noising method, and F is the result obtained by the
proposed PWB method.

It can be concluded from Table 4 that the denoising pre-

cision of our method is better than Zhang Feng’s method.

TABLE 4. Comparison of the five denoising methods.

136322 VOLUME 8, 2020



B. Zou et al.: Point Cloud Reduction and Denoising Based on Optimized Downsampling and Bilateral Filtering

His method achieved high de-noising accuracy. His method

achieved the best results in verification, but our algorithmwas

even better in the de-noising environment of the model. At the

same time, there was a significant effect on the de-noising

recall. The result proves that the number of point clouds actu-

ally removed is close to the number theoretically removed.

Therefore, the removed points are basically noise points.

A few feature points are removed, but our method is more

accurate than other methods.

On the other hand, it is verified based on the benchmark

data set and different parameter conditions. We use three

latest artificial neural network methods and PWB to test on

the same benchmark data set. Performance of the algorithm

is compared with their results of processing. The data set

used by Stanford University point cloud scan data sets. The

study takes Gaussian noise as an example. Three different

coefficients of Gaussian noise are used. Peak Signal to Noise

Ratio (PSNR) is invoked as the evaluation standard for the

effect of de-noising. In the same experimental image, when

the value of PSNR is larger, the processing effect will be

better. σ is the parameter of Gaussian noise. The results of

PSNR are shown in Table 5.

TABLE 5. The result of the comparison is on the benchmark set.

From Table 5, when σ = 1.5, the value of PWB is 35.28,

it is the best of the four methods. When σ = 2.5 and σ = 5,

the values are 32.54 and 28.62 respectively. It is also the

optimal value among the four methods. Since the value is the

highest when σ = 1.5, the result of processing when σ = 1.5

is illustrated in in Fig 10.

From Fig 10, the outline of the head of an elephant in the

point cloud image was studied as the evaluation object. It can

be seen from Fig 10 that the other three methods have the phe-

nomenon of under de-noising and excessive de-noising in the

process of de-noising. For example, there are many Gaussian

noises scattered around the head of an elephant on BRDNet.

For images of CTCNN-S and Zeng, the outline of the head of

an elephant as been narrowed relative to the original image,

there is excessive de-noising. The PWB-based image retains

the outline of the head of an elephant while removing noise.

Its result is most similar to the original picture. Therefore,

the method proposed in the study has achieved the best results

in different Gaussian parameters.

In order to fully demonstrate the effect of the research

method, the effect on other data is verified. Fig 11 shows

the de-noising results of different Gaussian parameters in the

Stanford University point cloud scanning model. The param-

eter of Gaussian noise σ is taken as 2.5, 5, 7.5, 10. Fig 12 is

the de-noising results of different Gaussian parameters in the

RGB-D dataset. σ is taken as 0.1, 0.5, 0.75, 1.

FIGURE 10. Here, original image is an image that is not disturbed by
noise. BRDNet is the image processed by BRDNet. CTCNN-S is the image
processed by CTCNN-S. Mothed of Zeng is the image processed by Zeng.
PWB is the image processed by PWB.

FIGURE 11. Here, σ = 2.5 represents the result of point cloud processing
by PWB when the Gaussian noise parameter is 2.5. σ = 5 represents the
result of point cloud processing by PWB when the Gaussian noise
parameter is 5. σ = 7.5 represents the result of point cloud processing by
PWB when the Gaussian noise parameter is 7.5. σ = 10 represents the
result of point cloud processing by PWB when the Gaussian noise
parameter is 10.

FromFig 11, it can be seen that ourmethod has an excellent

effect when σ is less than 7.5, especially when it is less

than 2.5. When σ is more important than 7.5, the effect of

de-noising will be lacking. It can be seen from Fig 12 that

the method can have a good effect when it is lower than 0.5,

especially when it is 0.1. When it is larger than 0.5, the effect

is not good.

At last, the effect of the method has been confirmed by us

in additional fields. Parameters in other fields are changing.

SET5, SET14 and BSDS100 datasets are selected. RSNR,

(structural similarity index) SSIM and IFC are used as evalua-

tion criteria, where SSIM is the contrast of the structure of the

final image and the original image. When the value of SSIM
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FIGURE 12. Here, σ = 0.1 represents the result of point cloud processing
by PWB when the Gaussian noise parameter is 0.1. σ = 0.5 represents the
result of point cloud processing by PWB when the Gaussian noise
parameter is 0.5. σ = 0.75 represents the result of point cloud processing
by PWB when the Gaussian noise parameter is 0.75. σ = 1 represents the
result of point cloud processing by PWB when the Gaussian noise
parameter is 1.

is larger, it is proved that the similarity is high and the effect

is better. The results are presented in Table 6 and Table 7. The

optimal value of each item is displayed in bold.

TABLE 6. Results based on SET5 and SET14 data sets.

TABLE 7. Results based on BSDS100 data sets.

The comparison of PSNR, SSIM and IFC for each method

is shown in Fig 13, Fig 14 and Fig 15.

FIGURE 13. Here, 1 represents the result of VDSR. 2 represents the result
of DRCN. 3 represents the result of LAPSRN. 4 represents the result of
PWB.

From Table 6, the proposed method was verified on the

SET5 data set, the optimal values were obtained by all three

FIGURE 14. Here, 1 represents the result of VDSR. 2 represents the result
of DRCN. 3 represents the result of LAPSRN. 4 represents the result of
PWB.

FIGURE 15. Here, 1 represents the result of VDSR. 2 represents the result
of DRCN. 3 represents the result of LAPSRN. 4 represents the result of
PWB.

evaluation criteria. These results prove that PWB is better

than the other three methods based on artificial neural net-

work. From Table 6, Fig 13 and Fig 15, the optimal values

of PNSR are obtained by LAPSRN. These optimal values of

SSIM and IFC are obtained by PWB. The PNSR of PWB is

32.99. The PNSR of LAPSRN is 33.08. The two values are

different from 0.09. PWB can be further optimized in future

work. Better results will be achieved. From Table 7, PNSR,

SSIM, and IFC, PWB achieved results of 32.54, 0.899, and

7.939, these results are superior to the other three methods.

From comparing different parameters, different datasets,

and different methods, the ideal results are obtained by FWD

and PWB in diverse environments.

IV. CONCLUSION

In the experiment, the unevenness of a spherical point cloud

is difficult to simplify. When it makes a 3D voxel grid,

the traditional under-sampling process has the limitation of

selecting the center of gravity as the feature point, so some

key points will be lost. We proposed a point cloud reduction

method that uses the farthest-sampled points combined with

the weighted average method to optimize down-sampling,

namely, the FWD method. The center of gravity is found by

building a voxel grid. The ten points are sequentially found

by using the furthest-point sampling principle in the voxel

grid. The final point is calculated by the weighted average

of the distances of ten points. The resulting points are taken

as characteristic points. Experiments prove that the problems
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caused by unevenness are solved. This method is versatile and

can be applied to plane and uneven surfaces, allowing point

cloud data to be effectively simplified. Our method is also

robust. The shapes of objects are well preserved and object

deformation is prevented. The proposed method has achieved

excellent results on both experimental data sets and bench-

mark data sets. On the experimental data set, we simplified

90840 points in 48 seconds and kept the feature points intact.

Compared with other latest methods, better results have been

obtained. Experiments prove the feasibility of FWD.

Secondly, the influence of external points of the target

on processing is considered. For example, the extraction of

feature points is affected bymarginal isolated points. It is easy

to produce Gaussian noise. The Gaussian function is used in

the existing bilateral filtering process. The influence of pixels

on the domain is ignored. A problem of insufficient denois-

ing is caused. The PWB method proposed by us is based

on a combination of optimized PCA and bilateral filtering.

For the optimization of bilateral filtering, the parameters are

optimized with PSO by us, through comparison with Ren,

the results prove that PWB can achieve de-noising precision

faster. The Gaussian function is replaced by wavelet filtering

in the selection of smoothing parameters. The problem of

insufficient de-noising is caused by pixels in the domain that

are not considered. This problem noising is overcome by

our method and the effects of marginal outliers are better

resolved. Experiments show that de-noising of point clouds

and protection of feature points can be better achieved by

our method. In the experimental set, de-noising precision

of 0.9696 was completed by us. PWB is 4 percentage points

higher than the latest method. On the benchmark datasets,

the optimal PSNR value is obtained by PWB under different

Gaussian noise, when σ = 1.5, the PSNR value obtained

by PWB is 35.28, PWB is 2% higher than the latest method

based on artificial neural network. There is also verification

of applications in other fields. PWB has achieved excellent

results. Therefore, the performance of PWB proved to be

excellent.

Not all point clouds can be fully involved in the wavelet

transform process proposed in this article. Some of the point

clouds do not satisfy the wavelet transform conditions, caus-

ing distortion of the point cloud. A solution to this is urgently

needed and is a direction for future research.
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