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A B S T R A C T

Safety of transportation networks is of utmost importance for our society. With the emergency of digitalization, 
the railway sector is accelerating the automation in inventory and inspection procedures. Mobile mapping 
systems allow capturing three-dimensional point clouds of the infrastructure in short periods of time. In this 
paper, a deep learning methodology for semantic segmentation of railway infrastructures is presented. The 
methodology segments both linear and punctual elements from railway infrastructure, and it is tested in four 
scenarios: i) 90 km-long railway; ii) 2 km-long low-quality point clouds; iii) 400 m-long high-quality point 
clouds; iv) 1.4 km-long railway recoded with aerial mapping system. The longest one is used for training and 
testing, obtaining mean accuracy greater than 90%. The other scenarios are used only for testing, and qualitative 
results are discussed, proving that the method can be applied to new scenarios that significantly differ in terms of 
data quality and resolution.   

1. Introduction

The railway infrastructure is crucial in modern society, used daily as
a transportation method for both people and goods. In fact, the railway 
passenger transport in Europe shows an increasing trend over the years 
[1], accounting for the 7.8% of the total passenger transport in the Eu-
ropean Union in 2017 [2]. Regarding freight transport, railway mode 
accounted for the 18.7% of the total in the European Union during 2018 
[3]. In consequence, the well-functioning of the infrastructure has a high 
impact in the well-being of the population. In order to ensure the safe-
ness of the infrastructure, it is necessary to perform a correct and regular 
maintenance. Many accidents occur as a result of unknown deterioration 
of the assets [4,5]. However, in many cases, those types of issues can be 
avoided by a correct maintenance of the infrastructure [6,7]. In the case 
of the railway infrastructure, the main drawback to perform a correct 
maintenance is its massive scale. For example, due to the extension of 
the European railway system, the European countries allocate in activ-
ities for inspection and maintenance 15–25 billion EUR annually [8]. 
This situation reflects the necessity of automated methods that allow to 
perform the task in a more productive and secure way. The productivity 
of the inspection tasks can be greatly improved by the digitalization of 
the assets to study. For example, Mobile Mapping systems (MMS) are 

appropriate methods to record data of railway and road infrastructures, 
because they allow to generate massive amount of geometrical data in 
short periods of time [9,10,11]. 

Due to the emerging necessity of the digitalization of the in-
frastructures, different technologies have risen their popularity. For 
example, point cloud data allows to have a 3D representation of the 
environment in a digital manner, so its geometry can be studied in an 
automated way. Also, Building Information Modeling (BIM) is gaining 
importance over the years, because it is an evolution of the traditional 
design systems and it provides a centralized solution that has all the 
information of the infrastructure in a single model[12]. This is especially 
relevant because BIM systems are able to digest new information about 
the infrastructure, and thus, resulting in a good solution to continuously 
update the digital model, and so, contribute to optimize the information 
handling and exploitation [13,14,15]. 

Mobile Mapping Systems (MMS) is an emerging technology to cap-
ture actual data of the railway infrastructure in an automated way. 
Depending on the sensors equipped, various types of data can be 
captured by MMS. The simplest type is image data. For this case, the 
system is usually equipped with a 360◦ camera that allows to record 
images in all directions. Also, more sophisticated sensors as thermo-
graphic cameras can be equipped. Finally, the system can also generate 
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3D data, that are represented by 3D point clouds [11,16]. On one side, 
RGB images rely on the availability of light to capture the environment, 
since its absence degrades the quality of the information obtained. On 
the other side, 3D representations allow to exploit all the geometrical 
characteristics, in contrast to the plane views provided by images. 

To record 3D data, Light detection and ranging (LiDAR) is one of the 
main technologies, since it allows to capture the environment with high 
resolution and unprecedent accuracy [17,7,18,19]. These sensors allow 
to record even small details of the geometry of an object, presenting the 
information as point cloud data. As explained earlier, the point cloud 
data is a highly accurate 3D representation of the environment. An in-
dividual point cloud is defined by a set of points in a 3D coordinate 
system that represent the surfaces of the objects present in the envi-
ronment. Also, depending on the sensor used for the capture, and other 
sensors that can be integrated with it, the points may have additional 
attributes that give information about the surface where they are found: 
i) Color field recorded with a 360◦ camera can be integrated to give 
information of the color of the surface where a point is found; ii) In-
tensity attribute is calculated as a representation of the reflectance of the 
surface; iii) The number of returns of the laser can also provide infor-
mation about the object recoded; iv) finally, other fields regarding the 
capture itself such as sensor angle and timestamp are recorded to pro-
vide additional information. 

The point cloud data open the possibilities to work with as-is infra-
structure data. There are several typical applications for point clouds. 
The most popular one is related to the modeling of buildings and 
infrastructure, but it can be also used for inventory tracking, geometry 
quality inspection, construction progress analysis, and others (Q. [20]). 
In particular, due to the evolution of point clouds technologies and BIM, 
the development of methods to create as-is BIM models from point cloud 
data has also gained great importance along the years [21,22]. Also, the 
development of techniques for forest inventory from point clouds are 
widely spread [23,24], and it can be extrapolated to railway and road 
infrastructures. 

Regarding the application of point clouds in the railway infrastruc-
ture, the trends in research include the semantic segmentation of the 
environment [25,26,27] in order to generate as-is BIM models of the 
infrastructure. The semantic segmentation of the point cloud consists of 
providing a classification value to the individual points based on the 
object that they belong to. By doing this, all the points of the clouds that 
belong to the same type of object get the same classification value. This 
segmentation step allows to locate the different objects that constitute 
the model of the infrastructure. 

However, to the best of the authors’ knowledge, most of the existing 
methods in the literature used for semantic segmentation in railway 
environments are based in heuristic approaches. The main drawback of 
these approaches is their strong dependence on parameters given by the 
designer, and their low generalization capacity. They rely on parameters 
that have been calculated based on the characteristics of the point clouds 
used during development. This creates a strong dependence on the ho-
mogeneity of the point clouds studied, and small changes such as the 
LiDAR sensor used, may prevent the methods from working properly. 

On the other hand, deep learning has been taking more and more 
importance in several fields during the past few years, and several 
methods focused on point clouds have been developed. The main tasks 
of the deep learning methods developed for point cloud analysis can be 
divided into classification, object detection, object segmentation and 
semantic segmentation [28]. 

Considering all the information presented, this paper presents a 
methodology based in deep learning to segment point clouds from 
railway environments. The method is applied to different railways en-
vironments, and point clouds registered from different sensors, to show 
its capability to generalize. The architecture of the neural network has 
been designed according to the data treated to obtain the best possible 
results. Also, the input data is properly pre-processed to enhance the 
capability of the neural network. 

As a result, the main contribution of this paper is to present a method 
to segment point clouds from the railway infrastructure, presenting the 
following characteristics: 

• It achieves the segmentation of the most relevant assets of the rail-
way environment including both punctual and continuous objects.  

• It generalizes to work in different environments and point clouds 
obtained with sensors of different quality. 

The remaining sections of the paper are structured as follows. Section 
2 presents different works related to the topic, section 3 explains the 
methodology developed for the segmentation, section 4 presents the 
results obtained in the different scenarios studied, and section 5 dis-
cusses the results. Finally, in section 6 the conclusions are presented. 

2. Related works 

In this section, the state of the art of the methods and domain of our 
work is presented. Those works can be divided into two broad cate-
gories: (1) Semantic segmentation of railway infrastructure assets. (2) 
Deep learning methods for semantic segmentation of point clouds. 

2.1. Semantic segmentation of railway infraestructure assets 

Most of the methods found in the literature for segmentation of point 
clouds in railway environments are based in heuristic approaches. Those 
methods are based in studying the morphology of the assets, and logic 
rules are applied to segment them. 

Some of the approaches focus only on some assets of the infrastruc-
ture. For example, in [29] a method to detect the rails of the track is 
presented. Also, in [30] the rails of one side of the track are detected, 
and in this research, they extend the work to automatically generate 
alignment entities of the rails, following the Industry Foundation Classes 
(IFC) standard, which allows translating the information extracted to 
BIM models. A more extended work is found in [31]. In this case, the 
author presents a method to detect both linear and punctual objects in 
rural railways. The main drawback of this work is that is has been only 
tested in 550 m of railroad, so it is hard to determine if the method is 
robust enough to generalize to different scenarios. Finally, in our pre-
vious work [32], we present a heuristic method that segments all the 
relevant assets found in the railway environment in a 90 km long track. 

Other approaches that rely on machine and deep leaning techniques 
have been also designed for the task. In [33], they present a method that 
uses a combination of heuristic calculations with Support Vector Ma-
chines. However, it is only destinated to work in railway tunnels and it 
cannot be applied to other infrastructure assets. The results obtained in 
the railway tunnels were later used in [34] to train the deep leaning 
neural networks PointNet [35] and KPConv [36], obtaining similar 
performance to the heuristic approach. 

Finally, there are also methods based in deep learning to segment 
some assets of the railway environment, but they rely on image data 
instead of point clouds. In [37], the authors present a method based in 
deep neural networks to segment the railway track. This method is based 
in image segmentation using Convolutional Neural Networks (CNN). By 
using images instead of geometrical data, part of the geometry of the 
environment is lost. Also, the time spots available for the recordings are 
usually at night, which highly affect the capacity of this method if no 
light is available. 

2.2. Deep learning semantic segmentation 

Regardless of the lack of implemented deep learning methods for 
point cloud segmentation in railway infrastructure, the creation of these 
type of methods for general purposes has been exponentially growing 
over the past years. In fact, due to the broad nature of the approaches 
taken in this field, it is necessary classify them in different groups. The 
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taxonomy to divide the methods in different categories followed in this 
work is found in [28], and it is represented in Fig. 1. 

Projection-based methods work by generating images from the 
point clouds. Those images are segmented using Convolutional Neural 
Networks, that are known to provide state of the art results for the task, 
and then, they are projected back to the original point clouds to generate 
per-point classification. In [38], the authors generate several images 
from the point cloud, and output a prediction score for each pixel of the 
images, then the final label of each point is calculated by using the 
different scores obtained from the images. However, by relying in image 
data, the methods are sensitive to the point of view chosen to generate 
the images, and the full geometry of the point cloud may not be 
exploited. 

The discretization-based methods rely on generating a discrete 
representation of the original point clouds. The most used method for 
the discretization is voxelization, which consist of generating a regular 

3D grid with information of the points contained in each cell. This type 
of representation generates grid data such as an image, but adding a new 
dimension. In consequence, the CNN approach usually taken for images 
can be generalized to the use of 3D-CNNs as done in [39]. The main 
drawback of these techniques is the need of memory and precision loss. 
By discretizing, the size of the cell determines the maximum precision, 
and the memory usage grows cubically with the size of the point cloud, 
so these methods are not to be applied for large scale point clouds. The 
drawback related to memory usage has been solved later using sparse 
representations [40], that ignore the empty cells that usually represent 
the greatest part of the grids. 

Point-wise methods work directly with the coordinates of the point 
clouds. As a solution to the infeasibility to apply CNN to the raw point 
clouds, PointNet [35] was proposed as a network that applies Multi- 
Layer Perceptron (MLP) to the individual points to extract features. 
PointNet is considered the pioneer of point-wise methods. With PointNet 
as a starting point, different types of approaches have been proposed, 
and they can be divided into: i) Point-wise MLP methods. These methods 
are based in PointNet, but they introduce improvements. PointNet ++

[41] applies PointNet hierarchically from larger to local regions to 
capture features at different scales. RandLA-Net [42] is proposed as a 
lightweight network that can be applied to large-scale point clouds. ii) 
Point Convolution Methods propose convolution operation for point 
clouds. PCCN is proposed in (S. [43]), which is based in parametric 
continuous convolutions. KPConv [36] presents Kernel Point Convolu-
tions that determine their weights based on Euclidian distances to the 
points. iii) RNN-based methods use Recurrent Neural Networks (RNN) 
that are fed sequentially [44,45]. Finally, iv) Graph-based Methods build 
graphs from the original point clouds and apply graph networks ([46]; L. 
[47]). 

Finally, with respect to the use of deep learning methods to segment 
point clouds from the transport infrastructure, there are several works 

Fig. 1. Deep Learning Semantic Segmentation Taxonomy.  

Fig. 2. Railway scenarios: (a) presents a sample cloud from the scenario used for training; (b) represents a portion of the second scenario, recorded with a low quality 
LiDAR; (c) corresponds to a high quality point cloud; and (d) has been recorded with a UAV, so its point density is the lowest. 

J. Grandio et al.                                                                                                                                                                                                                                 



Automation in Construction 141 (2022) 104425

4

focused on segmentation and object detection on roads[48,49,50]. 
However, regarding railway infrastructure, to the best of the authors’ 
knowledge, there are no deep learning applications found in the litera-
ture. The only work related to the topic focuses on the segmentation of 
railway tunnels using KPConv and PointNet [34]. 

3. Methodology 

3.1. Case of study 

The work presented in this paper consists of performing semantic 
segmentation on railway infrastructure point clouds. In order to validate 
the methodology and results, the approach taken is tested in four sce-
narios, each one of them containing different railway data. The scenarios 
have been recorded with different sensors, and some of them are even 
recorded from different countries, which makes the geometry of the 
railway to be slightly different among the cases. 

The first scenario is the largest one, and it is used to build the training 
dataset. CloudCompare software [51] have been used to display point 
clouds in this paper, such as the sample cloud of this scenario, shown in 
Fig. 2 (a). This dataset is presented in [30]. It consists of 90 km of 
railway, and it was surveyed with an average speed of approximately 10 
km/h. The system used for the survey is the LYNX Mobile Mapper by 
Optech (Teledyne[52]), which uses two LiDAR sensors. To make the 
information manageable by conventional hardware, it was divided in 
450 individual georeferenced point clouds of 200 m long saved in .las 
format. Each point cloud has an average of 7 million points, so the 
complete dataset comprises more than 2000 million points. Also the 
point clouds present a point density of 980points/m2 and range preci-
sion of 5 mm. Aside from the 3D information of each point, intensity 
values are also provided. The dataset has been previously segmented in 
[32] using an heuristic method, and those results are used as ground 
truth to train the neural network presented in this work, and to calculate 
the quantitative metrics of the results obtained. Table 1 shows the 
number of points belonging to each class. 

The second scenario consists of a 2 km long georeferenced point 
cloud in a single .las format file, this cloud is shown in Fig. 2 (b). The 
point cloud has been recorded with an economic system called G_lidar 
(Ingenieria[53]). It provides lower precision than the dataset used for 
training, having a total of 39 million points with a point density of 644 
points/m2, and range precision of 30 mm. This point cloud has not been 

previously labelled, so the results presented are studied qualitatively. 
The third scenario consist of two 200 m long point clouds in .las 

format, a sample cloud is found in Fig. 2 (c). The point clouds have been 
recorded with a RIEGL LiDAR [54], which provides a point density of 
11,000 points/m2 and range precision of 5 mm, having a total of 129 
million points in 400 m. These point clouds have not been previously 
labelled either. 

Finally, the last scenario consists of an aerial capture, the cloud is 
found in Fig. 2 (d). It is known that aerial mapping systems provide 
much lower quality captures than mobile mapping systems, so this is the 
worst point cloud in terms of data quality. This low quality is translated 
into a point density of 23 points/m2, which is not comparable to any of 
the other three datasets. The railway captured is 1.4 km long, and the 
point cloud has 910,000 points. Also, since this point cloud has not been 
labelled either, quantitative metrics are not calculated. 

As it can be seen, the characteristics of the point clouds captured 
differ among them, so the neural network must be able to generalize for 
different precisions and densities. This makes the task harder than the 
case of segmenting only one scenario. 

3.1.1. Objects to be segmented 
The main goal is to segment the point clouds to separate different 

objects. 
As it has been explained earlier, the dataset used for training has 

been previously segmented using a heuristic algorithm. As expected, the 
heuristic algorithm is not perfect, and it has some misclassifications. The 
misclassifications have not been manually corrected, since they are 
isolated and, in many cases, hard to locate manually. However, the 
neural network is expected to overcome those errors and be able to 
generalize. 

The labels used to train the neural network differentiate eight 
different categories in the point clouds.  

• Background. Refers to all the data that do not have semantic 
meaning. 

• Informative signs. Small signs with low intensity values. Their ge-
ometry is simple, as shown in Fig. 3 (a).  

• Rails. This category includes all the rails present in the point clouds. 
Transversal profiles are shown surrounded by boxes in Fig. 3 (b).  

• Cables. This class includes all the cables present in the railway 
except for the droppers. 

Table 1 
Distribution of classes.  

Total Points Background Traffic Signs Informative Signs Traffic Lights Masts Cables Droppers Rails 

2,433,806,176 2,287,128,527 472,901 741,339 618,608 29,125,569 37,251,096 1,257,623 77,210,513  

Fig. 3. Objects to detect.  
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• Droppers. These are vertical cables that join the catenary cables with 
the contact wires. Cables and droppers are shown in Fig. 3 (c).  

• Traffic lights. An example is shown in Fig. 3 (d).  
• Traffic signs. Includes signs that refer to speed restrictions and 

related. They usually have high intensity values. An example is found 
in Fig. 3 (e).  

• Masts. This class includes the masts present in the railway. An 
example is shown in Fig. 3 (f). 

3.2. Methodology 

This section presents the methodology developed for the semantic 
segmentation of the railway point clouds and its implementation. To 
have a fully understanding of the method, it is necessary to explain the 
neural network architecture used for the task, the steps taken to train the 
neural network, and data pre-processing. 

3.2.1. Neural network architecture 
The use of deep learning on point clouds has grown over the last 

decade [28], and many new architectures have been designed. The one 
that is considered the pioneer is PointNet, which has been improved by 
different authors over the years. PointNet is one of the methods that are 
denominated point-based methods, since it works directly with the co-
ordinates of the point clouds to predict the results. 

In this case, the architecture used for the task is based on 
PointNet++[41], which is an improved version of PointNet. 
PointNet++ has been widely tested in the literature, providing good 
results and performance. As backbone architecture, U-Net like archi-
tecture is used. The main characteristic of this backbone architecture is 
that it has residual connections between the encoder and the decoder 
parts of the neural network. It is widely used in computer vision tasks 
[55], and it has also been used for point clouds. Specifically, all encoder 
layers have symmetrical residual connections with the decoder. 

PointNet uses a function f that maps an unordered set of points to a 
vector [35]: 

f (x1, x2, …, xn) = γ
(
MAXi=1,..,n{h(x) }

)

Where γ and h are multilayer perceptron. 
As an improvement to PointNet, PointNet++ proposes a hierarchical 

approach where points are sampled at different scales and PointNet is 
applied to subsets of points. Fig. 2 from [41] illustrates PointNet++ base 
architecture. This allows not only to capture global features of the point 
cloud, but also local features, increasing the performance of the 
network. 

Although PointNet++ is used as base architecture. When facing 
different tasks, the architecture of the network should be modified to be 
adapted for the given task. In the results sections, the performances of 
three different architectures are compared to determine which one fits 
better for the objective of this work. 

The starting point for the network architectures is the one presented 
in [41] to segment Scannet dataset [56]. This approach is taken because 
it is the only segmentation architecture presented in the original 
implementation, and it provides good performance. Scannet is an an-
notated dataset of indoor point clouds. Compared to Scannet, the objects 
present in railway infrastructure are much larger. In consequence, the 
main modifications applied to the architecture proposed for Scannet are: 
i) number of points sampled per layer, ii) radius size for each point, iii) 
number of points sampled within the radius. 

In first place, while handling Scannet, the authors use 8192 input 
points, this is not enough to represent the scenes in the railway envi-
ronment, so a minimum of 16,384 points is proposed in this case. In 
second place, since the input points have been increased, the sampling 
points in the network layers must be also increased. A minimum of 4096 
sampling points is proposed for the first layer. Taking into consideration 
the values proposed, a new architecture is proposed using those 

minimum values, and having the rest of the sampling points dimen-
sioned proportionally to the parameters proposed. A summary of the 
architecture is presented in Table 2, and detailed explanations of the 
parameters presented in the table are found in [35,41]. 

Several versions of the architecture were tested. However, the in-
fluence in the results was not significant in most cases when the net-
works were very similar. In consequence, only two new architectures are 
proposed. The second architecture uses twice as many sampling points 
as in the first architecture for the first layer. Also, the radius to sample 
features of each point is half size of the one initially proposed, while the 
sample points within the radius is doubled in the first layer. With these 
changes, there are more features extracted in each layer, but in a smaller 
scale. A summary of this architecture is presented in Table 3. 

3.2.2. Training 
The neural networks applied for point clouds found in the literature 

are developed using different deep learning frameworks and versions. As 
a solution to this problem, in [57], the authors introduce an open-source 
framework to work with deep learning methods on 3D data based in 
Pytorch. The framework has a modular design, and it allows custom-
ization, making it suitable for research purposes. Due to the mentioned 
advantages, this framework has been chosen to develop the neural 
network training, creating all the additional modules needed for the 
method and modifying some of the existing ones. 

The hardware used for the training process consist of a GPU Nvidia 

Table 2 
Simple network architecture. Smaller size in return of better computational 
performance.  

Simple architecture 

Downsampling layers 
Layer 0 1 2 3 4 
Point 

Features 
[7, 32, 
32, 64] 

[67, 64, 
64, 128] 

[131, 
128, 
128, 256] 

[259, 
256, 
256, 
512] 

[515, 512, 
512, 1024] 

N Points 4096 1024 256 64 16 
Radius 0.1 0.2 0.4 0.8 1.2 
N Samples 32 32 32 32 32  

Upsampling layers 
Layer 5 6 7 8 9 
Point 

Features 
[1024 +
512, 
512, 256] 

[256 +
256, 
256, 256] 

[256 +
128, 
256, 128] 

[128 +
64, 
128, 
128] 

[128 + 4, 
128, 
128, 128]  

Table 3 
Complex network architecture. Uses twice as many sampling points in each of 
the layers, and the sample radius is reduced. Bigger size in return of a worse 
computational performance.  

Complex architecture 

Downsampling layers 
Layer 0 1 2 3 4 
Point 

Features 
[7, 32, 
32, 64] 

[67, 64, 
64, 128] 

[131, 
128, 
128, 256] 

[259, 
256, 
256, 
512] 

[515, 512, 
512, 1024] 

N Points 8192 2048 512 128 32 
Radius 0.05 0.1 0.2 0.4 0.8 
N Samples 64 32 32 32 16  

Upsampling layers 
Layer 5 6 7 8 9 
Point 

Features 
[1024 +
512, 
512, 256] 

[256 +
256, 
256, 256] 

[256 +
128, 
256, 128] 

[128 +
64, 
128, 
128] 

[128 + 4, 
128, 
128, 128]  
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GeForce RTX 2060 Mobile, an Intel Core i7-10750H CPU, and a 16GB 
DDR4 RAM. 

The data need to be split for training and testing. So, 80% of the 
clouds are taken for the training set, and the rest of them are used for 
testing. This subsection explains the steps followed to train the neural 
network and how the data has been processed. A graphical summary of 
the processing steps taken is presented in Fig. 4. 

3.2.3. Training data preprocessing 
Since the point clouds may have several attributes to characterize 

each point, first, it is necessary to declare the features of the point cloud 
that are fed into the network. In the case of this work, Euclidian co-
ordinates and intensity values are taken into account by the neural 

network, having as input vector: XNx4 =

⎡

⎣
x1 y1 z1 I1
⋮ ⋮ ⋮ ⋮
xN yN zN IN

⎤

⎦. Where N 

is the number of input points in the network, (x,y,z) represent the 
Euclidian coordinates of each point, and I corresponds to the intensity 
value. 

Once the input features of the network are defined, a pre-processing 
step must be applied to the point clouds. In this work, the pre-processing 
steps taken for training are the following:  

• Balance training data. Table 1 shows that the labels present in the 
dataset are clearly unbalanced. While most of the points belong to 
the background, only a few points are part of punctual objects such as 
traffic signs. This forces the neural network to learn features from the 
classes that are more populated, and ignore the others, because their 
contribution in the loss function is relatively low. Two different 
techniques are applied to solve the issue. First, weighted loss 

function is applied for training [58], increasing loss values when the 
least populated classes are misclassified. Secondly, data augmenta-
tion is also applied. The data augmentation consists of duplicating 
clouds from the training set that have traffic signs and traffic lights, 
applying them geometric transformations. Clouds containing those 
objects have been replicated, cropped taking only the space sur-
rounding the objects of interest, rotated, and gaussian noise is 
applied to their points. With this, the number of points with those 
labels was incremented.  

• Scale intensity. Not all the scanners provide intensity data in the 
same format. The values are always represented as integers, but 
depending on the number of bits that they use to represent the in-
tegers, the scale of the values is different, using always as maximum 
the largest value allowed by the number of bits used. The main 
consequence of this variability is that the precision of some scanners 
is lower than others. To overcome the issue of the different scales, the 
intensity values are scaled to [0,1] using the number of bits that the 
given sensor provides as reference to calculate the scale factor.  

• Grid sampling. As mentioned earlier, the density of points varies 
depending on the sensor used during the recording of the clouds, or 
the velocity of the vehicle when surveying. This makes mandatory 
the capability of processing point clouds with different point den-
sities. In order to alleviate the task to the neural network, all the 
point clouds are first subsampled using grid subsampling. This pre- 
processing step helps to homogenize the density of the clouds 
across all the available scenarios. The size of the grid used is one of 
the parameters studied for the results, and the effect in the seg-
mentation accuracy is presented in results section.  

• Cube crop. In order to provide a homogeneous point cloud size to 
the neural network, it is fed by cubes of 10 m each side. During the 

Fig. 4. (a) Presents the raw point cloud provided by the sensor; (b) shows the subsampled point cloud; (c) is a cropped cube and (d) shows the point cloud fully 
preprocessed that is fed to the neural network. Finally, (e) represents the predictions obtained by the neural network. 
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training, only one cube from each cloud is sampled in each epoch. 
For this purpose, a random point of the original cloud is taken in each 
epoch, and the cube around that point is sampled. With this, different 
sub-clouds are fed from the same cloud at different epochs.  

• Scale coordinates. The coordinates of the point clouds are recorded 
in different reference systems depending on the scenario. However, 
in all cases, these values are usually high, in the order of thousands of 
meters. As is well known, having high input values may cause 
instability while training neural networks. To avoid this issue, once a 
cube is taken sampled, its coordinates are scaled to [0,1] values in all 
the axis, using the 10 m as the scale factor.  

• Random rotation. Having more variability available in the training 
data helps the network to generalize better afterwards. So, to avoid 

the network to depend on the orientation of the railway track to 
segment correctly, the cubes used for training are randomly rotated. 
On the one side, the maximum rotation about x and y axes are 
restricted to 15◦, because the railway tracks avoid having slopes as 
much as possible. On the other side, the rotation about z axis is not 
restricted because the track will always be randomly oriented on that 
axis.  

• Fixed number of points. Since PointNet++ architectures need to be 
fed always by a given number of points, the cube cloud is randomly 
subsampled with replacement to N points. This N must be big enough 
to be representative of the cloud, but the smaller it is, the faster than 
the network will work. So, the trade-off between precision and ve-
locity is studied in the results section. 

Fig. 5. Effect of data augmentation in the metrics. Accuracy (acc), mean accuracy (macc) and mIoU (miou) evolution for training and testing data at the end of each 
epoch, comparing the original training with the one using augmented data. 
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• Random noise. To add variability to the training clouds, random 
noise following a normal distribution is added to the coordinates 
before feeding the network. 

Finally, cross entropy loss function and Adam optimizer are used 
with the following hyperparameters: learning rate = 0.001, batch 
normalization momentum = 0.1 and batch size = 5, which has been 
limited by hardware capabilities. 

3.2.4. Testing process 
After finishing the training, the neural network must be tested 

against data that it has not been trained on. The main difference during 
the testing process with respect to the training is the pre-processing of 
the data. In this case, the point clouds are divided into regular cubes, and 

those cubes are fed to the network applying only grid and random 
subsampling. Then, the results are compared to the ground truth of the 
dataset in order to calculate metrics. 

4. Results 

The method has been tested generating different cases where pre- 
processing steps are modified, as well as using different architectures 
for the neural network trained. In all cases, the neural network is trained 
for 200 epochs, and the metrics over random samples in the test set are 
calculated after each epoch in order to study the training performance. 
The metrics graphs obtained are smoothed to overcome the variance due 
to the randomness of the crops taken to calculate the metrics after each 
epoch. 

Fig. 6. Effect of the number of input points in the network. Accuracy (acc), mean accuracy (macc) and mIoU (miou) evolution for training and testing data at the end 
of each epoch, comparing the training with 16,384 input points with the one using 32,768 input points. 
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4.1. Metrics 

Depending on the task to evaluate, there are different metrics that 
measure better the performance. In this case, the metrics used to eval-
uate the results are widely used for semantic segmentation, both for 
images and 3D data. The metrics are the following [59]:  

• Overall Accuracy (OA): It represents the percentage of points 
correctly classified, regardless of its class. This metric is not signifi-
cative for those cases where unbalanced data is present in the data-
set. For example, in case of classifying all the point as background, 
the OA would be higher than 90%.  

• Mean Accuracy: This metric takes into account the accuracies of all 
the classes and calculates their mean. This overcomes the issue 
caused by the unbalanced data.  

• Intersection Over Union (IoU): It is calculated following Eq. 1. It 
measures the number of points common between the label and pre-
diction masks, divided by the total number of points present across 
both masks. 

IoU =
True Positives

True Positives + False Positives + False Negatives
(1)   

• Mean IoU: It takes into account the IoUs of all the classes and cal-
culates their mean. The version of the network that gets the highest 
validation mIoU is saved as the best version. 

Fig. 7. Effect of the intensity feature in the results. Accuracy (acc), mean accuracy (macc) and mIoU (miou) evolution for training and testing data at the end of each 
epoch, comparing the training using the intensity as input feature and the training that only uses the Euclidean coordinates. 
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4.2. Data augmentation 

Several versions of the method are compared to study the effect of 
the changes in the results. 

In this first comparison, two cases are studied. In the first case, 
during the pre-processing step, the point clouds are not augmented, and 
the network is trained only using the original data. In the second case, 
clouds containing traffic lights and signs are duplicated and modified 
applying geometric transformations to augment the training data. 

Results in Fig. 5 show the metrics curves obtained for both cases 
during training. For the first 100 epochs, the metrics improve fast 
because the model is starting to fit the data. Then, since the network is 
closer to converge, the improvement is slower. However, it is known 
that overfitting is not happening because the testing metrics also 

improve. The results obtained due to the data augmentation are 
considerably better than the other ones, getting overall improvements of 
10% for the test mean accuracy and 25% for test mIoU. Since the 
improvement is so significant, all the posterior comparatives are using 
the augmented data for training. 

4.3. Grid size and number of input points 

The grid size determines the maximum precision that an input point 
cloud may have. Having a small grid size results in a high number of 
voxelized points. On the other side, since random points are sampled 
after the grid sampling, in case of sampling randomly a significantly 
lower number of points than the ones left after the first sampling, 
significative points of the point cloud may be lost. However, if the 

Fig. 8. Effect of the network architecture in the result metrics. Accuracy (acc), mean accuracy (macc) and mIoU (miou) evolution for training and testing data at the 
end of each epoch, comparing simple and complex networks. 
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number of remaining points after grid sampling is similar to the number 
of points that are randomly sampled, important information is not likely 
to be lost. In consequence, these two parameters are supposed to be 
modified proportionally for the experiment, in order to have a good 
compromise between the two of them. 

In this comparison, two different approaches are tested. The first one 
consists of a grid sampling of 0.1 m, and a random sampling of 16,384 
points. The second one uses a grid of 0.05 m and samples 32,768 points. 
Using more points would require more computational resources and 
increase running time, while low-density point clouds cannot take 
advantage of a more fine-grained sampling. 

Fig. 6 shows how results are similar, and there is no improvement 
with the increment of points. However, when using 16,384 points, the 
output cloud loses quality compared to the most populated one, so 

32,768 points are used for the rest of the experiments. 

4.4. Intensity 

As explained in the previous section, one of the inputs of the network 
is the intensity. This intensity value depends on the number of bits and 
the sensor used during the capture, and it can differ from one point cloud 
to another. It is also interesting to study if the intensity has a significa-
tive impact on the performance of the network, or if it is worth to have a 
more general neural network that does not rely on the intensity to 
perform well on the task. In consequence, the training results using and 
obviating the intensity are compared. 

Fig. 7 shows how the usage of intensity does not change the overall 
results. The main change is the time to converge. When using the 

Fig. 9. Effect of the dataset size during the training. Accuracy (acc), mean accuracy (macc) and mIoU (miou) evolution for training and testing data at the end of each 
epoch, comparing the training using the original dataset and the training using the testing set for training. 
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intensity as an input, the results improve quicker than in the other case, 
converging about 30 epochs earlier. This is probably due to the traffic 
signs and lights, since they are known to have high intensity values, the 
network does not have to learn their geometrical features in case of 
having the intensity available.However, when working with the point 
clouds from the third scenario, the network that uses the intensity is not 
able to segment the point clouds correctly. This situation has been 
studied and the possible cause is presented in discussion section. 

4.5. Network architecture 

All the results shown have been tested using the same network ar-
chitecture. In this section, a new network architecture is compared with 
the one used until the moment. For the sake of understandability, the 
network used until now is denominated simple network, and the other 
one is denominated complex network, since the second one has more 
parameters. In both cases, they are working with 32,768 input points 
and uses intensity as input feature, so their inputs are X32768x4 = [x,y,z, 
I.] 

Table 2 and Table 3 show how the main difference between the 
networks is the number of points remaining in the subsequent down-
sampling layers, and the radius considered in each one of them. These 
changes are translated into an increase of running time for the training, 
raising from 5.5 h when using the simple network, to 13 h when using 
the complex one. However, metrics in Fig. 8 show how there is not a 
significant improvement in the results, so the simple network is 
considered the best option for the task, and it will be used for the 
remaining the experiments. The possibility of increasing more the 
complexity of the network is not considered due to GPU memory re-
strictions and computational time. 

4.6. Training set size 

In this case, the availability of data for training is considerably high. 
To test the performance on cases with less data available, the network 
has been trained using the test set as training set. With this, the network 
is trained with a small dataset, and later it is tested against the whole old 
training set. 

The metrics obtained during the training compared to the full version 
of the training are shown in Fig. 9. These results show how the 
convergence time is longer and the mIoU results for the low data 
training are slightly lower than in the standard case. In summary, 
although the overall results are worse, the method could be valid for 
cases where the data available is lower. 

4.7. Results summay 

Finally, all the networks that were trained using data augmentation 
pre-processing are tested against the whole test dataset. In order to study 
the impact of the PointNet++ architectures proposed, two state of the 
art semantic segmentation architectures have also been trained and 
tested. First, PointNet++ segmentation architecture proposed in the 
original implementation is trained and tested. Second, the original 
implementation of KPConv [36] is also evaluated. 

For this test, all the test clouds are predicted completely to calculate 
the metrics shown in Table 4, which are discussed in the following 
section. 

In addition, training runtimes for different network architectures and 
input points are presented in Table 5. 

Besides the metrics obtained in the test set, several random clouds 
have been plotted to provide qualitative results about how good the 
method segments. This is important to determine if the noise can be 
easily postprocessed, since the error could be due to a small difference 
when defining the boundaries of the objects or having some objects that 
are completely misclassified. The qualitative studies for all the remain-
ing scenarios have been tested with the neural network trained with the 
following characteristics: 32768 input points, simple architecture, and 
no intensity as input feature. 

In Fig. 10, several random examples of the segmentation are shown. 
In these samples, most of the objects are correctly segmented. The most 
recurring error consist of segmenting parts of the mastś claws as cables, 
this might be caused because they are thin as the cables. On the other 
hand, it is remarkable how the method works both in exterior railway 
track as well as in the tunnels. Also, among all the testing clouds con-
taining traffic lights and traffic signs, one of each has been selected 
randomly to study the performance of the network for each situation. 
Fig. 10 (a) has two signs and three traffic lights, that are correctly 
segmented by the network. Also, Fig. 10 (b) presents four different 
traffic lights that have been segmented. 

Finally, 2 km of testing point clouds that overlap with the testing 
dataset from [32] have been manually evaluated for comparison. This 

Table 4 
Final results obtained in the experiments. Overall Accuracy, Mean Accuracy, mIoU and IoU for each asset are presented.       

Class IoU 

Training Data Network Input points OA Test Mean Acc Background Traffic signs Informative signs Traffic lights 

Intensity Grid Size (m) Test mIoU Masts Cables Droppers Rails 

Full Simple 16,384 98.86% 90.37% 98.88% 60.75% 49.33% 70.51% 
Yes 0.1 76.33% 80.92% 92.39% 75.35% 82.48% 
Full Simple 32,768 98.87% 89.86% 98.89% 54.46% 53.15% 64.77% 
Yes 0.05 74.41% 81.49% 91.53% 71.05% 79.98% 
Full Simple 32,769 98.86% 90.95% 98.88% 55.65% 59.71% 59.17% 
No 0.05 74.89% 79.22% 91.99% 73.58% 80.89% 
Full Complex 32,769 98.97% 88.41% 99.01% 58.70% 50.76% 69.85% 
Yes 0.05 75.38% 80.09% 90.07% 70.81% 83.76% 
Reduced Simple 32,769 98.57% 86.15% 98.59% 61.30% 33.27% 53.75% 
Yes 0.05 69.68% 76.02% 90.14% 66.25% 78.13% 
Full PointNet Original 32,769 97.61% 89.71% 97.61% 64.19% 57.49% 46.71% 
Yes 0.05 68.70% 76.45% 90.80% 58.76% 57.65% 
Full KPConv 32,769 98.57% 86.18% 98.59% 65.01% 55.12% 59.82% 
Yes 0.05 71.97% 79.81% 89.94% 52.34% 75.13%  

Table 5 
Training runtimes.  

Network architecture Input points Training runtime (minutes) 

Simple 16,384 113 
Simple 32,768 337 
Complex 32,768 783 
PointNet Original 32,768 248 
KPConv 32,768 611  
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Fig. 10. Qualitative results in the first scenario. Track (a) has all elements present in the railway, being all and them correctly segmented. Tracks (b) and (c) are 
common cases in the dataset, having small curvature. Cloud (d) shows the beginning of a tunnel, and how it is also correctly segmented. Track (e) is surrounded by 
higher terrain. 
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evaluation is done object-wise for punctual objects and measured by 
meters for linear objects, ignoring individual points of noise that may be 
present using this methodology. The results obtained are shown in 
Table 6. 

4.8. Qualitative evaluation of generalization capability 

The scenarios that do not have available the labels are relatively 
small, so qualitative results can be studied manually. 

In the first place, the second scenario is tested. Fig. 11 shows the 
results. The main difference between this point cloud and the ones used 
for training is that this one has much more noise, in particular, the cables 
show noise around them, and the shape of the masts is not as well 
defined as in the other clouds. Regarding the results obtained, they are 
acceptable, the major problem is the lack of precision in the rails, 
showing some noise and having some small sections that have not been 
segmented as rails. It also presents some noise in the surroundings that 
could be easily postprocessed. 

The results obtained for the third scenario are shown in Fig. 12. 
These data have been recorded in a different country than the training 
data, which causes that the geometries of the railway objects to be 
different from the training clouds. Regarding the posts, their geometry is 
considerably different, and even though, the network is able to segment 
correctly most of them, but showing some noise. Regarding the rails, 
most of them are correctly segmented. However, Fig. 12 (a) shows a lot 
of noise, segmenting some objects that are present in the interior of the 
rails, as rails. This issue has been studied, and the reason is that there are 
parts of old rails that have been temporally placed there. Another par-
ticularity of point cloud shown in Fig. 12 (b) is that is has two traffic 
lights, the first one is vertical, and it is correctly segmented, but the other 
one, shown in the zoomed section, hangs from a mast. This kind of traffic 

lights are not present in the training data, but the neural network is able 
to generalize the geometry and it partially segments it as a traffic light. 

Finally, results obtained in the fourth scenario are shown in Fig. 13. 
These results show how the network has trouble segmenting the sur-
roundings of the railway track. This is because the training data do not 
contain the surroundings of the track, so it is a new scenario for the 
neural network. The rails segmented have empty spots, which is mainly 
due to the low quality of the input point cloud, being even hard to 
recognize by humans. 

5. Discussion 

This section discusses the results obtained for the segmentation, 
studying the strengths and weaknesses found in the methodology. 

In the first place, it was studied why when using intensity values as 
input, the network is not able to segment the third scenario. It was seen 
that density distributions of the intensity values are different depending 
on the scenario. As shown in Fig. 14, intensity values from the first 
scenario (a) follow a log-normal distribution, while the intensity values 
from the third scenario (b) follow a normal distribution. Obviously, this 
makes the neural network unable to generalize for the given case. 

Regarding the testing results show in Table 4, while most of the 
approaches have mIoU values around 75%, this metric drops for the two 
architectures that have not been designed for the task, and the approach 
with reduced training data. This fact supports the work carried out to 
adapt the architecture for the given task. 

As for as the other approaches studied, the best results are obtained 
by the one that uses 16,384 points as input. However, the difference is 
low with respect to the other cases. And this small difference could by 
caused by the randomness of the training. In general, the results show 
how different approaches perform better for different objects, but, in 
most cases, the difference is not significative. 

With respect to the IoU values obtained for each object, it is clear 
than the main issue are traffic signs and traffic lights. As is has been 
highlighted earlier, the presence of these objects in the dataset is low, so 
the network does not have enough training data to perform as well as it 
does with the other classes. And, since the number of objects belonging 
to those classes is low, small errors reduce more significantly the IoU. 
Also, it is interesting how traffic and informative signs perform better 
with the neural network architectures that provide the worst general 
results. 

Taking into consideration the results obtained, the architecture that 

Table 6 
Manually calculated object-wise metrics.   

Precision Recall F1-Score 

Rails 100.00% 100.00% 100.00% 
Cables 98.90% 99.11% 99.01% 
Droppers 99.91% 89.91% 94.65% 
Masts 97.06% 100.00% 98.51% 
Traffic signs 87.50% 100.00% 93.33% 
Informative signs 90.48% 95.00% 92.68% 
Traffic lights 100.00% 100.00% 100.00%  

Fig. 11. Second scenario results. The point cloud is noisy and contains only masts as punctual objects.  
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Fig. 12. Third scenarios results. These clouds belong to urban areas in a different country. Also, the geometry of the masts in (a) is different than most of the masts 
found in the other datasets. 

Fig. 13. Fourth scenario results. This is the point cloud with the lowest quality, being hard to segment manually. The only assets present in the point cloud are rails.  
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is considered to perform best has the following characteristics: i) 32,768 
input points, it provides results with better quality than the network that 
uses 16,384 input points, since the density of the output is twice as dense 
as the other one. ii) Simple architecture, because it provides better 
computational performance than the complex one, while maintaining 
similar metrics. iii) No intensity as input feature, although for the first 
scenario the intensity helps to improve the results, by not using the in-
tensity, the network can be used also for the third scenario. 

The mIoU obtained with the network categorized as the best is 
74.89%. This value cannot be compared with railway segmentation 
works found in the literature, since in all cases, the metrics are calcu-
lated object-wise, instead of point-wise, like it is done in this work. 
However, compared to the mIoU presented in [28] for different archi-
tectures and benchmarks, the result is above the average. 

Regarding object-wise metrics from Table 6, they show how the real 
performance of the methodology is similar to the heuristic method using 
to generate the training data, having better results with some assets such 
as rails, cables and traffic lights, while maintaining F1-Score above 90% 
for all cases. 

As for as the training runtimes shown in Table 5, it can be observed 
that the difference between the simple and complex architecture is 
significative. And it can be even faster by reducing the input points of the 
network. It is also interesting that KPConv architecture runs almost as 
slow as the complex architecture, but providing worse results. 

The well-functioning of the methodology for the first scenario is 
confirmed by the qualitative results studied. Point clouds with complex 
scenarios are tested, and all the objects present in them are correctly 
segmented. The decrease in the mIoU value is due to small noisy zones 
and point-wise discrepancies in object-background boundaries that 
affect to the metrics, but not to the quality of the results. In short, the 
methodology shows good performance in the test clouds of the first 
scenario. 

Regarding the capability to generalize to new scenarios and sensors, 
the performance of the network decreases depending on the case. The 
results obtained in the second scenario show some noise that can be 
easily cleaned, so the methodology could be used to replace a manual 
segmentation. The third scenario shows more noise than the second, but, 
in general, the network is able to segment correctly most of the scene. 
Thus, it could be used as a semi-automatic method. Finally, the fourth 
scenario, due to the low quality of the point cloud, show very noisy 
results, but the rails are mostly segmented. 

In summary, the methodology can be used for automated and semi- 
automated segmentation of new scenarios, since it shows very good 
performance, but some noise should be manually cleaned. As an alter-
native, increasing the training with more diverse scenarios would also 
improve the generalization capability, so the post-processing step could 
be eliminated. 

6. Conclusions 

This paper presents a methodology based in deep learning for 
automatic segmentation of the relevant assets from 3D point clouds in 
railway infrastructure. Different approaches are tested and compared to 
present a full pipeline that prepares the 3D point cloud to feed a neural 
network that outputs per point classification, so finally, fully segmented 
point clouds are obtained. 

The results demonstrate how the method can correctly segment data 
captured in the same conditions as the data used to train the neural 
network, and it can also segment point clouds that have been captured in 
new environments, and with sensors of different characteristics. This 
method outperforms the current state of the art of semantic segmenta-
tion in railway environments by its generalization capability. These 
methods are mainly based on heuristics, and they have a high depen-
dence on the homogeneity of the data, so it is hard to apply them in new 
environments, while deep learning methods allow to generalize to new 
environments that have not been seen during the training process of the 
neural network. Also, to the best of the authors’ knowledge, this is the 
first approach where deep learning techniques are used in general rail-
way environments working with point clouds. 

Finally, the line of research presented in this work is promising for 
further study. The results obtained could serve as a basis to build as-is 
BIM models of the railway infrastructure. And also, the segmentation 
could be used to improve the maintenance of the infrastructure, 
comparing the 3D geometries of the same object at different time frames. 
Finally, it shows the utility of deep learning methods for railway infra-
structure point clouds, that could be further exploited by designing 
specific methods to work in this particular environment. 
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Fig. 14. Samples of intensity values distributions from first (a) and third (b) scenarios. The intensity values from the fist scenario follow log-normal distributions 
while the third scenario shows normal distributions. 
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[16] I. Puente, H. González-Jorge, J. Martínez-Sánchez, P. Arias, Review of mobile 
mapping and surveying technologies, Measurement 46 (7) (2013) 2127–2145, 
https://doi.org/10.1016/J.MEASUREMENT.2013.03.006. 

[17] Ç. Aytekin, Y. Rezaeitabar, S. Dogru, I. Ulusoy, Railway fastener inspection by real- 
time machine vision, IEEE Transact. Syst. Man,Cybernet. Syst. 45 (7) (2015) 
1101–1107, https://doi.org/10.1109/TSMC.2014.2388435. 
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detection and decomposition of railway tunnels from Mobile laser scanning 
datasets, Autom. Constr. 96 (2018) 171–179, https://doi.org/10.1016/j. 
autcon.2018.09.014. 
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