
DOI: 10.2478/awutm-2014-0014 Analele Universităţii de Vest,
Timişoara

Seria Matematică – Informatică
LII, 2, (2014), 111– 125

Point Compression and Coordinate Recovery

for Edwards Curves over Finite Field

Benjamin Justus

Abstract. We present two computational approaches for the pur-
pose of point compression and decompression on Edwards curves
over the finite field Fp where p is an odd prime. The proposed
algorithms allow compression and decompression for the x or y
affine coordinates. We also present a x-coordinate recovery algo-
rithm that can be used at any stage of a differential addition chain
during the scalar multiplication of a point on the Edwards curve.

AMS Subject Classification (2000). 94A60; 14H45
Keywords. Point Compression, IEEE Std 1363-2000, Elliptic
Curve, Finite Field, Edwards Curve

1 Introduction

The first part of the present paper proposes compression and decompression
algorithms for points on an Edwards curve over the finite field Fp where p is
an odd prime. Edwards curves have played prominent roles in recent ECM
(Elliptic Curve Method) applications. The most notable is the GMP-EECM
software [5] based on which the authors claim to set speed records in ECM.

Point compression allows efficient storage and saves communication band-
width in applications related to elliptic curve cryptography. The affine coor-
dinate compression and decompression of a single point on a Weierstraß curve

112 B. Justus An. U.V.T.

are described in the IEEE Standard IEEE Std 1363-2000 for Public-Key
Cryptography [4]. It specifies x-coordinate compression and decompression
algorithms for binary fields F2m , and y-coordinate compression and decom-
pression algorithms for both binary field and Fp where p is an odd prime.
Using cubic residue theorems, [2] is able to compress and decompress the x-
coordinate of a single point on Weierstraß curves over Fp where p > 3. Dou-
ble point compression and decompression algorithms for the y-coordinates
are proposed in [3] for Weierstraß curves.

Technically, an Edwards curve is not an elliptic curve due to its sin-
gularities. However, every Edwards curve is birationally equivalent to an
elliptic curve in Weierstraß form. Due to symmetry of the Edwards curve,
our proposed compression and decompression algorithms work for both x-
coordinates or y-coordinates. This becomes an advantage when one encoun-
ters a point with one coordinate size much larger than the other.

We present two approaches in this paper. The first method follows the
standard approach as suggested in [4]. The compression of a point involves
keeping a binary signature of the coordinate. The decompression stage is
a little different in the sense: one needs to compute a square root and an
inversion for completing the decompression process. This approach allows
a natural generalization to n points compression, see section 3. When p is
large with respect to n, one is capable of achieving a near 50% compres-
sion ratio. Although taking square roots in finite field can be achieved by
polynomial time algorithms, our benchmark tests show that the square root
operation in practice can be quite time consuming when the field size p is
large. The second method avoids taking square roots at the cost of extracting
the compressed coordinates from the curve equation and prescribed algebraic
relations, see section 4. This method was pioneered in [3] for compressing the
y-coordinates of points on Weierstraß curves. We present the analogies for
Edwards curves in sections 4.1 and 4.2. Our benchmark tests show that the
second method is much more efficient than the square root approach when p
is large.

To speed up elliptic curve arithmetics, it is possible to add (or double)
points omitting one of the coordinates. This is the case for Montgomery
curves which are featured in the GMP-ECM software [8]. One can carry out
points addition, doubling on Montgomery curves using only (X,Z) projective
coordinates. The scalar multiplication of a point can be achieved by using
a differential addition chain (sometimes known as Lucas chain). Following
this approach, one is able to avoid completely the arithmetic cost incurred
by one of the coordinates during all stages of a computation. Differential
arithmetic formula also exists for the Edwards curve setting (using only (Y, Z)
coordinates), see [1, 12].

Vol. LII (2014) Curve Point Compression & Decompression 113

In the second part of the paper, we investigate the following question:
using a differential addition chain, how can one recover the missing coordi-
nate at the final stage of a scalar multiplication computation? This question
is investigated in [9] for Montgomery curves, and [1] for Edwards curves.
Let [n]P be the n-fold of a point P on a curve. In recovering the missing
coordinate of [n]P , all the above approaches require partial coordinate infor-
mation of the points P, [n]P, [n + 1]P in addition to the curve parameters.
To obtain information of the point [n + 1]P during the computation of [n]P
is not practical as the computation of [n + 1]P does not come generally as a
byproduct during any stage of computing [n]P .

In section 5, we present a novel x-coordinate recovering algorithm for
Edwards curves. The algorithm is able to bypass information about [n+ 1]P
during the recovery of the missing x-coordinate of [n]P .

The plan of the paper is the following. We recall basic facts about Ed-
wards curves in section 2. The two compression/decompression approaches
are presented in section 3 and section 4, respectively. The probabilistic coor-
dinate recovering algorithm is proved in section 5. Section 6 contains timing
benchmarks for the decompression algorithms described in the previous sec-
tions.

1.1 Notation

We use the following notations in tabulating the cost incurred by the arith-
metic operations. The notations SQ,S,M, I signify the field operations:
taking square root, squaring, multiplication, and inversion, respectively.

2 Background on Edwards Curves

Edwards curves are given by equations of the form

Ec,d : x2 + y2 = c2(1 + dx2y2),

where c, d are curve parameters in a field k of characteristic different from 2,
and c, d 6= 0 and dc4 6= 1.

The addition law is defined by the formula:

(x1, y1), (x2, y2) 7→
(

x1y2 + y1x2

c(1 + dx1x2y1y2)
,

y1y2 − x1x2

c(1− dx1x2y1y2)

)
. (2.1)

For this addition law, the point (0, c) is the neutral element. The inverse of
a point P = (x, y) is −P = (−x, y). In particular, (0,−c) has order 2; (c, 0)

114 B. Justus An. U.V.T.

and (−c, 0) are the points of order 4. When the curve parameter d is not
a square in k, then the addition law (2.1) is complete (i.e. defined for all
inputs). Every Edwards curve is bi-rationally equivalent to an elliptic curve
in Weierstraß form.

For the rest of the paper, we shall restrict our discussion to those curves
with c = 1,

Ed = E1,d : x2 + y2 = 1 + dx2y2. (2.2)

All the algorithms in the paper work for both Ec,d and Ed.

3 Square Root Approach

The algorithms 1 and 2 describe for n points compression and decompression.
The compression/decompression is performed on the x-coordinates and can
be adapted to the y-coordinates compression/decompression exactly the same
way. For example when n = 1, to optimize the compression ratio, one should
align the compression choice with the larger of the two coordinates. For
a single point, our compression method follows the standard approach as
described in [4]. The generalization to n points is quite natural, the idea
is to concatenate each bit of binary signature to form a n-bits string. The
compression algorithm 1 during the loop keeps the signature string S updated
by adding the current bit of binary signature.

Algorithm 1 x-coordinate compression for n points

Input: (x1, y1), ..., (xn, yn) on Ed

Output: (S, y1, y2, ..., yn) in compressed format
1: S ← NULL
2: for i = 1 to n do
3: x← xi (mod 2)
4: S = S ||x
5: end for
6: return (S, y1, y2, ..., yn)

Vol. LII (2014) Curve Point Compression & Decompression 115

Algorithm 2 x-coordinate decompression for n points

Input: (S, y1, y2, ..., yn)
Output: (x1, y1), ..., (xn, yn) on Ed

1: for i = 1 to n do
2: A← 1−y2i

1−dy2i
(mod p)

3: xi ←
√
A (mod p)

4: if xi (mod 2) 6= S[i] then
5: xi = −xi (mod P)
6: end if
7: end for
8: return (x1, y1), (x2, y2), ..., (xn, yn)

Decompression Type Max Storage Space Arithmetic Cost
single point dlog2 pe+ 1 1SQ+ 1S+ 1M+ 1I
n points ndlog2 pe+ n nSQ+ nS+ nM+ n I

Table 1: Cost for single and multiple points decompressions

The decompression algorithm 2 is correct because given the y-coordinate
of a point (x, y) on the Edwards Curve Ed, we may solve for x2 using the
definition of the curve (2.2)

A =
1− y2

1− dy2
.

The field inversion is valid because the point is well defined. Taking square
root of A in Fp gives rise to 2 solutions. Furthermore the 2 solutions are
distinct because the field characteristic is odd. Thus the binary bit x uniquely
identifies x.

The cost of the decompression algorithm is recorded in Table 1. These
are the worst case scenarios which happen when n points given are distinct.
Regarding the max storage space, one should keep in mind the max storage
required for a single uncompressed point (x, y) (resp. n uncompressed points)
is 2dlog2 pe (resp. 2ndlog2 pe).

4 Second Approach

We present in this section a second approach. Section 4.1 describes com-
pression and decompression algorithms for two points. Section 4.2 describes

116 B. Justus An. U.V.T.

algorithms in the case of three points. They are analogous to the Weierstraß
curve approaches as presented in [3].

4.1 Double Points Compression

The compression algorithm 3 takes two points on Edwards curve as input, and
outputs a triple in the compressed format. There are two cases to consider.
In the case x1 + x2 = 0 (line 1 - 3): we have y1 = ±y2 because y21 = y22. So
we need only to store the binary signature y2, and the decompression of y2
is identical to the single point decompression case described in algorithm 2.
Finally we recover x2 as x2 = −x1.

In the other case: x1 + x2 6= 0 (line 4 - 6), we store the triple (S, y1, y2).
The decompression from the triple is described in algorithm 4. It relies on
the arithmetic identity:

x1 =
x1 + x2

2
+

x2
1 − x2

2

2(x1 + x2)
=

S

2
+

A1 − A2

2S
(4.1)

where the parameters S,A1, A2 are as defined in algorithm 4. Finally, we can
recover x2 as x2 = −x1.

Algorithm 3 x-coordinate compression for two points

Input: (x1, y1), (x2, y2) on Ed

Output: a triple in compressed format
1: if x1 + x2 = 0 (mod p) then
2: S = y2 (mod 2)
3: return (S, x1, y1)
4: else
5: S ← x1 + x2 (mod p)
6: return (S, y1, y2)
7: end if

Vol. LII (2014) Curve Point Compression & Decompression 117

Algorithm 4 x-coordinate decompression for two points assuming x1+x2 6=
0

Input: (S, y1, y2) in compressed format
Output: (x1, y1), (x2, y2) on Ed

1: A1 ← 1−y21
1−dy21

(mod p)

2: A2 ← 1−y22
1−dy22

(mod p)

3: x1 = S
2

+ A1−A2

2S
(mod p)

4: x2 = S − x1 (mod p)
5: return (x1, y1), (x2, y2)

Decompression Type Max Storage Space Arithmetic Cost
x1 + x2 = 0 2dlog2 pe+ 1 1SQ+ 1M+ 1I
x1 + x2 6= 0 3dlog2 pe 2S+ 3M+ 3I

Table 2: Cost for Double Points Decompression

4.2 Triple Points Compression

The compression algorithm 5 takes three points on an Edwards curve as
input, and outputs a point in the compressed format. There are three cases
to consider. If x2

1 = x2
2 = x2

3 (line 1 - 4): we have without loss of generality
x2 = x3 = ±x1. So the recovery of x2, x3 as before requires only the binary
signatures x2, x3 in addition to their respective y-coordinates. If only two of
xi’s satisfy x2

i = x2
j (line 5 - 16), the recovery of xj requires only the binary

signature xj, and we are reduced to the case of double points compression
(algorithm 3).

118 B. Justus An. U.V.T.

Algorithm 5 x-coordinate compression for three points

Input: (x1, y1), (x2, y2), (x3, y3) on Ed

Output: a point in compressed format
1: if x2

1 = x2
2 = x2

3 then
2: x2 = x2 (mod 2)
3: x3 = x3 (mod 2)
4: return (x1, y1, y2, y3, x2, x3)
5: else if x2

1 = x2
2, x

2
2 6= x2

3 then
6: x1 = x1 (mod 2)
7: A← x2 + x3

8: return (A, y1, y2, y3, x1)
9: else if x2

1 = x2
3, x

2
1 6= x2

2 then
10: x3 = x3 (mod 2)
11: A← x1 + x2

12: return (A, y1, y2, y3, x3)
13: else if x2

2 = x2
3, x

2
1 6= x2

3 then
14: x2 = x2 (mod 2)
15: A← x1 + x3

16: return (A, y1, y2, y3, x2)
17: else if x2

1 6= x2
2 6= x2

3 andx1 + x2 + x3 6= 0 then
18: A← x1 + x2 + x3

19: return (A, y1, y2, y3)
20: else
21: A← x2 + x3

22: return (A, y2, y3)
23: end if

In the last case x2
1 6= x2

2 6= x2
3 (line 17 - 22), there are two sub-cases. When

x1 + x2 + x3 6= 0, we may define A = x1 + x2 + x3 and returns (A, y1, y2, y3)
as an output of the compression algorithm. To decompress (algorithm 6), we
first calculate B1, B2, B3 (Alg 6: line 1 - 3). The x1, x2, x3 (Alg 6: line 4 - 6)
are well defined because

Bi = A2 + x2
i −

∑
j 6=i

x2
j = 2

∏
j 6=i

(xi + xj) 6= 0.

The correctness of the identities (Alg 6: line 4 -6) can be verified straight-

Vol. LII (2014) Curve Point Compression & Decompression 119

forward as:

xi =

(
2
∏
j 6=i

xj

)2

− 4
∏
j 6=i

x2
j + xi

= (A2 −
∑
j

x2
j − 2(Axi − x2

i))
2 − 4

∏
j 6=i

x2
j + xi

= (Bi − 2Axi)
2 − 4

∏
j 6=i

x2
j + xi

= B2
i − 4ABixi + 4A2x2

i − 4
∏
j 6=i

x2
j + xi

which implies

xi =
B2

i + 4A2x2
i − 4

∏
j 6=i x

2
j

4ABi

, i = 1, 2, 3.

Algorithm 6 x-coordinate decompression for three points assuming x2
1 6=

x2
2 6= x2

3, x1 + x2 + x3 6= 0

Input: (A, y1, y2, y3)
Output: (x1, y1), (x2, y2), (x3, y3) on Ed

1: B1 = A2 + x2
1 − x2

2 − x2
3

2: B2 = A2 + x2
2 − x2

1 − x2
3

3: B3 = A2 + x2
3 − x2

1 − x2
2

4: x1 =
B2

1+4A2x2
1−4x2

2x
2
3

4AB1

5: x2 =
B2

2+4A2x2
2−4x2

1x
2
3

4AB2

6: x3 =
B2

3+4A2x2
3−4x2

1x
2
2

4AB3

7: return (x1, y1), (x2, y2), (x3, y3)

This finishes the subcase x1 +x2 +x3 6= 0. In the subcase x1 +x2 +x3 = 0
(line 20 - 22): we have x1 = −(x2+x3). So we are again reduced to the double
points case: we can extract (algorithm 4) (x2, y2), (x3, y3) from (A, y2, y3).
Finally we recover x1 as x1 = −(x2 + x3).

5 Point Recovery

In this section, we present the x-coordinate recovery algorithm for Edwards
curves. Without the aid of any algorithm, given the y-coordinate of a point

120 B. Justus An. U.V.T.

Decompression Type Max Storage Space Arithmetic Cost
x2
1 = x2

2 = x2
3 4dlog2 pe+ 2 2SQ+ 2M+ 2I

x2
1 = x2

2, x
2
2 6= x2

3 4dlog2 pe+ 1 1SQ+ 2S+ 4M+ 4I
x2
1 = x2

3, x
2
1 6= x2

2 4dlog2 pe+ 1 1SQ+ 2S+ 4M+ 4I
x2
2 = x2

3, x
2
1 6= x2

3 4dlog2 pe+ 1 1SQ+ 2S+ 4M+ 4I
x2
1 6= x2

2 6= x2
3, x1 + x2 + x3 6= 0 4dlog2 pe 7S+ 9M+ 3I

x2
1 6= x2

2 6= x2
3, x1 + x2 + x3 = 0 4dlog2 pe 2S+ 3M+ 3I

Table 3: Cost for three points Decompression

on an Edwards curve, one is able to determine the x-coordinate up to a sign
(i.e. 50% chance of guessing it right). We first prove in the following:

Proposition 5.1. Let Ed be an Edwards curve defined over Fp where p is
odd prime. Suppose d 6= 0, 1, and d is not a square in Fp. Let P = (x, y) be a
point whose order does not divide 4. Let xn, yn be the affine coordinates of the
points [n]P . Let A = 1−dy2, B = y2−1, and D = gcd(Ay2n +B, dBy2n +A),
then we have

dxyxnyn ≡ −1 (mod (dBy2n + A)/D). (5.1)

Proof. We derive the above proposition from Theorem 2 of [1] (specialized
to the case c = 1). The theorem allows one to express the affine x-coordinate
of [n]P in terms of the coordinates of the points P, [n]P, [n + 1]P . Precisely,
we have

xn =
2yynyn+1(dBy2n + A)− (Ay2n + B)− y2n+1(dBy2n + A)

dxyyn
(
Ay2n + B − y2n+1(dBy2n + A)

) (5.2)

where A,B, yn are as defined in the proposition, and yn+1 is the affine y-
coordinates of the point [n+ 1]P . We may reduce (5.2) modulo dBy2n +A to
obtain

dxyxnyn(Ay2n + B) = −(Ay2n + B) (mod dBy2n + A). (5.3)

Dividing away D = gcd(Ay2n + B, dBy2n + A) in (5.3) gives

dxyxnyn
Ay2n + B

D
= −Ay2n + B

D
(mod

dBy2n + A

D
).

And since gcd((Ay2n + B)/D, (dBy2n + A)/D) = 1, we have

dxyxnyn ≡ −1 (mod (dBy2n + A)/D).

Vol. LII (2014) Curve Point Compression & Decompression 121

Equation 5.1 gives a necessary condition for xn to be the x-coordinate of
[n]P . And this gives us an alternative way of distinguishing the sign of xn.
Algorithm 7 describes the proposed x-coordinate recovery algorithm. The
input of the algorithm is a point P = (x, y) and the y-coordinate of the point
[n]P on the Edwards curve Ed. The algorithm outputs the x-coordinate of
[n]P .

Algorithm 7 x-coordinate recovery

Input: P = (x, y), yn = y-coordinates of [n]P on Ed

Output: xn = x-coordinates of [n]P if successful.
1: A← 1− dy2 (mod p)
2: B ← y2 − 1 (mod p)
3: D = gcd(Ay2n + B, dBy2n + A)

4: C ← 1−y2n
1−dy2n

(mod p)

5: xn ←
√
C (mod p)

6: if dxyxnyn 6= −1 (mod (dBy2n + A)/D) then
7: xn = −xn (mod p)
8: end if
9: return xn

6 Benchmark

We perform timing benchmark for the algorithms described in the previous
sections. Specifically in the following, Table 4 and 5 contain benchmark re-
sults on the single point compression/decompression algorithm (algorithm 1
and 2 for n = 1), and Table 6 and 7 contain benchmark results on the double
points compression/decompression algorithm (algorithm 3 and 4). Table 8
and 9 contain benchmark results on the triple points compression/decom-
pression algorithm (algorithm 5 and 6). Negligible computation time1 are
registered as NEG in all the tables. The decompression algorithms are timed
on batches as well as per decompression operation.

For the benchmark test, we first randomly generate a prime p of a specified
bit-length. For a fixed Ed over Fp, random points on Ed are generated upon
which the compression and decompression algorithms are benchmarked. To
see the impact of the curve parameter d on the benchmark results, a set
of d different in size is used. The timing is performed by repeating the

1The CPU clock registers 0 sec time lapse

122 B. Justus An. U.V.T.

compression/decompression a fixed number of times. The current set of
tests are run on a DELL Precision M6600 Laptop with OS Ubuntu 13.04 32
bits, Intel Core i7-2860QM CPU @ 2.50GHz × 4. The test suites are written
using the GMP library [6].

The test results show that for both approaches, the compression algo-
rithms require negligible CPU time compared to the decompression algo-
rithms. Furthermore, the complexity of the compression/decompression al-
gorithms directly depends on the size of the base field, and the curve param-
eter d.

The choices of the field size though are much larger than those used in
ECC, we have included the test results here as a matter of reference. A
full test for small devices using the standard curve sizes (192 - 521 bits) is
planned in the near future.

7 Future Work

An important question here is about optimization: how one may incorporate
the compression of points in an optimized way into a particular addition
chain. Lastly, we plan to test the algorithms in this paper on devices with
limited memory and constrained computation power.

Acknowledgements

The author wishes to thank the referees, whose comments helped to improve
this paper. Particular thanks go to Dr. Daniel Loebenberger who provided
an improvement to the original version of the coordinate recovery algorithm.

Vol. LII (2014) Curve Point Compression & Decompression 123

Appendix A. Timing Benchmark

Fp Time (sec)
512 NEG
1024 NEG
2048 NEG
4096 NEG

(a) Compression single
point 1000 times using
Ed with d = 3

Fp Time (sec) Time/Decomp. (sec)
512 0.348 0.0003
1024 10.02 0.010
2048 23.34 0.023
4096 128.97 0.129

(b) Decompression single point 1000 times using Ed

with d = 3

Table 4: Benchmark for Algorithm 1 and 2

Fp Time (sec)
512 NEG
1024 0.004
2048 NEG
4096 NEG

(a) Compression single
point 1000 times using
Ed with d = p− 1

Fp Time (sec) Time/Decomp. (sec)
512 0.348 0.0003
1024 9.904 0.0099
2048 23.472 0.023
4096 129.796 0.130

(b) Decompression single point 1000 times using Ed

with d = p− 1

Table 5: Benchmark for Algorithm 1 and 2

Fp Time (sec)
512 0.028
1024 0.032
2048 0.044
4096 0.068

(a) Compression two
points 50000 times using
Ed with d = 3

Fp Time (sec) Time/Decomp. (sec)
512 1.132 0.001
1024 3.748 0.004
2048 10.536 0.011
4096 30.16 0.030

(b) Decompression two points 50000 times using Ed

with d = 3

Table 6: Benchmark for Algorithm 3 and 4

124 B. Justus An. U.V.T.

Fp Time (sec)
512 0.024
1024 0.032
2048 0.044
4096 0.068

(a) Compression two
points 50000 times using
Ed with d = p− 1

Fp Time (sec) Time/Decomp. (sec)
512 1.188 0.001
1024 4.244 0.004
2048 11.492 0.011
4096 33.424 0.033

(b) Decompression two points 50000 times using Ed

with d = p− 1

Table 7: Benchmark for Algorithm 3 and 4

Fp Time (sec)
512 0.036
1024 0.040
2048 0.056
4096 0.088

(a) Compression three
points 50000 times using
Ed with d = 3

Fp Time (sec) Time/Decomp. (sec)
512 3.162 0.003
1024 10.652 0.011
2048 27.000 0.027
4096 74.936 0.075

(b) Decompression three points 50000 times using Ed

with d = 3

Table 8: Benchmark for Algorithm 5 and 6

Fp Time (sec)
512 0.036
1024 0.044
2048 0.06
4096 0.084

(a) Compression three
points 50000 times using
Ed with d = p− 1

Fp Time (sec) Time/Decomp. (sec)
512 3.732 0.004
1024 11.384 0.011
2048 28.584 0.029
4096 79.776 0.080

(b) Decompression two points 50000 times using Ed

with d = p− 1

Table 9: Benchmark for Algorithm 5 and 6

References

[1] Benjamin Justus and Daniel Loebenberger, Differential Addition in Generalized
Edwards Coordinates, IWSEC, 2010, 316-325

[2] Alina Dudeanu and George-Razvan Oancea and Sorin Iftene, An x-
Coordinate Point Compression Method for Elliptic Curves over Fp, SYNASC, 2010,
65-71

[3] Majid Khabbazian and T. Aaron Gulliver and Vijay K. Bhargava, Double

Vol. LII (2014) Curve Point Compression & Decompression 125

Point Compression with Applications to Speeding Up Random Point Multiplication,
IEEE Trans. Computers, 56 (3), (2007), 305-313

[4] IEEE 1363-2000: Standard Specification For Public Key Cryptorgraphy, American
National Standards Institute, IEEE Computer Society, 2000.

[5] Daniel J. Bernstein and Peter Birkner and Tanja Lange and Christiane
Peters, ECM using Edwards curves, Math. Comput., 82 (282), (2013)

[6] Torbjörn Granlund and the GMP development team, GMP-5.0.5, 2012.

[7] Daniel J. Bernstein and Tien-Ren Chen and Chen-Mou Cheng and Tanja
Lange and Bo-Yin Yang, ECM on Graphics Cards, EUROCRYPT, 2009, 483-501

[8] Paul Zimmermann and Bruce Dodson, 20 Years of ECM, ANTS, 2006, 525-542

[9] Katsuyuki Okeya and Kouichi Sakurai, Efficient Elliptic Curve Cryptosys-
tems from a Scalar Multiplication Algorithm with Recovery of the y-Coordinate on
a Montgomery-Form Elliptic Curve, CHES, Vol. Generators, 2001, 126-141

[10] Eric Brier and Marc Joye, Weierstraß Elliptic Curves and Side-Channel Attacks,
Public Key Cryptography, 2002, 335-345

[11] Eric Bach and Jeffrey Shallit, Algorithmic Number Theory, MIT Press, 1, 1996

[12] Wouter Castryck and Steven D. Galbraith and Reza Rezaeian Farashahi,
Efficient arithmetic on elliptic curves using a mixed Edwards-Montgomery represen-
tation, IACR Cryptology ePrint Archive, 2008, (2008), 218

Benjamin Justus

Laboratoire PRiSM, Groupe Crypto, UVSQ, 78035 Versailles Cedex, FRANCE
Laboratory for Safe and Secure Systems LaS3, Standorte Amberg/Regensburg,
GERMANY

Received: 25.06.2014

Accepted: 10.12.2014

