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We introduce the point degree spectrum of a represented space as a substructure of the
Medvedev degrees, which integrates the notion of Turing degrees, enumeration degrees, con-
tinuous degrees, and so on. The notion of point degree spectrum creates a connection among
various areas of mathematics including computability theory, descriptive set theory, infinite
dimensional topology and Banach space theory. Through this new connection, for instance,
we construct a family of continuum many infinite dimensional Cantor manifolds with prop-
erty C whose Borel structures at an arbitrary finite rank are mutually non-isomorphic. This
provides new examples of Banach algebras of real valued Baire class two functions on metriz-
able compacta, and strengthen various theorems in infinite dimensional topology such as Pol’s
solution to Alexandrov’s old problem.

1 Introduction

Computability Theory

In computable analysis [60, 75], there has for a long time been an interest in how complicated
the set of codes of some element in a suitable spaces may be. Pour-El and Richards [60]
observed that any real number, and more generally, any point in a Euclidean space, has a Turing
degree. They subsequently raised the question whether the same holds true for any computable
metric space. Miller [43] later proved that various infinite dimensional metric spaces such as
the Hilbert cube and the space of continuous functions on the unit interval contain points which
lack Turing degrees, i.e. have no simplest code w.r.t. Turing reducibility. A similar phenomenon
was also observed in algorithmic randomness theory [48]. Day and Miller [14] showed that no
neutral measure [37] has Turing degree by understanding each measure as a point in the infinite
dimensional space consisting of probability measures on an underlying space.

These previous works convince us of the need for a reasonable theory of degrees of unsolv-
ability of points in an arbitrary represented space. To establish such a theory, we associate a
substructure of the Medvedev degrees with a represented space, which we call its point degree
spectrum. A wide variety of classical degree structures are realized in this way, e.g., Turing de-
grees [71], enumeration degrees [17], continuous degrees [43], degrees of continuous functionals
[27]. What is more noteworthy is that the concept of a point degree spectrum is closely linked
to infinite dimensional topology. For instance, all points in a Polish space have Turing degrees
if and only if the small transfinite inductive dimension of that space exists.

In a broader context, there are various instances of smallness properties (i.e., σ-ideals) of
spaces and sets that start making sense for points in an effective treatment; e.g., arithmetical
(Cohen) genericity [48, 50], Martin-Löf randomness [48], and effective Hausdorff dimension [38].
In all these cases, individual points can carry some amount of complexity – e.g. a Martin-Löf
random point is in some sense too complicated to be included in a computable Gδ set having
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effectively measure zero. A recent important example [58, 78] from forcing theory is genericity
with respect to the σ-ideal generated by finite-dimensional compact metrizable spaces. Our
work provides an effective notion corresponding to topological invariants such as small inductive
dimension or metrizability, and e.g. allows us to say that certain points are too complicated to
be (computably) a member of a (finite-dimensional) Polish space.

Additionally, the actual importance of point degree spectrum is not merely conceptual, but
also applicative. Indeed, unexpectedly, our notion of point degree spectrum turned out to be a
powerful tool in descriptive set theory and infinite dimensional topology, in particular, in the
study of Banach space theory and involved Borel isomorphism problems, as explained in more
depth below.

Descriptive Set Theory

A Borel isomorphism problem (see [9, 39, 29, 23]) asks to find a nontrivial isomorphism type
in a certain class of Borel spaces (i.e., topological spaces together with their Borel σ-algebras).
An α-th level Borel/Baire isomorphism between X and Y is a bijection f such that E ⊆ X
is of additive Borel/Baire class α if and only if f [E] ⊆ Y is of additive Borel/Baire class α.
These restricted Borel isomorphisms are introduced by Jayne [31], in Banach space theory,
to obtain certain variants of the Banach-Stone Theorem and the Gelfand-Kolmogorov
Theorem for Banach algebras of the forms B∗

α(X) for realcompact spaces X. Here, B∗
α(X) is the

Banach algebra of bounded real valued Baire class α functions on a space X with respect to the
supremum norm and the pointwise operation [7, 13, 31]. The first and second level Borel/Baire
isomorphic classifications have been studied by several authors (see [32, 33]). However, it is
not certain even whether there is an uncountable Polish space whose Gδσ-structure is neither
isomorphic to the real line nor to the Hilbert cube:

Problem 1 (The Second-Level Borel Isomorphism Problem). Are all uncountable Polish spaces
second-level Borel isomorphic either to R or to RN?

Jayne’s result [31] shows that this is equivalent to asking the following problem on Banach
algebras.

Problem 2 (see also Motto Ros [47]). If X is an uncountable Polish space. Then does there
exist n ∈ N such that B∗

n(X) is linearly isometric (or ring isomorphic) either to B∗
n([0, 1]) or to

B∗
n([0, 1]

N)?

The very recent successful attempts to generalize the Jayne-Rogers theorem and the Solecki
dichotomy (see [47, 55] and also [35] for a computability theoretic proof) revealed that two
Polish spaces are second-level Borel isomorphic if and only if they are σ-homeomorphic. Here,
a topological space X is σ-homeomorphic to Y (written as X ∼=T

σ Y) if there are countable
covers {Xi}i∈ω and {Yi}i∈ω of X and Y such that Xi is homeomorphic to Yi for every i ∈ ω.
Therefore, the second-level Borel isomorphism problem can be reformulated as the following
equivalent problem.

Problem 3 (Motto Ros et al. [46]). Is any Polish space X either σ-embedded into R or
σ-homeomorphic to RN?

Unlike the classical Borel isomorphism problem, which was able to be reduced to the same
problem on zero-dimensional Souslin spaces, the second-level Borel isomorphism problem is
inescapably tied to infinite dimensional topology [41, 42], since all transfinite dimensional un-
countable Polish spaces are mutually second-level Borel isomorphic.
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The study of σ-homeomorphic maps in topological dimension theory dates back to a clas-
sical work by Hurewicz-Wallman [30] characterizing transfinite dimensionality. Alexan-
drov [2] asked whether there exists a weakly infinite dimensional compactum which is not
σ-homeomorphic to the real line. Roman Pol [59] solved this problem by constructing such a
compactum. Roman Pol’s compactum is known to satisfy a slightly stronger covering property,
called property C [1, 3, 24].

Our notion of degree spectrum on Polish spaces serves as an invariant under second-level Borel
isomorphism. Indeed, an invariant which we call degree co-spectrum, a collection of Turing ideals
realized as lower Turing cones of points of a Polish space, plays a key role in solving the second-
level Borel isomorphism problem. We show that there is an embedding of an uncountable partial
ordering into the σ-embeddability (the second-level Borel embeddability) ordering of metrizable
C-compacta.

The key idea is measuring the quantity of all possible Scott ideals realized within the de-
gree co-spectrum of a given space. Our spaces are completely described in the terminology of
computability theory (based on Miller’s work on the continuous degrees [43]). Nevertheless,
the first of our examples turns out to be second-level Borel isomorphic to Roman Pol’s com-
pactum. Hence, our solution can also be viewed as a refinement of Roman Pol’s solution to
Alexandrov’s problem.

Summary of Results

This work is part of a general development to study the descriptive theory of represented spaces
[52], together with approaches such as synthetic descriptive set theory proposed in [54, 53]. In
Section 3, we introduce the notion of point degree spectrum, and clarify the relationship with
countable-continuity. In Section 4, we introduce the notion of an ω-left-CEA operator in the
Hilbert cube as an infinite dimensional analogue of an ω-CEA operator (in the sense of clas-
sical computability theory), and show that the graph of a universal ω-left-CEA operator is an
individual counterexample to Problems 1, 2, and 3. In Section 5, we clarify the relationship
between a universal ω-left-CEA operator and Roman Pol’s compactum. In Section 6, we de-
scribe a general procedure to construct uncountably many mutually different compacta under σ-
homeomorphism. In Section 7, we characterize represented spaces with effectively-fiber-compact
representations (which are relevant for complexity approaches to complexity theory along the
lines of Weihrauch ’s [77]) as precisely the computable metric spaces. In Section 8, we also
look at the degree structures of nonmetrizable spaces. In Section 9, we construct an admissibly
represented space whose degree spectrum is strictly larger than that of any second-countable T0
spaces up to an oracle. The methods used in Sections 7–9 do not depend on those developed in
Sections 4–6.

2 Preliminaries

2.1 Represented spaces

We briefly present some fundamental concepts on represented spaces following [51]. A repre-
sented space is a pair X = (X, δX) of a set X and a partial surjection δX :⊆ NN → X. A
function between represented spaces is a function between the underlying sets. For f : X → Y
and F :⊆ NN → NN, we call F a realizer of f , iff δY (F (p)) = f(δX(p)) for all p ∈ dom(fδX),
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i.e. if the following diagram commutes:

NN F−−−−→ NNyδX

yδY

X
f−−−−→ Y

A map between represented spaces is called computable (continuous), iff it has a computable
(continuous) realizer. Similarly, we call a point x ∈ X computable, iff there is some computable
p ∈ NN with δX(p) = x. Thus, a represented space is a kind of space equipped with the notion
of computability.

Based on the UTM-theorem, we can introduce the space C(X,Y) of continuous functions
between X and Y such that function evaluation and the other usual notions are computable. In
the following, we will want to make use of two special represented spaces, the countable discrete
space N = (N, δN) and the Sierpiński space S = ({⊥,⊤}, δS). Their representations are given by
δN(0

n10N) = n, δS(0
N) = ⊥ and δS(p) = ⊤ for p ̸= 0N. It is straightforward to verify that the

computability notion for the represented space N coincides with classical computability over the
natural numbers.

We then have the space O(X) ∼= C(X, S) of open subsets of a represented space X by
identifying a set with its characteristic function, and the usual set-theoretic operations on this
space are computable, too. We write A(X) for the space of closed subsets, where names are
names of the open complement. Traditionally in computability theory, a computable element of
the hyperspace O(X) is called a Σ0

1 set, a Σ0
1 class or a c.e. open set, and a computable element

of the hyperspace A(X) is called a Π0
1 set, a Π0

1 class or a co-c.e. closed set.

The canonic function κX : X → O(O(X)) mapping x to {U ∈ O | x ∈ U} is always
computable. If it has a computable inverse, then we call X computably admissible. Admissibility
in this sense was introduced by Schröder [66, 65]. Intuitively, the computably admissible
represented spaces are those that can be understood fully as topological spaces.

A particularly relevant subclass of represented spaces are the computable Polish spaces,
which are derived from complete computable metric spaces by forgetting the details of the
metric, and just retaining the representation (or rather, the equivalence class of representations
under computable translations). Forgetting the metric is relevant when it comes to compatibility
with definitions in effective descriptive set theory as shown in [20].

Example 4. The following are examples of admissible representations.

1. A computable metric space is a tuple M = (M,d, (an)n∈N) such that (M,d) is a metric
space and (an)n∈N is a dense sequence in (M,d) such that the relation

{(t, u, v, w) | νQ(t) < d(au, av) < νQ(w)}

is recursively enumerable. The Cauchy representation δM : NN ⇀M associated with the
computable metric space M = (M,d, (an)n∈N) is defined by

δM(p) = x :⇐⇒

{
d(ap(i), ap(k)) ≤ 2−i for i < k

and x = lim
i→∞

ap(i)
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2. Another, more general subclass are the quasi-Polish spaces introduced by de Brecht [8].
A represented space X = (X, δX) is quasi-Polish, if it is countably based, admissible and
δX : NN → X is total. These include the computable Polish spaces as well as ω-continuous
domains.

3. Generally, a topological T0-space X with a countable base B = ⟨Bn⟩n∈N is naturally
represented by defining δ(X,B)(p) = x iff p enumerates the code of a neighborhood basis
for x, that is, range(p) = {n ∈ N : x ∈ Bn}.

2.2 Degree structures

The Medvedev degrees M [40] are a cornerstone of our framework. These are obtained by taking
equivalence classes from Medvedev reducibility ≤M , defined on subsets A, B of Baire space NN

via A ≤M B iff there is a computable function F : B → A. Important substructures of M
also relevant to us are the Turing degrees DT , the continuous degrees Dr and the enumeration
degrees De, these satisfy DT ⊊ Dr ⊊ De ⊊ M.

Turing degrees are obtained from the usual Turing reducibility ≤T defined on points p, q ∈ NN

with p ≤T q iff there is a computable function F :⊆ NN → NN with F (q) = p. We thus see
p ≤T q ⇔ {p} ≤M {q}, and can indeed understand the Turing degrees to be a subset of the
Medvedev degrees. The continuous degrees were introduced by Miller in [43]. Enumeration
degrees have received a lot of attention in computability theory, and were originally introduced
by Friedberg and Rogers [17]. In both cases, we can provide a simple definition directly as
a substructure of the Medvedev degrees later on.

We also use the standard notations from modern computability theory [48, 71]. For instance,
Φx
e denotes the computation of the e-th Turing machine with oracle x, and x(α) denotes the α-th

Turing jump of x.

2.3 Isomorphism and Classification

We are now interested in isomorphisms of a particular kind, this always means a bijection in
that function class, such that the inverse is also in that function class. For instance, consider
the following morphisms. For a function f : X → Y,

1. f is countably computable (or σ-computable) if there are sets (Xn)n∈N such that X =∪
n∈NXn and each f |Xn is computable.

2. f is countably continuous (or σ-continuous) if there are sets (Xn)n∈N such that X =∪
n∈NXn and each f |Xn is continuous.

3. f is Γ-piecewise continuous if there are Γ-sets (Xn)n∈N such that X =
∪

n∈NXn and each
f |Xn is continuous.

4. f is second-level Borel measurable is Σ0
3 for every Σ0

3 set A ⊆ X.

Note that if X and Y have uniformly proper representations (this includes all computable metric
spaces), then the Xn in the definition of countable continuity may be assumed to be Π0

2-sets.
Moreover, by recent results from descriptive set theory (see [35, 47, 55]), we have the following
implication for functions on Polish spaces:

Π0
2-piecewise continuous ⇒ second-level Borel measurable ⇒ countably continuous



6 Point degree spectra

Consequently, the second-level Borel isomorphic classification and the countably-continuous
isomorphic classification of Polish spaces are exactly the same. More precisely, three classification
problems, Problems 1, 2 and 3 in Section 1 are equivalent.

Hereafter, for notation, let ∼= be computable isomorphism, ∼=T continuous isomorphism (i.e.,
homeomorphism), ∼=σ be isomorphism by countably computable functions and ∼=T

σ is countably-
continuous isomorphism.

For any of these notions, we write X ≤ Y with the same decorations on ≤ if X is isomorphic
to a subspace of Y (i.e., X is embedded into Y) in that way. If X ≤ Y and X is not isomorphic
to Y in the designated way, then we also write X < Y, again with the suitable decorations on
<. If neither X ≤ Y nor Y ≤ X, we write X | Y (again, with the same decorations). The
Cantor-Bernstein argument shows the following.

Observation 5. Let X and Y be represented spaces. Then, X ∼=σ Y if and only if X ≤σ Y
and Y ≤σ X

If underlying spaces are admissibly represented spaces, we also use the terminologies such as
σ-homeomorphism and σ-embedding to denote countably-continuous isomorphism and countably-
continuous embedding.

2.4 Topological Dimension theory

As general source for topological dimension theory, we point to Engelking [15]. See also van
Mill [41, 42] for infinite dimensional topology. A topological space X is countable dimensional
if it is the union of countably many finite dimensional subspaces. Recall that a Polish space is
countable dimensional if and only if it is transfinite dimensional, that is, its transfinite small
inductive dimension is less than ω1 (see [30, pp. 50–51]). One can see that a Polish space X is
countable dimensional if and only if X ≤T

σ {0, 1}N.
To investigate the structure of uncountable dimensional spaces, Alexandrov introduced

the notion of weakly/strongly infinite dimensional space. We say that C is a separator of a pair
(A,B) in a space X if there are two pairwise disjoint open sets A′ ⊇ A and B′ ⊇ B such that
A′ ⊔ B′ = X \ C. A family {(Ai, Bi)}i∈Λ of pairwise disjoint closed sets in X is essential if
whenever Ci is a separator of (Ai, Bi) in X for every i ∈ N,

∩
i∈NCi is nonempty. A space X is

said to be strongly infinite dimensional if it has an essential family of infinite length. Otherwise,
X is said to be weakly infinite dimensional.

We also consider the following covering property for topological spaces. Let O[X] be the
collection of all open covers of a topological space X, and O2[X] = {U ∈ OX : #U = 2}. Then,
X ∈ Sc(A,B) if for any sequence (Un)n∈N ∈ A[X]N, there is a sequence (Vn)n∈N of pairwise
disjoint open sets such that Vn refines Un for each n ∈ N and

∪
n∈N Vn ∈ B[X].

Note that a topological space X is weakly infinite dimensional if and only if X ∈ Sc(O2,O).
We say that X is a C-space [1, 24] or selectively screenable [6] if X ∈ Sc(O,O). We have the
following implications:

countable dimensional ⇒ C-space ⇒ weakly infinite dimensional.

Alexandrov’s old problem was whether there exists a weakly infinite dimensional com-
pactum X >T

σ {0, 1}N. This problem was solved by R. Pol [59] by constructing a metrizable
compactum of the form R∪L for a strongly infinite dimensional totally disconnected subspace R
and a countable dimensional subspace L. Such a compactum is called Pol-type. Every Pol-type
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compactum is a C-space, but is not countable-dimensional. Namely, R. Pol’s theorem says
that there are at least two σ-homeomorphism types of metrizable C-compacta.

There are previous studies on the structure of continuous isomorphism types (Fréchet di-
mension types) of various kinds of infinite dimensional compacta, e.g., strongly infinite dimen-
sional Cantor manifolds (see [11, 12, 57]). Concerning weakly infinite dimensional Cantor man-
ifolds, Elżbieta Pol [56] (see also [11]) constructed a C-compactum in which no separator of
nonempty subspaces can be hereditarily weakly infinite dimensional. We call such a space a
Pol-type Cantor manifold.

3 Point Degree Spectra

3.1 Generalized Turing Reducibility

Recall that the notion of a represented space involves the notion of computability. Hence, we
can associate analogies of Turing reducibility and Turing degrees with an arbitrary represented
space.

Definition 6. Let X and Y be represented spaces. We say that y ∈ Y is point-Turing reducible
to x ∈ X (written as y ≤X,Y

M x, or simply, y ≤M x) if there is a partial computable function
f :⊆ X → Y such that f(x) = y, that is, δ−1

Y (y) ≤M δ−1
X (x).

Based on this idea, we introduce the notion of point degree spectrum of a represented space.

Definition 7. For a represented space X and a point x ∈ X, define

Spec(x) = [δ−1
X (x)]≡M = “the Medvedev degree of δ−1

X (x)”

Spec(X) = {Spec(x) | x ∈ X} ⊆ M.

In other words, Spec(x) is the point-Turing degree of x, and Spec(X) is the point-Turing
degrees of points in the space X. We call Spec(X) the point degree spectrum of X. We also
define the relativized point degree spectrum by Specp(x) = [{p} × δ−1

X (x)]≡M and Specp(X) =
{Specp(x) : x ∈ X}.

Clearly, one can identify the Turing degrees DT , the continuous degrees Dr and the enumer-
ation degrees De with degree spectra of some spaces as follows:

• Spec({0, 1}N) = Spec(NN) = Spec(R) = DT

• (Miller [43]) Spec([0, 1]N) = Spec(C([0, 1], [0, 1])) = Dr

• Spec(O(N)) = De

Observation 8. As any separable metric space embeds into the Hilbert cube [0, 1]N, we find in
particular that Spec(X) ⊆ Dr for any computable metric space X. As any second-countable T0
spaces embeds into the Scott domain O(N), we also have that Spec(X) ⊆ De for any second-
countable T0 space X. In the latter case, the point degree of x ∈ X corresponds to the enumer-
ation degree of neighborhood basis as in Example 4. The Turing degrees will be characterized
in Section 3.2 in the context of topological dimension theory.

The following lemma shows – in Miller’s words – that the continuous degrees are almost
Turing degrees. To be more precise, any continuous degree is relativized into a Turing degree
by all Turing degrees except the smaller ones.
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Lemma 9 (Miller). For any non-total continuous degree q ∈ Dr \ DT we find that for all
p ∈ DT , (p, q) ∈ DT iff p ≰M q.

Proof. Let r = (r(n))n∈N ∈ [0, 1]N be a representative of a non-total continuous degree q ∈
Dr \DT . Let I be the set of all y ∈ {0, 1}N such that y ≤M r, which is a countable set. Choose a
real x whose Turing degree is incomparable with I. In particular, x is algebraically transcendent
with all reals in I. So, there is an x-computable homeomorphism sending r to a sequence of
irrationals. Hence, given any name of (x, r), we first obtain x, and by using x, transform r into
irrationals, and then we get the least Turing degree name of (x, r).

Remark. One can also define the Muchnik degree spectrum of a point as the collection of all
Turing degrees of names of the point. Indeed, the degree spectrum of a countable structure S in
the sense of computable model theory (see [28, 62]) is defined as the Muchnik degree spectrum
of the corresponding point [S] of a quotient space of countable structures by logic action, rather
than the Medvedev degree spectrum of the point. The notion of degree spectrum on a cone (i.e.,
degree spectrum up to an oracle) plays an important role in (computable) model theory (see
[44, 45]). The detailed investigation on the difference between Medvedev and Muchnik degrees
can be found in [25, 26, 72].

However, if an admissibly represented space X is second countable and T0, the point degree
spectrum is equivalent to the Muchnik degree spectrum. This is because X is countably based
admissible space, then Spec(X) ⊆ De by Observation 8, and Medvedev and Muchnik reducibility
coincide for Spec(O(N)) (see [43, 70]).

3.2 Degree Spectra and Dimension Theory

One of the main tools in our work is the following characterization of the point degree spectra
of represented spaces.

Theorem 10. The following are equivalent for admissibly represented spaces X and Y:

1. Specr(X) = Specr(Y) for some oracle r ∈ {0, 1}N.

2. N×X is countable-continuously isomorphic to N×Y, i.e., N×X ∼=T
σ N×Y.

Moreover, if X and Y are Polish, then the following assertions (3) and (4) are also equivalent
to the above assertions (1) and (2).

(3) N×X is second-level Borel isomorphic to N×Y.

(4) The Banach algebra B∗
2(N×X) is linearly isometric (ring isomorphic and so on) to B∗

2(N×
Y).

One can also see that the following assertions are equivalent:

(2′) N×X is Gδ-piecewise homeomorphic to N×Y.

(3′) N×X is n-th level Borel isomorphic to N×Y for some n ≥ 2.

(4′) The Banach algebra B∗
n(N×X) is linearly isometric (ring isomorphic and so on) to B∗

n(N×
Y) for some n ≥ 2.
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By our argument in Section 2.3, the assertions (2′) is equivalent to (2). Obviously the
assertions (3) and (4) imply (3′) and (4′), respectively. The equivalence between (3) and (4)
(and the equivalence between (3′) and (4′)) has already been shown by Jayne [31] for second-
countable (or more generally, realcompact) spaces X and Y. The implication from the assertion
(3′) to (2) is, as mentioned in Section 2.3, recently proved by [47, 55], and more recently, an
alternative computability-theoretic proof is given by [35] using our framework of point degree
spectra of Polish spaces. Consequently, all assertions from (2) to (4′) are equivalent.

To see the equivalence between (1) and (2), we characterize the point degree spectra of
represented spaces in the context of countably-continuous isomorphism.

Lemma 11. The following are equivalent for represented spaces X and Y:

1. Spec(X) ⊆ Spec(Y)

2. X ≤σ N×Y, i.e., X is a countable union of subspaces that are computably isomorphic to
subspaces of Y.

Proof. We first show that the assertion (1) implies (2). By assumption, for any x ∈ X we find
δ−1
X (x) ≡M δ−1

Y (yx) for some yx ∈ Y. Let for Y any i, j ∈ N, let Xij be the set of all points
where the reductions are witnessed by Φi and Φj , and let Yij = {yx | x ∈ Xij} ⊆ {0, 1}N. Then
Φi, Φj also witness Xij

∼= Yij , and obviously X =
∪

⟨i,j⟩∈NXij .

Conversely, the point spectrum is preserved by computable isomorphism and Spec
(∪

n∈NXn

)
=∪

n∈N Spec(Xn), so the claim follows.

Proof of Theorem 10 (1) ⇔ (2). It follows from relativizations of Lemma 11 and Observation
5. Here, it is easy to see that the assertion (2) is equivalent to N×X ≤σ N×Y.

This simple argument completely solves a mystery about the occurrence of non-Turing de-
grees in proper infinite dimensional spaces. Concretely speaking, by combining Lemma 11 and a
dimension-theoretic fact (see Section 2.4), we can characterize the Turing degrees by transfinite
dimensionality1.

Corollary 12. The following are equivalent for a Polish space X endowed with an admissible
representation:

1. Specp(X) ⊆ DT for some oracle p ∈ {0, 1}N

2. X is transfinite dimensional.

Now, by Theorem 10, the countable-continuously isomorphic (σ-homeomorphic) classification
can be viewed as a kind of degree theory dealing with the degrees of degree structures (on a cone).
For instance, one may ask whether Post’s problem (the Friedberg-Muchnik theorem and so on)
is true for degrees of degrees of uncountable Polish spaces.

More details of the structure of degree spectra of Polish space will be investigated in Sections
4 and 6, and those of quasi-Polish space will be in Section 8. We also study the degree spectrum
of a non-quasi-Polish space in Section 9.

1The same observation was independently made by Hoyrup. Brattka and Miller had conjectured that
dimension would be the crucial demarkation line for spaces with only Turing degrees (all personal communication).
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4 Intermediate Point Degree Spectra in Computability Theory

4.1 Intermediate Polish Spaces

Let P be the set of all uncountable Polish spaces. In this section, we investigate the structure
of P/ ∼=T

σ , i.e. either of the equivalence classes w.r.t. σ-homeomorphisms, or equivalently, the
structure of point degree spectra of uncountable Polish spaces up to relativization.

It is well-known that for every uncountable Polish space X:

{0, 1}N ≤T
c X ≤T

c [0, 1]N,

where, recall that ≤T
c is the topological embeddability relation (i.e., the ordering of Fréchet

dimension types). The structure of Fréchet types of uncountable dimensional Polish spaces has
been developed by several authors (see [11, 12, 56, 57]). In this section, we focus on Problem 3
asking whether there exists a Polish space X satisfying the following:

{0, 1}N <T
σ X <T

σ [0, 1]N.

One can see that there is no difference between the structures of σ-homeomorphism types of
uncountable Polish spaces and uncountable metrizable compacta.

Fact 13. Every Polish space is σ-homeomorphic to a compact metrizable space.

Proof. All spaces of a given countable cardinality are clearly σ-homeomorphic, and there are
compact metrizable spaces of all countable cardinalities.

So let X be an uncountable Polish space. Lelek [36] showed that every Polish space X has
a compactification γX such that γX \ X is countable-dimensional. Clearly X ≤c γX. Then,
we have γX \ X ≤T

σ {0, 1}N ≤T
σ X, since X is uncountable Polish and γX \ X is countable-

dimensional. Consequently, X, γX \X ≤T
σ X, and this implies γX = X ∪ (γX \X) ≤T

σ X.

4.2 The Graph Space of a Universal ω-Left-CEA Operator

Now, we provide a concrete example having an intermediate degree spectrum. We say that a
point (rn)n∈N ∈ [0, 1]N is ω-left-CEA in or an ω-left-pseudojump of x ∈ {0, 1}N if rn+1 is left-
c.e. in ⟨x, r0, r1, . . . , rn⟩ uniformly in n ∈ N. In other words, there is a computable function
Ψ : {0, 1}N × [0, 1]<ω × N2 → Q≥0 such that

rn = lim sup
s→∞

Ψ(x, r0, . . . , rn−1, n, s)

for every x, n, s, where Q≥0 denotes the set of all nonnegative rationals. Whenever rn ∈ [0, 1]
for all n ∈ N, such a computable function Ψ generates an operator Jω

Ψ : {0, 1}N → [0, 1]N with
Jω
Ψ(x) = (r0, r1, . . . ), which is called an ω-left-CEA operator.

Proposition 14. There is an effective enumeration (Jω
e )e∈N of all ω-left-CEA operators.

Proof. It is not hard to see that y ∈ [0, 1] is left-c.e. in x ∈ {0, 1}N × [0, 1]k if and only if there
is a c.e. set W ⊆ N×Q such that

y = Jk
W (x) := sup{min{|p|, 1} : x ∈ Bk

i for some (i, p) ∈W},
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where Bk
i is the i-th rational open ball in [0, 1]k. Thus, we have an effective enumeration of all

left-c.e. operators J : {0, 1}N × [0, 1]k → [0, 1] by putting Jk
e = Jk

We
, where We is the e-th c.e.

subset of N×Q. Then, we define

Jω
e (x) = (x, J0

⟨e,0⟩(x), J
1
⟨e,1⟩(x, J

0
⟨e,0⟩(x)), . . . ),

that is, Jω
e is the ω-left-CEA operator generated by the uniform sequence (Jk

⟨e,k⟩)k∈N of left-

c.e. operators. Clearly, (Jω
e )e∈N is an effective enumeration of all ω-left-CEA operators.

Hence, we may define a universal ω-left-CEA operator by Jω(e, x) = Jω
e (x).

Definition 15. The ω-left-computably-enumerable-in-and-above space ωCEA is a subspace of
N× {0, 1}N × [0, 1]N defined by

ωCEA = {(e, x, r) ∈ N× {0, 1}N × [0, 1]N : r = Jω
e (x)}

= “the graph of a universal ω-left-CEA operator.”

Note that in classical recursion theory, an operator Ψ is called a CEA-operator (also known
as an REA-operator or a pseudojump) if there is a c.e. procedureW such that Ψ(A) = ⟨A,W (A)⟩
for any A ⊆ N (see Odifreddi [50, Sections XII and XIII]). An ω-CEA operator is the ω-th
iteration of a uniform sequence of CEA-operators. In general, computability theorists have
studied α-CEA operators for computable ordinals α in the theory of Π0

2 singletons.

We say that a continuous degree is ω-left-CEA if it contains a point r ∈ [0, 1]N which is
ω-left-CEA in a point z ∈ {0, 1}N such that z ≤M r. The point degree spectrum of the space
ωCEA (as a subspace of [0, 1]N) can be described as follows.

Spec(ωCEA) = {a ∈ Dr : a is ω-left-CEA}.

Clearly,

Spec({0, 1}N) ⊆ Spec(ωCEA) ⊆ Spec([0, 1]N).

Lemma 16. The ω-left-CEA space ωCEA is Polish.

Proof. It suffices to show that ωCEA is Π0
2. The stage s approximation to Jk

e is denoted by
Jk
e,s, that is, Jk

e,s(z) = max{min{|p|, 1} : (∃⟨i, p⟩ ∈ We,s) x ∈ Ui}, where We,s is the stage s
approximation to the e-th computably enumerable set We. Note that the function (e, s, k, z) 7→
Jk
e,s(z) is computable. We can easily see that (e, x, r) ∈ ωCEA if and only if

(∀n, k ∈ N)(∃s > n) d
(
πk(r), J

k
e,s(x, π0(r), π1(r), . . . , πk−1(r))

)
< 2−n,

where d is the Euclidean metric on [0, 1].

We devote the rest of this section to a proof of the following theorem.

Theorem 17. The space ωCEA has an intermediate σ-homeomorphism type, that is,

{0, 1}N <T
σ ωCEA <T

σ [0, 1]N.

Consequently, the space ωCEA is a concrete counterexample to Problem 3.
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4.3 Proof of ωCEA <T
σ [0, 1]N

The key idea is to measure how similar the space X is to a zero-dimensional space by approxi-
mating each point in a space X by a zero-dimensional space. Recall from Section 3.1 that the
point degree spectrum coincides with the Muchnik degree spectrum for any second-countable ad-
missibly represented space. Therefore, the spectrum Spec(x) of a point x ∈ X can be identified
with its Turing upper cone, that is,

Spec(x) ≃ {z ∈ {0, 1}N : x ≤M z}.

We think of the spectrum Spec(x) as the upper approximation of x ∈ X by the zero-
dimensional space {0, 1}N. Now, we need the notion of the lower approximation of x ∈ X
by the zero-dimensional space {0, 1}N. We introduce the co-spectrum of a point x ∈ X as its
Turing lower cone

coSpec(x) = {z ∈ {0, 1}N : z ≤M x},

and moreover, we define the degree co-spectrum of a represented space X as follows:

coSpec(X) = {coSpec(x) : x ∈ X}.

Note that the degree spectrum of a represented space fully determines its co-spectrum, while the
converse is not true. For every oracle p ∈ {0, 1}N, we may also introduce relativized co-spectra
coSpecp(x) = {z ∈ {0, 1}N : z ≤M x ⊕ p}, and the relativized degree co-spectra coSpecp(X) in
the same manner.

Observation 18. Let X and Y be admissibly represented spaces. If Specp(X) = Specp(Y),
then we also have coSpecp(X) = coSpecp(Y). Therefore, by Theorem 10, the cospectrum of an
admissibly represented space up to an oracle is invariant under σ-homeomorphism.

A collection I of subsets of N is realized as the co-spectrum of x if coSpec(x) = I. A countable
set I ⊆ P(N) is a Scott ideal if it is the standard system of a countable nonstandard model of
Peano arithmetic, or equivalently, a countable ω-model of RCA+WKL. Miller [43] showed that
every countable Scott ideal is realized as a co-spectrum in [0, 1]N.

Example 19. The spectra and co-spectra of Cantor space {0, 1}N, the space ωCEA, and the
Hilbert cube [0, 1]N are illustrated as follows (see also Figure 1):

1. The co-spectrum coSpec(x) of any point x ∈ {0, 1}N is principal, and meets with Spec(x)
exactly at degT (x). The same is true up to some oracle for an arbitrary Polish spaces X
such that X ∼=T

σ {0, 1}N.
2. For any point z ∈ ωCEA, the “distance” between Spec(z) and coSpec(z) has to be at most

the ω-th Turing jump (see Lemma 20).

3. An arbitrary countable Scott ideal is realized as coSpec(y) of some point y ∈ [0, 1]N. Hence,
Spec(y) and coSpec(y) can be separated by an arbitrary distance.

This upper/lower approximation method clarifies the differences of σ-homeomorphism types
of spaces because both relativized point-degree spectra and co-spectra are invariant under σ-
homeomorphism by Theorem 10 and Observation 18.

Lemma 20. For any oracle p ∈ {0, 1}N, there is a countable Scott ideal which cannot be realized
as a p-co-spectrum of an ω-left-CEA continuous degree.
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Spe(x)

oSpe(x)

x y

Spe(y)

oSpe(y)

Spe(z)

oSpe(z)

z

The !-th Turing jump

Figure 1: The upper and lower approximations of {0, 1}N, ωCEA and [0, 1]N

Proof. Let y = (e, x, r) ∈ ωCEA be an arbitrary point. Then, x ∈ coSpec(y), and x(ω) ∈ Spec(y)
since r is ω-left-CEA in x. Hence, coSpec(y) is not closed under the ω-th Turing jump for any
y ∈ ωCEA. Thus, for any oracle p, the Scott ideal Ap = {x ∈ {0, 1}N : (∃n ∈ N) x ≤T p(ω·n)}
cannot be realized as a co-spectrum in ωCEA.

Consequently, the ω-left-CEA space is not σ-homeomorphic to the Hilbert cube. Note that
Day and Miller [14] showed that every countable Scott set I is realized by a neutral measure.
Hence, we can also conclude that there is a neutral measure whose continuous degree is not
ω-left-CEA.

4.4 Proof of {0, 1}N <T
σ ωCEA

Next, we have to show that the ω-left-CEA space is not countable-dimensional. For X ⊆ [0, 1]N,
we inductively define minX ∈ X as follows:

πn(minX) = minπn[{z ∈ X : (∀i < n) πi(z) = πi(minX)}],

where πn : [0, 1]N → [0, 1] is the n-th projection.

Lemma 21. If X ⊆ [0, 1]N is Π0
1(p) for some p ∈ {0, 1}N, then minX is ω-left-CEA in p.

Proof. We first note that Hilbert cube [0, 1]N is computably compact in the sense that A[0,1]N :

O([0, 1]N) → S is computable, where A[0,1]N(U) = ⊤ iff U = [0, 1]N. Equivalently, there is a
computable enumeration of all finite collections D of basic open sets which covers the whole
space, that is,

∪
D = [0, 1]N.

It suffices to show that πn+1(minX) is left-c.e. in ⟨πi(minX)⟩i≤n uniformly in n relative to
p. Given a sequence a = (a0, a1, . . . , an) of reals and an real q, we denote by C(a, q) the set of
all points in X of the form (a0, a1, . . . , an, r, . . . ) for some r ≤ q, that is,

C(a, q) = X ∩
∩
i≤n

π−1
i {ai} ∩ π−1

n+1[0, q].

By computable compactness of Hilbert cube, one can see that C∗(a) = {q ∈ [0, 1] : C(a, q) =
∅} is p-c.e. open uniformly in a since the complement of C(a, q) is p-c.e. open uniformly in a
and q. Therefore, if C∗(a) is nonempty, then supC∗(a) is p-left-c.e. uniformly in a. Finally, we
can easily see that πn+1(minX) is exactly supC∗(⟨πi(minX)⟩i≤n).
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We use the following relativized versions of Miller’s lemmas.

Lemma 22 (Miller [43, Lemma 6.2]). For every p ∈ {0, 1}N, there is a multivalued function
Ψp : [0, 1]N → [0, 1]N with a Π0

1(p) graph and nonempty, convex images such that, for all e ∈ N,
α ∈ [0, 1]N and β ∈ Ψp(α), if for every representation λ of α, φλ⊕p

e is a representation of x ∈ [0, 1],
then β(e) = x.

Note that Kakutani’s fixed point theorem ensures the existence of a fixed point of Ψ. If α
is a fixed point of Ψp, that is, α ∈ Ψp(α), then coSpecp(α) = {α(n) : n ∈ N}. Therefore, such
an α has no Turing degree relative to p (see [43]).

Lemma 23 (Miller [43, Lemma 9.2]). For every p ∈ {0, 1}N, there is an index e ∈ N such that
for any x ∈ [0, 1], there is a fixed point α of Ψp such that α(e) = x.

Lemma 24. For any oracle p ∈ {0, 1}N, there is an ω-left-CEA continuous degree which is not
contained in Specp({0, 1}N).

Proof. Let Fix(Ψp) be the set of all fixed points of Ψp. Then, Fix(Ψp) is Π0
1(p) since it is the

intersection of the graph of a Π0
1(p) set and the diagonal set. Let e be an index in Lemma 23.

Clearly, A = {α ∈ Fix(Ψp) : α(e) = p} is again a Π0
1(p) subset of [0, 1]N. By Lemma 21, A

contains an element α which is ω-left-CEA in p. By the property of A discussed above, α has
no Turing degree relative to p.

Proof of Theorem 17. By Lemma 20, coSpecp(ωCEA) ⊊ coSpecp([0, 1]N) for any oracle p.
Moreover, by Lemma 24, Specp({0, 1}N) ⊊ Specp(ωCEA) for any oracle p. Therefore, by
Theorem 10 and Observation 18, we conclude {0, 1}N <T

σ ωCEA <T
σ [0, 1]N.

5 Intermediate Point Degree Spectra in Dimension Theory

5.1 Strongly Infinite Dimensional Totally Disconnected Polish Spaces

In this section, we will shed light on dimension-theoretic perspectives of the ω-left-CEA space.
Note that ωCEA is a totally disconnected infinite dimensional space. We first compare our
space ωCEA and a totally disconnected infinite dimensional space RSW which is constructed
by Rubin, Schori, and Walsh [64]. A continuum is a connected compact metric space, and a
continuum is nondegenerated if it contains at least two points.

It is known that the hyperspace CK(X) of continua in a compact metrizable spaceX equipped
with the Vietoris topology forms a Polish space. Hence, we may think of CK(X) as a represented
space, which corresponds to a positive-and-negative representation of the hyperspace in com-
putable analysis. We consider a closed subspace S of CK(X) consisting of all continua connecting
opposite faces π−1

0 {0} and π−1
0 {1}. Then, fix a total Cantor representation of S, i.e., a contin-

uous surjection δCK from the Cantor set C ⊆ [0, 1] onto S. We define the Rubin-Schori-Walsh
space RSW [64, 41] as follows:

RSW = {min(δCK(p)
[p]) : p ∈ C},

= {minA[p] : A is the p-th continuum of [0, 1]N with [0, 1] ⊆ π0[A]},

where A[p] = A ∩ π−1
0 {p} = {z ∈ A : π0(z) = p}.

A compactification of RSW is well-known in the context of Alexandrov’s old problem in
dimension theory. Pol’s compactum RP is given as a compactification in the sense of Lelek
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of the space RSW. Hence, we can see that RP and RSW have the same point degree spectra
(modulo an oracle) as in the proof of Fact 13. Surprisingly, these spaces have the same degree
spectra as the space ωCEA up to an oracle.

Theorem 25. The following spaces are all σ-homeomorphic to each other.

1. The ω-left-CEA space ωCEA.

2. Rubin-Schori-Walsh’s totally disconnected strongly infinite dimensional space RSW.

3. Roman Pol’s counterexample RP to Alexandrov’s problem.

Lemma 26. Every point of RSW is ω-left-CEA.

Proof. By Lemma 21, minA[p] is ω-left-CEA in p, since A[p] is Π0
1(p). Moreover, clearly, p ≤M

minA[p]. Thus, minA[p] is ω-left-CEA.

For notational convenience, without loss of generality, we may assume that the e-th z-
computable continuum is equal to the ⟨e, z⟩-th continuum.

Lemma 27. Suppose that x ∈ [0, 1]N is ω-left-CEA in a point z ∈ {0, 1}N. Then, there is a
nondegenerated z-computable continuum A ⊆ [0, 1]N such that [0, 1] ⊆ π0[A] and minA[p] =
(p, x) for a name p of A.

Proof. Given p, we will effectively construct a name Ψ(p) of a continuum A. By Kleene’s
recursion theorem (see [71]), we may fix p such that the p-th continuum is equal to the Ψ(p)-th
continuum.

Fix an ω-left-CEA operator J generated by ⟨Wn⟩n∈N such that J(z) = x. Here, as in the
proof of Proposition 14, each Wn is a c.e. list of pairs (i, p) indicating Bn

i ⊆ (Jn
Wn

)−1[p, 1]. Since
p = ⟨e, z⟩ for some e ∈ N, we have a computable function π with π(p) = z, and then, redefine
W0 to be W0 ◦ π. In this way, we may assume that J(p) = x.

At stage 0, Ψ constructs A0 = [0, 1]× [0, 1]N. At stage s+1, if we find some rational open ball
Bn

i ⊆ [0, 1]n and a rational q ∈ Q such that Wn,s declares Bn
i ⊆ (Jn

Wn
)−1[q, 1] by enumerating

(i, q), then Ψ removes π−1
0 [B(p; 2−s)]∩ (Bn

i × [0, q)× [0, 1]N) from the previous continuum As−1,
where B(p; 2−s) is the rational open ball with center p and radius 2−s.

Now, we show minA[p] = x := (x0, x1, . . . ). Assume that x0, . . . , xn−1 is an initial segment
of minA[p]. We will show that xn = πn(minA[p]) = minπn[{z ∈ A[p] : (∀i < n) πi(z) = xi}].
Since Jn

Wn
(p, x0, . . . , xn−1) = xn, for any rational q < xn, there is i such that (i, q) ∈ Wn and

(p, x0, . . . , xn−1) ∈ Bn
i . Therefore, A∩(π−1

0 [B(p; 2−s)]∩(Bn
i × [0, q)× [0, 1]N)) = ∅. Hence, if y <

xn, then no extension of (p, x0, . . . , xn−1, y) is contained in A. Moreover, if (p, x0, . . . , xn−1) ∈ Bn
i

and q < xn, then (i, q) ̸∈Wn. Hence, xn = πn(minA[p]) as desired.

Now, clearly minA[p] = (p, x). Note that Ψ defines a z-computable continuum A in a uniform
manner. The computability is ensured because we only remove a subset of π−1

0 [B(p; 2−s)] after
stage s. For the connectivity, if L is any closed subset of [0, 1]N \A, then by compactness of L,
it is covered by a finite collection of open sets of the form Bn

i × [0, q) × [0, 1]N. Consider L∁ =

[0, 1]N \L If n0 is a number greater than all such n’s, then any y = (yn)n∈N ∈ L∁ is connected to
(y0, y1, . . . , yn0−1, 1, 1, 1, . . . ) ∈ L∁ by a line segment inside L∁. Moreover, any (y0, . . . , yk, 1⃗) ∈ L∁

is connected to (y0, . . . , yk−1, 1, 1⃗) ∈ L∁ by a line segment inside L∁. Therefore, any point y ∈ L∁

is connected to 1⃗ ∈ L∁ by a polygonal line inside L∁. Hence, L cannot separate A. Consequently,
A is connected.
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Proof of Theorem 25. By Theorem 10, Lemmata 26 and 27.

The properness of RSW <T
σ [0, 1]N can also be obtained by some relatively recent work on

infinite dimensional topology: the Hilbert cube (indeed, any strongly infinite dimensional com-
pactum) is not σ-hereditary-disconnected (see [61]). However, our alternative proof is naturally
extended to a new construction of infinite dimensional spaces, which will be discussed in Section
6.

Now, one can also define the graph nCEA ⊆ N× {0, 1}N × [0, 1]n of a universal n-left-CEA
operator (as an analogy of an n-REA operator) in a straightforward manner. Then, the space
nCEA has the following properties.

Theorem 28. The space nCEA is a totally disconnected n-dimensional Polish space. Moreover,
the countable product nCEAN is again n-dimensional.

Proof. Clearly, nCEA is totally disconnected and Polish. To check the n-dimensionality, we
think of nCEA as a subspace of [0, 1]n+1 by identifying (e, x) ∈ N×{0, 1}N with ι(0e1x) ∈ [0, 1],
where ι is a computable embedding of {0, 1}N into [0, 1]. We claim that nCEA intersects with
all continua A ⊆ [0, 1]n+1 such that [0, 1] ⊆ π0[A]. We have a computable function d such
that the d(e)-th n-left-CEA procedure Jn

d(e)(x) for a given input x ∈ {0, 1}N outputs the value

y ∈ [0, 1]n such that (ι(0e1x), y) = minA
[ι(0e1x)]
e,x , where Ae,x is the e-th x-computable continuum

in [0, 1]n+1 such that [0, 1] ⊆ π0[Ae,x]. By Kleene’s recursion theorem (see [71]), there is r such
that Jn

d(r) = Jn
r . Hence, (ι(0r1x), Jn

r (x)) ∈ nCEA ∩ Ae,x, which verifies the claim. The claim

implies that nCEA is n-dimensional (see van Mill [41]).

To verify the second assertion, consider the (computably) continuous map g from the square
nCEA2 into nCEA such that for two points x = (e, r, x0, . . . , xn−1) and y = (d, s, y0, . . . , yn−1)
in nCEA,

g(x,y) = (⟨e, d⟩, r ⊕ s, (x0 + y0)/2, . . . , (xn−1 + yn−1)/2).

It is not hard to verify that g−1 is also (computably) continuous. Hence, nCEA2 computably
embedded into nCEA. In particular, it is n-dimensional. Then, we can conclude that nCEAN

is also n-dimensional (by the same argument as in van Mill [42, Theorem 3.9.5]).

5.2 Nondegenerated Continua and ωCEA Degrees

We may extract computability-theoretic contents from the construction of Rubin-Schori-Walsh’s
strongly infinite-dimensional totally disconnected space RSW. The standard proof of non-
countable-dimensionality of RSW (hence, the existence of a non-Turing degree in RSW) indeed
implies the following computability theoretic result.

Theorem 29. There exists a nondegenerated continuum A ⊆ [0, 1]N in which no point has
Turing degree.

Proof. Define H⟨i,j⟩ ⊆ [0, 1]N to be the set of all points which can be identified with an element

in {0, 1}N via the witnesses Φi and Φj (as in the proof of Lemma 11). Then,
∪

nHn is the set
of all points in [0, 1]N having Turing degrees. Note that each Hn is zero-dimensional since it is
homeomorphic to a subspace of {0, 1}N.

Consider the hyperplane P i
n = [0, 1]n × {i} × [0, 1]N for each n ∈ N and i ∈ {0, 1}. It is well

known that {(P 0
n , P

1
n)}n∈N is essential in [0, 1]N. Then, by using the dimension-theoretic fact
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(see van Mill [41, Theorem 4.2.2 (5)]), we can find a separator Ln of (P 0
n+1, P

1
n+1) in [0, 1]N

such that Ln ∩Hn = ∅ since Hn is zero-dimensional.
Put L =

∩
n Ln. Then, L contains no point having Turing degree, since L∩Hn = ∅ for every

n ∈ N. Moreover, L contains a continuum A from P 0
0 to P 1

0 (see van Mill [41, Proposition
4.7.8]).

Theorem 30. Every nondegenerated continuum A ⊆ [0, 1]N contains a point of an ω-left-CEA
continuous degree.

Proof. Note that there is n ∈ ω such that P
[0,p]
n and P

[q,1]
n with some rationals p < q ∈ Q

intersect with A, since A is nondegenerated, where P
[a,b]
n = [0, 1]n× [a, b]× [0, 1]N. Clearly, there

is no separator C of P
[0,p]
n and P

[q,1]
n with C ∩ A = ∅ (i.e., the pair (P

[0,p]
n , P

[q,1]
n ) is essential

in A), since A is not zero-dimensional. Therefore, the pair (P p
n , P

q
n) is essential in the compact

subspace A∗ = A∩P [p,q]
n . Hence, A∗ ⊆ P

[p,q]
n contains a continuum intersecting with P p

n and P q
n

(see van Mill [41, Proposition 4.7.8]). Consider a computable homeomorphism h : P
[p,q]
n

∼= [0, 1]N

mapping P p
n and P q

n to P 0
0 and P 1

0 , respectively. Then, h[A∗] is a continuum intersecting with
Rubin-Schori-Walsh’s space RSW. Hence, it has an ω-left-CEA continuous degree by Theorem
25.

As a corollary, we can see that every compactum A ⊆ [0, 1]N of positive dimension contains
a point of an ω-left-CEA continuous degree. Our proof of Theorem 29 is essentially based on
the fact that for any sequence of zero-dimensional spaces {Xi}i∈N, there exists a continuum
avoiding all Xi’s. Contrary to this fact, Theorem 30 says that {Xi}i∈N cannot be replaced with
a sequence of totally disconnected spaces.

Corollary 31. There exists a sequence {Xi}i∈N of totally disconnected subspaces of [0, 1]N such
that every compact subspace of Y = [0, 1]N \

∪
i∈NXi is zero-dimensional, while Y is infinite

dimensional.

Proof. Define X⟨i,j⟩ to be the set of all points which can be identified with an element in ωCEA
via the witnesses Φi and Φj . Then, X⟨i,j⟩ is totally disconnected since it is homeomorphic to a

subspace of ωCEA. Clearly, no point Y = [0, 1]N \
∪

i,j∈NX⟨i,j⟩ has an ω-left-CEA continuous
degree. Assume that Z is a compact subspace of Y of positive dimension. Then Z has a
nondegenerated subcontinuum A. However, by Theorem 30, A contains a point of an ω-left-
CEA continuous degree.

6 Structure of σ-Homeomorphism Types

6.1 Almost Arithmetical Degrees

In this section, we generalize our proof idea in Section 4 to construct a compact metrizable
space whose points realize a given well-behaved family of “almost” arithmetical degrees as
cospectra. As a consequence, we obtain the following embeddability result on the structure
of σ-homeomorphism types of metrizable compacta.

Theorem 32. There is an embedding of the inclusion ordering ([ω1]
≤ω,⊆) of countable subsets

of the smallest uncountable ordinal ω1 into the σ-embeddability ordering of Pol-type Cantor
manifolds.
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As a corollary, there are a continuum chain and a continuum antichain of σ-homeomorphism
types of Polish spaces. As seen in the previous sections, the notion of a co-spectrum plays a
role of a σ-topological invariant. Roughly speaking, closure properties of co-spectra reflect σ-
homeomorphism types of Polish spaces. The following notion estimates the strength of closure
properties of functions up to the arithmetical equivalence.

Definition 33. Let g and h be total Borel measurable functions from {0, 1}N into {0, 1}N.

1. We inductively define g0(x) = x and gn+1(x) = gn(x)⊕ g(gn(x)).

2. For every oracle r ∈ {0, 1}N, consider the following jump ideal defined as

Ja(g, r) = {z ∈ {0, 1}N : (∃n ∈ N) x ≤a g
n(r)},

where ≤a denotes the arithmetical reducibility (see [49]), that is, p ≤a q is defined by
p ≤T q

(m) for some m ∈ N.

3. A function g is almost arithmetical reducible to a function h (written as g ≤aa h) if for any
r ∈ {0, 1}N there is x ∈ {0, 1}N with x ≥T r such that

Ja(g, x) ⊆ Ja(h, x).

4. Let G and H be countable sets of total functions. We say that G is aa-included in H
(written as G ⊆aa H) if for all g ∈ G, there is h ∈ H such that g ≡aa h (i.e., g ≤aa h and
h ≤aa g).

A function g : {0, 1}N → {0, 1}N is said to be monotone if x ≤T y implies g(x) ≤T g(y).
An oracle Π0

2-singleton is a total function g : {0, 1}N → {0, 1}N whose graph is Gδ. Clearly,
every oracle Π0

2-singleton is Borel measurable, whereas there is no upper bound of Borel ranks
of oracle Π0

2-singletons. For instance, the α-th Turing jump jα(x) = x(α) is a monotone oracle
Π0

2-singleton for every computable ordinal α (see [49]). The following is the key lemma in our
proof.

Lemma 34 (Realization Lemma). There is a map Rea transforming each countable set of
monotone oracle Π0

2-singletons into a Polish space such that

Rea(G) ≤T
σ Rea(H) =⇒ G ⊆aa H.

6.2 Construction

We construct a Polish space whose co-spectrum codes almost arithmetical degrees contained
in a given countable set G of oracle Π0

2 singletons. For notational simplicity, given x ∈ [0, 1]N,
we write xn for the n-th coordinate of x, and moreover, x<n and x≤n for (xi)i<n and (xi)i≤n

respectively.

Definition 35. Let G = (gn)n∈N be a countable collection of oracle Π0
2-singletons. The space

ωCEA(G) consists of (n, d, e, r, x) ∈ N3 × {0, 1}N × [0, 1]N such that for every i,

1. either xi = gin(r), or

2. there are u ≤ v ≤ i such that xi ∈ [0, 1] is the e-th left-c.e. real in ⟨r, x<i, xl(u)⟩ and

xl(u) = g
l(u)
n (r), where l(u) = Φd(u, r, x<v) ≥ i.
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Here, x<i is an abbreviation for the sequence (x0, . . . , xi−1). Moreover, for a set P ⊆ [0, 1]N,
define ωCEA(G, P ) to be the set of all points (d, e, r, x) ∈ ωCEA(G) with (r, x) ∈ P .

Lemma 36. Suppose that G is an oracle Π0
2-singleton, and P is a Π0

2 subset of [0, 1]N. Then,
ωCEA(G, P ) is Polish.

Proof. It suffices to show that ωCEA(G) is Π0
2. The condition (1) in Definition 35 is clearly

Π0
2. Let ∀a∃b > a G(a, b, n, l, r, x) be a Π0

2 condition representing x = gln(r), and l(u)[s] be the
stage s approximation of l(u). The condition (2) is equivalent to the statement that there are
u ≤ v ≤ i such that

(∀t ∈ N)(∃s > t) l(u)[s] ↓≥ i, d(xi, J
i+1
e,s (r, x<i, xl(u)[s])) < 2−t,

and G(t, s, n, l(u)[s], r, xl(u)[s]).

Clearly, this condition is Π0
2.

Remark. The space ωCEA(G) is totally disconnected for any countable set G of oracle Π0
2

singletons, since for any fixed (n, d, e, r) ∈ N3 × {0, 1}N, its extensions form a finite-branching
infinite tree T ⊆ [0, 1]<ω.

Recall from Section 4.4 that Miller [43, Lemma 6.2] constructed a Π0
1 set Fix(Ψ) such

that coSpec(x) = {xi : i ∈ N} for every x = (xi)i∈N ∈ Fix(Ψ). By Lemma 22, without loss of
generality, we may assume that Fix(Ψ) ∩ π−1

0 {r} ̸= ∅ for every r ∈ [0, 1]. Now, consider the
space Rea(G) = ωCEA(G,Fix(Ψ)). To state properties of Rea(G), for an oracle Π0

2-singleton
g and an oracle r ∈ {0, 1}N, we use the following Turing ideal:

JT (g, r) = {z ∈ {0, 1}N : (∃n ∈ N) x ≤T g
n(r)}.

The following is the key lemma, which states that any collection of jump ideals generated
by countably many oracle Π0

2-singletons has to be the degree co-spectrum of a Polish space up
to the almost arithmetical equivalence!

Lemma 37. Suppose that G = (gn)n∈N is a countable set of oracle Π0
2-singletons.

1. For every x ∈ Rea(G), there are r ∈ {0, 1}N and n ∈ N such that

JT (gn, r) ⊆ coSpec(x) ⊆ Ja(gn, r).

2. For every r ∈ {0, 1}N and n ∈ N, there is x ∈ Rea(G) such that

JT (gn, r) ⊆ coSpec(x).

Proof of Lemma 37 (1). We have (r, x) ∈ Fix(Ψ) for every (n, d, e, r, x) ∈ Rea(G). For every
i ∈ N, we inductively assume that for every j < i, xj is arithmetical in gkn(r) for some k ∈ N. Now,
either xi = gin(r) or xi is left-c.e. in (r, x<i, g

l
n(r)) for some l. In both cases, xi is arithmetical

in gkn(r) for some k. Moreover, xi = gin(r) for infinitely many i ∈ N, since either xi = gni (r)
holds or there is l ≥ i such that xl = gln(r) by the condition (2) in Definition 35. Therefore,
gkn(r) ≤T x for all k ∈ N.
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To verify the assertion (2) in Lemma 37, indeed, for any n ∈ N, we will construct indices d
and e such that for every r ∈ {0, 1}N, there is x with (n, d, e, r, x) ∈ Rea(G), where xi = gin(r)
for infinitely many i ∈ N. The e-th left-c.e. procedure J i+1

e (r, x<i, xl(u)) is a simple procedure
extending r, x<i, xl(u) to a fixed point of Ψ. The function Φd searches a safe coding location c(n)
from a given name of x≤c(n−1), where c(n− 1) is the previous coding location.

To make sure the search of the next coding location is bounded, as in Definition 35, we have
to restrict the set of names of a v-tuple x<v to at most v + 1 candidates. It is known that a
separable metrizable space is at most n-dimensional if and only if it is the union of n+ 1 many
zero-dimensional subspaces (see [15]). We say that an admissibly represented Polish space is
computably at most n-dimensional if it is the union of n+1 many subspaces that are computably
homeomorphic to subspaces of NN.

Lemma 38. Suppose that (X, ρX) is a computably at most n-dimensional admissibly repre-
sented space. Then, there is a partial computable injection νX :⊆ (n+ 1)×X → NN such that
for every x ∈ X, there is k ≤ n such that (k, x) ∈ dom(νX) and ρX ◦ νX(k, x) = x.

Proof. By definition, X is divided into n+1 many subspaces S0, . . . , Sn such that Sk is homeo-
morphic to Nk ⊆ NN via computable maps τk and τ−1

k . Then, the partial computable injection
τ−1
k :⊆ NN → X has a computable realizer τ∗k , i.e., τ

−1
k = ρX ◦ τ∗k . Define νX(k, x) = τ∗k ◦ τk(x)

for x ∈ Sk. Then, we have ρX ◦ νX(k, x) = τ−1
k ◦ τk(x) = x for x ∈ Sk.

The Euclidean n-space Rn is clearly computably n-dimensional, e.g., let Sk be the set of
all points x ∈ Rn such that exactly k many coordinates are irrational. Furthermore, one can
effectively find an index of νn := νRn in Lemma 38 uniformly in n. Hereafter, let ρi be the usual
Euclidean admissible representation of Ri. Now, a coding location c(n) will be obtained as a
fixed point in the sense of Kleene’s recursion theorem (see [71]). Hence, one can effectively find
such a location in the following sense.

Lemma 39 (Miller [43, Lemma 9.2]). Suppose that (r, x<i) can be extended to a fixed point of
Ψ, and fix a partial computable function ν which sends x<i to its name, i.e., ρi ◦ν(x<i) = (x<i).
From an index t of ν and the sequence x<i, one can effectively find a location p = Γ(t, r, x<i)
such that for every real y, the sequence (r, x<i) can be extended to a fixed point (r, x) of Ψ such
that xp = y.

Let t(n, k) be an index of the partial computable function x 7→ νn(k, x). We define Φd(u, r, x<v)
to be Γ(t(v, u), r, x<v) for every u ≤ v. Note that indices d and e do not depend on gn.

Proof of Lemma 37 (2). Now, we claim that for every r ∈ {0, 1}N and n ∈ N, there is x with
(n, d, e, r, x) ∈ Rea(G), where xi = gin(r) for infinitely many i ∈ N. We follow the argument by
Miller [43, Lemma 9.2]. Suppose that i is a coding location of gin(r), and (r, x≤i) is extendible
to a fixed point of Ψ. Then, there is k ≤ i+1 such that p = Φd(k, r, x≤i) is defined, and then we
set xp = gpn(r). By the property of Φd, (r, x≤i, xp) can be extended to a fixed point of Ψ. Then,
the e-th left-c.e. procedure automatically produces x≤p which is extendible to a fixed point of
Ψ. Note that the condition (2) in Definition 35 is ensured via u = k, v = i + 1, and l(u) = p.
Eventually, we obtain (r, x) ∈ Fix(Ψ) such that z = (n, d, e, r, x) ∈ Rea(G).

Clearly, gkn(r) ∈ coSpec(z) for every k ∈ N, since coSpec(z) is a Turing ideal, and gkn(r) ≤T

gk+1
n (r). Consequently, JT (gn, r) ⊆ coSpec(z).
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Proof of Lemma 34. Suppose that Rea(G) ≤T
σ Rea(H). Then, N × Rea(G) ≤T

σ N × Rea(H),
and by Theorem 11 and Observation 18, the degree cospectrum of Rea(G) is a sub-cospectrum
of that of Rea(H) up to an oracle p. Fix enumerations G = (gn)n∈N and H = (hn)n∈N.

Claim. For any n and u, there are m and v such that Ja(gn, u) = Ja(hm, v).

By Lemma 37 (2), for any n and u ≥T p, there is x ∈ Rea(G) such that JT (gn, u) ⊆
coSpec(x) ⊆ Ja(gn, u). Then, there is y ∈ Rea(H) such that coSpecp(x) = coSpecp(y). We may
assume that p ≤M y, otherwise (y, p) has Turing degree by Lemma 9. By Lemma 37 (1), there
exist m and v such that JT (hm, v) ⊆ coSpec(y) ⊆ Ja(hm, v). Now, coSpec(x) = coSpec(y)
holds, and note that JT (hm, v) ⊆ Ja(gn, u) implies Ja(hm, v) ⊆ Ja(gn, u). This verifies the
claim.

For a fixed n, βn(u) chooses m fulfilling the above claim for some v. It is not hard to see
that there is m(n) such that βn(u) = m(n) for cofinally many u. Then, for cofinally many v,
there is u such that Ja(gn, u⊕ v) = Ja(hm(n), u⊕ v) by monotonicity. Therefore, gn ≡aa hm(n).
Consequently, G ⊆aa H.

Lemma 40. For any G, there exists a Pol-type Cantor manifold Z(G) such that ωCEA ⊕
Rea(G) ≡T

σ Z(G).

Proof. Recall from Theorem 25 that ωREA is σ-homeomorphic to a strongly infinite dimensional
space RSW. Let R0 and R1 be homeomorphic copies of RSW, and let X be a compactification
of R0 ⊕R1 ⊕Rea(G) in the sense of Lelek. Then, X is σ-homeomorphic to ωCEA⊕Rea(G).

We follow the construction of Elżabieta Pol [56, Example 4.1]. Now, R0 has a hereditarily
strongly infinite dimensional subspace Y [63]. Choose a point p ∈ Y and a closed set F ⊆ Y
containing p such that every separator between p and clXF is strongly infinite dimensional as
in [56, Example 4.1 (A)].

Define K = X/clXF as in [56, Example 4.1 (A)]. To see that K is σ-homeomorphic to X, we
note that clXF ∩ (R1 ∪Rea(G)) = ∅ since R0, R1 and Rea(G) are separated in X. Therefore,
clXF is covered by the union of R0 (which is homeomorphic to R1) and a countable dimensional
space. Define Z as a Pol-type Cantor manifold in [56, Example 4.1 (C)]. Then, Z(G) := Z is
the union of a finite dimensional space and countably many copies of K. Consequently, Z(G) is
σ-homeomorphic to Rea(G).

Proof of Theorem 32. Let S be a countable subset of ω1. Note that supS is countable by
regularity of ω1. Then, there is an oracle p such that supS < ωCK,p

1 , where ωCK,p
1 is the smallest

noncomputable ordinal relative to p. Now, the α-th Turing jump operator jpα for α < ωCK,p
1 is

defined via a p-computable coding of α. By Spector’s uniqueness theorem, the Turing degree
of jpα(x) for x ≥T p is independent of the choice of coding of α, so is Ja(j

p
α, x). Therefore, we

simply write jα for jpα.
Define GS = {jω1+α : α ∈ S}. We show that S ⊆ T if and only if GS ⊆aa GT . Suppose

α ̸= β, say α < β. Clearly, jωα ≤aa jωβ . Suppose for the sake of contradiction that jωβ ≤aa jωα .

Then, in particular, for every x ≤a ∅(ωβ ·t) with t ∈ N, we must have ∅(ωβ ·(t+1)) ≤a x
(ωα·m) for

some m ∈ N. Thus, there is n such that ∅(ωβ ·t+ωβ) ≤T ∅(ωβ ·t+ωα·m+n) <T ∅(ωβ ·t+ωα+1). This is a
contradiction.

Corollary 41. There exists a collection (Xα)α<2ℵ0 of continuum many Pol-type Cantor mani-
folds satisfying the following conditions:
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1. If α ̸= β, then Xα is not n-th level Borel isomorphic to Xβ for all n ∈ N.

2. If α ̸= β, then the Banach algebra B∗
n(Xα) is not linearly isometric (not ring isomorphic

etc.) to B∗
n(Xβ) for all n ∈ N.

Proof. By Theorems 10 and 32. Here, we note that if X is n-th level Borel isomorphic to Y,
then N×X is again n-th level Borel isomorphic to N×Y.

6.3 An Ordinal Valued σ-Topological Invariant

Although we constructed continuum many mutually different spaces, it is difficult to discern
dimension-theoretic differences among these spaces. For instance, all of our spaces have the
same transfinite Steinke dimensions [4, 61], game dimensions [16], and so on (see Chatyrko and
Hattori [10] for the thorough treatment of the notion of various kinds of transfinite dimensions).

We now focus on an ℵ1 chain of σ-homeomorphism types of Polish spaces:

Rn <T
σ Rea({j1}) <T

σ Rea({jω}) <T
σ Rea({jω2}) <T

σ Rea({jω3}) <T
σ . . .

Our key observation was that closure properties of Scott ideals reflects piecewise homeomor-
phism types of Polish spaces. The first purpose here is to provide a topological understanding
of our method.

Definition 42. Let X be a topological space. Let C(⊆X,R) denote the collection of all con-
tinuous functions from subspaces of X into R. Suppose that a collection H(⊆R,R) of functions
from subspaces of R into R is given. A countable set F ⊆ C(⊆X,R) avoids H on X if for any
countable set G ⊆ C(⊆X,R) and countable set H ⊆ H(⊆R,R), there exists a point x ∈ X such
that

(∀g ∈ G|x)(∃f ∈ F |x)(∀h ∈ H|g(x)) f(x) ̸= h ◦ g(x),

where E|y := {f ∈ E : y ∈ dom(f)}. We then say that X is α-avoiding if there is a countable
set that avoids Bα on X, where Bα is the class of all Baire α functions, and B0 = C

The jump dimension jdim(X) of X is the supremum of countable ordinals α < ω1 such that
X is β-avoiding for all β < ωα, where ω0 = 1. If such α does not exist, then jdim(X) = −1.
Hence, jdim(X) = −1 if and only if X is not 0-avoiding.

This notion provides a new characterization of countable-dimensionality for Polish spaces,
and we also see that the jump dimension is invariant under σ-homeomorphism.

Theorem 43. Let X and Y be separable metrizable spaces.

1. X is countable dimensional if and only if jdim(X) = −1 (i.e., X is not 0-avoiding).

2. If X ≤T
σ Y, then jdim(X) ≤ jdim(Y).

3. For every countable ordinal α, there is a Pol-type Cantor manifold X such that jdim(X) =
α.

To show Theorem 43, we need the following effective interpretation of jump-dimension. We
say that I ⊆ {0, 1}N is α-principal if there is p ∈ I such that q ≤T p

(α) for all q ∈ I.
Lemma 44. An admissibly represented separable metrizable space X is α-avoiding if and only
if relative to some oracle r, for all z ∈ {0, 1}N there is a point x ∈ X such that z ∈ coSpecr(x)
and coSpecr(x) is not α-principal.
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Proof. Suppose that F = {fn}n∈ω is a countable set avoiding Bα on X. Then, almost all oracles
r satisfy that X is r-computably embedded into Hilbert cube, α < ωCK,r

1 and every f ∈ F is
computable relative to r. Then, clearly {f(x) : f ∈ F, x ∈ dom(f)} ⊆ coSpecr(x) holds for all
x ∈ X. Fix z ≥T r. Let G be the set of all partial z-computable functions from X into R, and H
be the set of all r-effective Baire α functions (i.e., functions of the form p 7→ Φp(α)

e ). Let x ∈ X
be a point witnessing the avoiding property of F for given G and H. Now, every p ∈ coSpecr(x)
is of the form g(x) for some g ∈ G. By the avoiding property of F , there is f ∈ F such that

f(x) ̸= h◦g(x) for all h ∈ H. In other words, for all p ∈ coSpecr(x), we have f(x) ̸= Φp(α)

e for all
e ∈ N, i.e., f(x) ̸≤T p

(α). Then, put q := f(x) ∈ coSpecr(x). We claim that z ∈ coSpecr(x), i.e.,
z ̸≤M (x, r). Otherwise, by Lemma 9, (x, r, z) has a Turing degree since (x, r) has a continuous
degree. Therefore, there is g ∈ G such that g(x) ≡M (x, r, z). Thus, f(x) is of the form h ◦ g(x)
for some r-computable function h ∈ H.

Conversely, suppose that the condition in Lemma 44 holds for r. We show that the set F of
all partial r-computable functions from X into R avoids Bα on X. Given G and H, one can find
an oracle z ≥T r such that every g ∈ G is z-computable and every h ∈ H is z-effectively Baire
α. Then we have a point x ∈ X with z ∈ coSpecr(x) such that for all p ∈ coSpecr(x), there
exists q ∈ coSpecr(x) such that q ̸≤T (z ⊕ p)(α). Since coSpecr(x) = coSpecz(x), coSpecr(x)
contains g(x) for all g ∈ G, and hence, z ⊕ g(x) ∈ coSpecr(x). Therefore, q ̸= h ◦ g(x) since h

is of the form p 7→ Φ
(z⊕p)(α)

e for some index e. Therefore, F avoids Bα since {f(x) : f ∈ F, x ∈
dom(f)} = coSpecr(x).

Proof of Theorem 43. By Miller’s result [43], we can deduce that a point x ∈ [0, 1]N has a
Turing degree relative to r if and only if coSpecr(x) is principal (i.e., 0-principal). Hence, if X
is countable dimensional, all cospectra are 0-principal up to some oracle. Therefore, X is not
0-avoiding. Conversely, suppose that X is not countable dimensional. We claim that for all
z ∈ {0, 1}N, there is x ∈ X such that z ≤M x and x has no Turing degree. Otherwise, (x, z) has
a Turing degree by Lemma 9. In this case, Specz(X) ⊆ DT . This implies that X is countable
dimensional. Now, our claim clearly implies the desired condition by Lemma 44.

The second assertion follows from Lemma 44 since the cospectrum is invariant under σ-
homeomorphism by Observation 18. Now, we show the third assertion. We first see that the
jump-dimension of Rea(jωα) is α + 1. We have jdim(Rea(jωα)) ≥ α + 1 because for any
z, there is x ∈ Rea(jωα) such that JT (jωα , z) ⊆ coSpec(x) ⊆ Ja(jωα , z) by Lemma 37. If
y ∈ coSpec(x), then y ∈ Ja(jωα , z). Therefore, y(ω

α+n) ∈ JT (jωα , z) ⊆ coSpec(x) for all n ∈ N.
Hence, coSpecz(x) = coSpec(x) is closed under the β-th Turing jump for all β < ωα+1. To see
jdim(Rea(jωα)) < α+2, we note for any x ∈ Rea(jωα) that JT (jωα , z) ⊆ coSpec(x) ⊆ Ja(jωα , z)
for some z by Lemma 37. Then, z ∈ coSpec(x), but coSpec(x) is covered by the Turing ideal
generated by z(ω

α+1). If α is a limit ordinal, then consider X = Rea({jωβ}β<α).

Example 45. 1. The jump-dimension of Hilbert cube [0, 1]N is ω1. This is because every
countable Scott ideal is realized as a cospectrum in the Hilbert cube [43] and by Lemma
44.

2. The jump-dimension of Rea(G) cannot be ω1 for every countable set of G of oracle Π0
2

singletons. This is because every oracle Π0
2 singleton is Borel measurable. Therefore, there

is a countable ordinal α which bounds all Borel ranks of functions contained in G since ℵ1

is regular. Thus, for any g ∈ G, we have g(r) ≤T (r⊕ z)(α) for some oracle z. One can see
that the cospectrum of a point in Rea(G) is (α · ω)-principal.
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3. We have 0 ≤ jdim(ωCEA) ≤ 1. This is because the cospectrum of a point in ωCEA is
ω-principal by the proof of Lemma 20.

7 Internal Characterization of Degree Structures

7.1 Characterizing Continuous Degrees Through a Metrization Theorem

In this section, we will provide a rather strong metrization theorem, namely that any computably
admissible space with an effectively fiber-compact representation can be computably embedded
in a computable metric space. Our result is a slightly stronger version of a result by Schröder
that an admissible space with a proper representation is metrizable [67]. This also gives us a
characterization of the continuous degrees inside the Medvedev degrees that does not refer to
represented spaces at all.

For some closed set A ⊆ {0, 1}N, let T (A) ⊆ {0, 1}N be the set of trees for A, where each
infinite binary tree is identified with an element of Cantor space. Now let δ :⊆ {0, 1}N → X be an
effectively fiber-compact representation, i.e. let x 7→ δ−1({x}) : X → A({0, 1}N) be computable.
Then T (δ−1({x})) ≤M δ−1({x}). If δ is computably admissible, we also have δ−1({x}) ≤M

T (δ−1({x})). Note that being effectively fiber-compact is equivalent to being effectively proper,
as the union of compactly many compact sets is compact. It is known that any computable
metric space has a computably admissible effectively fiber-compact representation (e.g. [77]).
We shall prove that the converse holds, too.

Theorem 46. A represented space X admits a computably admissible effectively fiber-compact
representation iff X embeds computably into a computable metric space.

Corollary 47. A ⊆ {0, 1}N has continuous degree iff there is B ∈ A({0, 1}N) such that A ≡M

B ≡M T (B).

To prove Theorem 46, we need the following two lemmata and a result by Weihrauch.

Lemma 48. Let X admit an effectively fiber-compact representation. Then there is a space Y
such that:

1. X ↪→ Y (as a closed subspace),

2. Y has an effectively fiber-compact representation,

3. Y has a computable dense sequence,

4. if X is computably admissible, so is Y.

Proof. Construction of Y: We start with some preliminary technical notation. Let Wrap :
{0, 1}N → {0, 1}N be defined by Wrap(p)(2i) = p(i) and Wrap(p)(2i + 1) = 0. Let Prefix :⊆
{0, 1}N → {0, 1}∗ be defined by Prefix(p) = w iff p = 0w(1)0w(2)0 . . . 011q for some q ∈ {0, 1}N.
Note that dom(Prefix) ∩ dom(Wrap−1) = ∅ and dom(Prefix) ∪ dom(Wrap−1) = {0, 1}N.

Let the presumed representation of X be δX :⊆ {0, 1}N → X. Our construction of Y
will utilize a notation νY : {0, 1}∗ → Y ′ as auxiliary part, this notation (or alternatively,
equivalence relation on {0, 1}∗) will be dealt with later. We set Y = X ∪ Y ′ (in particular, we
add only countably many elements to X) and then define δY via δY(p) := δX(Wrap−1(p)) if
p ∈ dom(δX ◦Wrap−1) and δY(p) = νY(Prefix(p)) if p ∈ dom(Prefix).

In order to define νY, we do need to refer to the effective fiber-compactness of δX. From
the function realizing x 7→ δ−1

X ({x}) : X → A({0, 1}N) we can obtain an indexed family of finite
trees (Tw)w∈{0,1}∗ with the following properties:
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1. Each Tw has height |w|.

2. If w ≺ u, then Tu ∩ {0, 1}≤|w| = Tw.

3. w ∈ Tw.

4. For any p ∈ dom(δX), some q ∈ {0, 1}N is an infinite path through
∪

n∈N Tp≤n
iff δX(q) =

δX(p).

Now we set νY(w) = νY(u) iff Tw = Tu. Note in particular that Tw = Tu is a decidable property.

Proof of the properties: To see that X ↪→ Y it suffices to note that both Wrap and
Wrap−1 are computable. That X embeds as a closed subspace follows from dom(Wrap−1) being
closed in {0, 1}N.

Next we shall see that δY is effectively fiber-compact by reversing the step from the function
x 7→ δ−1

X ({x}) : X → A({0, 1}N) to the family (Tw)w∈{0,1}∗ . First, we define a version of Wrap
for finite trees via T-Wrap(T ) = {0w(1)0w(2) . . . w(|w|) | w ∈ T}∪{0w(1)0w(2) . . . w(|w|)0 | w ∈
T}. Given some setW ⊆ {0, 1}∗, let the induced tree of height be defined via T (W,n) = {u∃w ∈
W u ≺ w} ∪ {u ∈ {0, 1}n | ∃w ∈ W ∧ w ≺ u}. Then we define a derived family (T ′

w)w∈{0,1}∗
by T ′

0w(1)0w(2)...0w(|w|) = T ′
0w(1)0w(2)...0w(|w|)0 = T-Wrap(Tw) and T ′

0w(1)...w(|w|)1v = T ({u | Tu =

Tw}, |w|+ |v|). This construction too satisfies that if w ≺ u, then T ′
u ∩ {0, 1}≤height(T ′(w)) = T ′

w.
Thus, the function that maps p to the set of all infinite pathes through

∪
n∈N T

′
p≤n

does define

some function t : {0, 1}N → A({0, 1}N), and one can verify readily that t(p) = δ−1
Y (δY(p))

whenever p ∈ dom(δY(p)).

It is clear that Y has a computable dense sequence: Fix some standard enumeration ν : N →
{0, 1}∗, and consider (yn)n∈N with yn = δY(0ν(n)(1) . . . 0ν(n)(|ν(n)|)1ω).

It remains to show that if δX is admissible, so is δY. It is this step which requires the
identification of some points via νY, and through this, also depends on δX being effectively-
fiber-compact. Given some tree encoding some δ−1

Y ({x}), we need to be able to compute a
path through it. As long as the tree seems to have a path without repeating 1’s, we lift the
corresponding map for δX. If x = νY(w) for some w ∈ {0, 1}∗, we notice eventually, and can
extend the current path in a computable way by virtue of the identifications.

The preceding lemma produces spaces with a somewhat peculiar property: The designated
dense sequence is an open subset of the space, unlike the usual examples. In [19], Gregoriades
has explored a general construction yielding Polish spaces with such properties (cf. [21, Theorem
2.5]), which in particular serves to prevent effective Borel isomorphisms between spaces.

Lemma 49. Let X admit a computably admissible effectively fiber-compact representation.
Then X is computably regular.

Proof. The properties of the representations mean that we can consider X as a subspace of
A({0, 1}N) containing only pair-wise disjoint sets. Let A ∈ A(A({0, 1}N)) be a closed subset in
X. Note that we can compute

∪
A ∈ A({0, 1}N), as every infinite path computes the relevant

tree. Furthermore, given x ∈ X ⊆ A({0, 1}N) and A, we can compute x∩
∪
A ∈ A({0, 1}N). As

X only contains pair-wise disjoint points, this set is empty if and only if x and A are disjoint.
As {0, 1}N is compact, the corresponding tree will have to die out at some finite level, which
means that the trees for x and A are disjoint below this level. Let I be the vertices at this level
belonging to x. We may now define two open sets UI , UIC ∈ O(A({0, 1}N)) by letting UX for
X ∈ {I, IC} accept its input sets A as soon as A∩X{0, 1}N = ∅ is verified. Then UI∩UIC = {∅},
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thus X∩UI and X∩UIC are disjoint open sets. Moreover, we find A ⊆ UI and x ∈ UIC , so the
two open sets are those we needed to construct for computable regularity.

Proof of Theorem 46. The ⇐-direction is present e.g. in [77]. We can use Lemma 48 to make
sure w.l.o.g. that X has a computable dense sequence. By Lemma 49, the space is computably
regular. As shown in [22, 76], a computably regular space with a computable dense sequence
admits a compatible metric.

Miller showed that the Turing degrees below any non-total continuous degree form a Scott
ideal [43], heavily drawing on topological arguments. However, based on Corollary 47 we see
that the statement itself can be phrased entirely in the language of trees, points and Medvedev
reducibility. So far, we do not know of a direct proof involving only these concepts:

Proposition 50. Let A ⊆ {0, 1}N be such that A ≡M T (A) and that there is no r ∈ {0, 1}N
with A ≡M {r}. Then T (B) ≤M {p} <M A for p ∈ {0, 1}N, B ⊆ {0, 1}N implies B ≤M A.

7.2 Enumeration Degrees and Overtness

The often overlooked dual notion to compactness is overtness (see [73, 74]). Intuitively, overt-
ness makes existential quantification well-behaved: a space X is overt if EX : O(X) → S is
continuous, where EX(U) = ⊤ iff U is nonempty. Therefore, if X is overt and P ⊆ X × Y
is open, then {y ∈ Y | ∃x ∈ X (x, y) ∈ P} is open, too. Classically, this is a trivial notion,
however, the situation is different from an effective point of view.

One may identify an overt subspace A of X with EA, or equivalently, its overtness witness
{U ∈ O(X) : A ∩ U ̸= ∅} as a point in the represented space O(O(X)). Via this identification,
we obtain the hyperspace V(X) of representatives A of all overt subspaces A of X (see also [51]).
Note that this corresponds to the lower Vietoris topology on the hyperspace of closed sets. A
computable point in V(X) is also called a c.e. closed set in computable analysis.

Now we call a representation δ :⊆ NN → X effectively fiber-overt, iff δ−1 : X → V(NN) is
computable. A straightforward argument shows that this is equivalent to δ being effectively
open, i.e. U 7→ δ[U ] : O(NN) → O(X) being computable. Now we see that every space with
an effectively fiber-overt representation inherits an effective countable basis from NN, while on
the other hand, the standard representations of countably based spaces introduced in Example
4 are all effectively fiber-overt. Thus we see that while effectively fiber-compact representations
characterize metrizability, effectively fiber-overt representations characterize second-countability.

8 Point Degree Spectra of Quasi-Polish Spaces

8.1 Lower Reals and Semirecursive Enumeration Degrees

Let us move on to the σ-isomorphic classification of quasi-Polish spaces [8]. We now focus on
the following chain of quasi-Polish spaces:

DT ⊊ Dr ⊊ De, and {0, 1}N <T
σ [0, 1]N <T

σ O(N).

Here, the proper inclusion [0, 1]N <T
σ O(N) follows from relativizing Miller’s observation in

[43] that no quasi-minimal degree has continuous degree.
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In quasi-Polish case, the notion of the specialization order is quite useful. Indeed, Motto
Ros has already used the specialization order to give an alternative way to show the properness
of [0, 1]N <T

σ O(N). Recall that the specialization order ≺ on a topological space X is defined
via x ≺ y :⇔ x ∈ {y}. In particular, the specialization order on O(N) coincides with subset-
inclusion. The T1 separation property asserts that no two elements are comparable w.r.t. ≺,
i.e. that the specialization order is a single antichain.

Theorem 51. There is a map Q transforming each countable set S ⊆ ω1 into a nonmetrizable
quasi-Polish space Q(S) ̸≤T

σ [0, 1]N such that

S ̸⊆ T =⇒ Q(S) ̸≤T
σ Q(T ).

Let R< be the real line endowed with the lower topology, that is, its topology is generated
by open intervals of the form (p,∞). One can easily see that R |Tσ R< by comparing their
specialization orders. From the computability theoretic viewpoint, the property R ̸≤T

σ R< can
be strengthened as follows.

Lemma 52 (Co-spectrum Preservation). Let X be an admissibly represented Polish space.
Then,

coSpec(X× R<) ⊆ coSpec(X) ∪ coSpec({0, 1}N).

In particular, if such an X is uncountable, then there is an oracle r ∈ {0, 1}N such that

coSpecr(X× R<) = coSpecr(X).

Lemma 53. LetX admit an effectively fiber-overt representation δX (cf. Subsection 7.2), x ∈ X,
y ∈ R<, and z ∈ {0, 1}N. If z ≤M (x, y), then either z ≤M x or −y ≤M x holds.

Proof. Let computable f :⊆ X×R< → {0, 1}N witness the reduction z ≤M (x, y). By extending
the domain of f if necessary, it can be identified with a c.e. open set U ⊆ {0, 1}N×Q×N×{0, 1}
satisfying that f(x, y)(n) = i if and only if the following two condition holds:

1. For any p ∈ δ−1
X (x) there is some rational s < y such that (p, s, n, i) ∈ U .

2. For any p ∈ δ−1
X (x) and any rational s < y, (p, s, n, 1− i) ̸∈ U .

As δX is effectively fiber-overt, the set U ′ := {(x′, t, n, i) | ∃p ∈ δ−1
X (x′) (p, t, n, i) ∈ U} is also

computable as an open subset of X×Q× N× {0, 1}. Now we can distinguish two cases:

1. For any ε > 0, there exist rationals t < s < y+ ε such that (x, t, n, i) ∈ U ′ and (x, s, n, 1−
i) ∈ U ′ for some n ∈ N and i ∈ {0, 1}.

2. Otherwise, there exists ε > 0 such that for all t < y + ε, if (x, t, n, i) ∈ U ′ for some n ∈ N
and i ∈ {0, 1}, then we must have i = f(x, y)(n).

Note that if (x, t, n, i) ∈ U ′ and (x, s, n, 1 − i) ∈ U ′ for t < s, then we automatically have
y ≤ s. Therefore, in the first case we can compute −y ∈ R< as the supremum of −s over all
witnesses s, thus find −y ≤M x. In the second case, there will be some rational number y0 with
y ≤ y0 < y + ε. Using y0 in place of y leaves the value f is producing unchanged, thus we have
that z ≤M x.



28 Point degree spectra

Proof of Lemma 52. Suppose that y ∈ R< and x ∈ X. If −y ̸≤M x, then coSpec(x, y) =
coSpec(x) by Lemma 53. Otherwise, (x, y,−y) ≡M (x, y). If y ≤M x, then clearly, coSpec(x, y) =
coSpec(x). Otherwise, (y,−y) ̸≤M x. Obviously, (y,−y) has Turing degree. By Lemma 9, we
have (x, y,−y) ∈ DT . Hence, coSpec(x, y) ∈ coSpec({0, 1}N). For the latter half of Lemma 52,
if X is uncountable, then there is an r-computable embedding of {0, 1}N into X for some oracle
r.

Proof of Theorem 51. Let GS be the countable set of monotone oracle Π0
2 singletons constructed

in the proof of Theorem 32. By Lemma 52, the quasi-Polish space Q(S) := Rea(GS)× R< has
the same cospectrum as Rea(GS), where R< := R< ∪ {∞} is a quasi-completion of R<. By
the proofs of Theorem 32 and Lemma 34, if S ̸⊆ T , then the cospectrum of Rea(GS) is not
a sub-cospectrum of Rea(GT ) relative to all oracles. Therefore, by Observation 18, we have
Q(S) ̸≤T

σ Q(T ).

As a consequence of Lemma 52, any lower real can compute only a ∆0
2 real:

coSpec(R<) = {{x ∈ {0, 1}N : x ≤T y} : y is right-c.e.}

Indeed, Lemma 53 provides a very simple and natural construction of a quasi-minimal enu-
meration degree.

Corollary 54 (see also Arslanov, Kalimullin & Cooper [5, Theorem 4]). Suppose that
z ∈ R is neither left-c.e nor right-c.e. Then, the enumeration degree of the cut {q ∈ Q : q < z}
is quasi-minimal.

On the one hand, we deduced the property [0, 1]N <T
σ O(N) from the topological argument

concerning the specialization order on the lower real R<. On the other hand, Miller’s orig-
inal proof used the existence of a quasi-minimal enumeration degree to show Spec([0, 1]N) ⊊
Spec(O(N)). Surprisingly, however, the previous argument clarifies that these two seemingly
unrelated approaches are essentially equivalent.

Note that the point degree spectrum of the lower real R< is indeed strongly connected with
the notion of a semirecursive set in the context of the enumeration degrees. Recall from [34]
that a set A ⊆ N is called semirecursive, if there is a computable function f : N× N → N such
that for all n,m ∈ N we find f(n,m) ∈ {n,m}, and if n ∈ A or m ∈ A, then f(n,m) ∈ A. We
call an enumeration degree q ∈ De semirecursive, if it is the degree of a semirecursive point in
O(N).

Jockusch [34] pointed out that every left-cut (i.e., every lower real x ∈ R<) is semirecur-
sive, and conversely, Ganchev and Soskova [18] showed that every semirecursive enumeration
degree contains a left-cut. Consequently, the point degree spectra of the lower real R< can be
characterized as follows:

Spec(R<) = {d ∈ De : d is a semirecursive enumeration degree}.

8.2 Higher Dimensional Lower Cubes

We can also consider the higher dimensional lower real cubes Rn
<. Surprisingly, the spectra of

Rn
< form a proper hierarchy as follows.

Theorem 55. If X is a second-countable T1 space, then Rn+1
< |Tσ X× Rn

< for every n.
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To show the above theorem, we use the following order theoretic lemma. Let Λn = ({0, 1}n,≤
) be a partial order on {0, 1}n obtained as the n-th product of the ordering 0 < 1.

Lemma 56. For every countable partition (Pi)i∈ω of the n-dimensional hypercube [0, 1]n (en-
dowed with the standard product order), there is i ∈ ω such that Pi has a subset which is order
isomorphic to the product order Λn.

Proof. We use Vaught’s “non-meager” quantifier ∃∗xφ(x), which states that the set {x : φ(x)}
is not meager in [0, 1] (with respect to the standard Euclidean topology). We claim that for
every countable partition (Pi)i∈ω of [0, 1]n, there is i ∈ ω such that

∃∗x1∃∗x2 . . . ∃∗xn (x1, x2, . . . , xn) ∈ Pi

Inductively assume that the above claim is true for n− 1. If the above claim does not hold
for n, then by the Baire category theorem, there are comeager many x1 such that

¬∃∗x2 . . . ∃∗xn (x1, x2, . . . , xn) ∈
∪
i

Pi.

However, for any such x1, by the induction hypothesis, the x1-sections of Pi’s do not cover
the x1-section of [0, 1]n. In particular,

∪
i Pi cannot cover the n-hypercube [0, 1]n, which verifies

the claim.

Now, let S be a nonmeager set consisting of all x1’s in the above claim. Note that since there
are non-meager many x1 ∈ S, there is a nonempty open set U such that for any nonempty open
set V ⊆ U , one can find uncountably many such x1 ∈ V ∩ S. Otherwise, S is covered by the
closure of the union of the collection B of all rational open balls B such that B ∩S is countable.
Therefore, S is divided into the union of the nowhere dense set ∂

∪
B and the countable set∪

B∈B B ∩ S, which contradicts the fact that S is nonmeager. We fix such a nonempty open set
U .

Now, for any x1 ∈ S, we may inductively assume that the x1-th section of Pi has a subset
L(x1) which is order isomorphic to Λn−1. Let L̂(x1) be the region bounded by L(x1), which is
homeomorphic to [0, 1]n−1. We may also inductively assume that Pi is dense in L̂(x1). Therefore,
since L̂(x1) for any x1 ∈ S has positive (n−1)-dimensional Lebesgue measure, for any nonempty
open set V ⊆ U one can find x01 < x11 in V ∩S such that the intersection π◦ L̂(x01)∩π◦ L̂(x11) also
has positive (n−1)-dimensional Lebesgue measure, where π : [0, 1]n → [0, 1]n−1 is the projection
defined by π(x1, x2, . . . , xn) = (x2, . . . , xn). By density of Pi, one can find a smaller (n−1)-cubes
L∗(x01), L

∗(x11) ⊆ π ◦ L̂(x01)∩ π ◦ L̂(x11) such that ({x01}×L∗(x01))∪ ({x11}×L∗(x11)) ⊆ Pi is order
isomorphic to Λn.

Proof of Theorem 55. Note that the specialization order on the space Rn+1
< is exactly the same

as the standard product order on Rn+1. By Lemma 55, for every countable partition (Pi)i∈ω
of Rn+1

< , there is i ∈ ω such that the specialization order on Pi has a subset which is order
isomorphic to the product order Λn+1 whose order dimension is n + 1. If Pi is embedded into
the specialization order on X×Rn

<, then the embedded image of an isomorphic copy of Λn+1 has
to be contained in a connected component of the order of X× Rn

<. However, the specialization
order on X × Rn

< is now card(X) many copies of that on Rn
< since X is T1. Therefore, every

connected component of the specialization order on X×Rn
< is isomorphic to the product order

on Rn whose order dimension is n. Hence, Rn+1
< cannot be σ-embedded into X× Rn

<.
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Conversely, suppose thatX×Rn
< is σ-embedded into Rn+1

< . By Lemma 55, for every countable
partition (Pi)i∈ω of X× Rn

<, there must exist i ∈ ω such that Pi contains a uncountable family
(Λn

α)α∈ℵ1 of pairwise incomparable suborders of Pi which are order isomorphic to Λn.
Let Lα be the embedded image of Λn

α in Rn+1
< , and L̂α be the region bounded by Lα, which is

homeomorphic to [0, 1]n. As in the proof of Lemma 55, we may also assume that the embedded
image P ∗

i ⊆ Rn+1
< of Pi is dense in L̂α for any α < ℵ1. For any α < ℵ1, the projection

πk[L̂α] = {(x0, . . . , xk−1, xk+1, . . . , xn) : (x0, . . . , xn) ∈ L̂α} of L̂α for some k ≤ n has positive
n-dimensional Lebesgue measure. Fix k < n + 1 such that πk[L̂α] has positive n-dimensional
Lebesgue measure for uncountably many α. Then, there are α ̸= β such that πk[L̂α] ∩ πk[L̂β]
also has positive (n+1)-dimensional Lebesgue measure. It is not hard to see that it contradicts
our assumption that Lα and Lβ are incomparable.

Note that Theorem 55 has immediate computability-theoretic corollaries:

Corollary 57. For every n ∈ N there are enumeration degrees pn, qn such that

• pn is the product of n+ 1 semirecursive degrees, but not of n semirecursive degrees and a
Turing degree.

• qn is the product of n semirecursive degrees and a Turing degree, but not of n− 1 semire-
cursive degrees and a Turing degree, or of n+ 1 semirecursive degrees.

8.3 The co-spectrum of a Universal Quasi-Polish Space

Recall that the co-spectrum of the universal Polish space [0, 1]N consists of all principal countable
Turing ideals and all countable Scott ideals. However, there are many non-principal countable
Turing ideals that are not Scott ideals, e.g., countable ω-models of WWKL+¬WKL, RT2

2+¬WKL
and so on. We now see that every countable Turing ideal is realized as a co-spectrum of the
universal quasi-Polish space O(N) by modifying the standard forcing construction of quasi-
minimal enumeration degrees.

Theorem 58. Every countable Turing ideal is realized as a co-spectrum in the universal quasi-
Polish space O(N). In particular, coSpecr([0, 1]N) ⊊ coSpecr(O(N)) for every r ∈ N.

Proof. It suffices to show that, for any sequence (xi)i∈N of reals and oracle r, there is A ∈ O(N)
whose r-co-spectrum coSpecr(A) is equal to all y ∈ {0, 1}N such that y ≤T r ⊕

⊕
m≤n xm for

some n ∈ N. Without loss of generality, we may assume that x0 = r. Suppose ⊥ ̸∈ N, and
let N⊥ = N ∪ {⊥}. We say that a sequence σ ∈ N⊥ strongly extends τ ∈ N⊥ if τ is an initial
segment of σ as a N⊥-valued sequence. A sequence σ ∈ N⊥ extends τ ∈ N⊥ if σ extends τ as
a partial function on N, where the equality σ(n) = ⊥ is interpreted as meaning that σ(n) is
undefined, that is, n ̸∈ dom(σ).

Every partial function φ :⊆ N → N generates a tree Tφ ⊆ N<ω
⊥ by

Tφ = {σ ∈ N<ω
⊥ : (∀n < |σ|) φ(n) ↓ → σ(n) = φ(n)}.

Let P be the collection of pairs (σ, φ) of a string σ ∈ N<ω
⊥ and a partial function φ such that

σ ∈ Tφ and dom(φ) is of the form D(A) = {(m,n) : n ∈ N & m ∈ A} for some finite set A ⊆ N.
We write (τ, ψ) ≤ (σ, φ) if τ strongly extends σ, ψ extends φ, and ψ ↾ |σ| = φ ↾ |σ|.

By induction, we assume that (σ0, φ0) is the pair of an empty string and an empty function,
and (σs, φs) ∈ P has already been defined. Moreover, we inductively assume that the tree Tφs
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is computable in
⊕

2t<s xt. We now have dom(φs) = D(As) for some s ∈ N by the definition of
P. If s = 2e for some e ∈ N, then choose sufficiently large ms+1 ̸∈ As with ms+1 > |σs|. Then,
put σs+1 = σs, and define φs+1(ms+1, n) = xe(n) for every n ∈ N. Clearly, the tree Tφs+1 is
computable in

⊕
2t≤s xt.

If s = 2e + 1 for some e ∈ N, we look for a string τ ∈ Tφs strongly extending σs which
forces the e-th computation Ψe to be inconsistent, that is, two different values Ψe(τ)(n) = i and
Ψe(τ)(n) = j for some n and i ̸= j are enumerated. If there is such a τ , define σs+1 = τ and
φs+1 = φs.

If there is no such a τ , we look for strings η, θ ∈ Tφs strongly extending σs such that the
e-th computations Ψe on η and θ split and are consistent, that is, the consistent computations
Ψe(η)(n) = i and Ψe(θ)(n) = j for some n and i ̸= j are enumerated. In this case, for a
sufficiently large k > max |η|, |θ|, define σs+1 to be the rightmost node of Tφs strongly extending
σs, where we declare that ⊥ is the rightmost element in N⊥ in the sense that n < ⊥ for every
n ∈ N. Note that η (resp. θ) (non-strongly) extends σs+1 ↾ |η| (resp. σs+1 ↾ |θ|) since σs+1

chooses as many ⊥’s as possible. Then, define φs+1 = φs.

Otherwise, define σs+1 = σs and φs+1 = φs. Finally, we obtain a partial function Φ on N by
combining {φs}s∈N.

As in the usual argument, we will show that Φ is quasi-minimal above the collection {
⊕

m≤n xm :
n ∈ N}. Clearly,

⊕
m≤e xm is computable in Φ by our strategy at stage 2e.

To show quasi-minimality of Φ, consider the e-th computation Ψe. If we find an inconsistent
computation on some τ at stage s = 2e + 1, then clearly, Ψe(Φ) does not define an element
of {0, 1}N. If we find a consistent e-splitting η and θ on an input n at stage s = 2e + 1,
Ψe(Φ)(n) is undefined, since otherwise Ψe(Φ)(n) = k implies Ψe(η) = Ψe(θ) = k. Otherwise,
for every n ∈ N, if Ψe(Φ)(n) is defined, then it is consistent, and uniquely determined inside
Tφs . Therefore, Ψe(Φ)(n) = k if and only if there is τ ∈ Tφs strongly extending σs such
that Ψe(τ)(n) = k. Consequently, Ψe(Φ) is computable in

⊕
m≤e xm, since Tφs is a pruned⊕

m≤e xm-computable tree by induction.

Corollary 59. For any separable metrizable space X, we have X× R< <T
σ O(N).

Proof. By Observation 18, Lemma 53 and Theorem 58.

9 Admissibly Represented Spaces which are not Quasi-Polish

Recall that the class of admissibly represented space coincides with that of T0 spaces that are
quotients of second-countable T0 spaces [66]. In particular, there is an admissibly represented
space which is not second-countable. Schröder and Selivanov have studied hierarchies of
such spaces in [69, 68]. In this section, we construct an admissibly represented space which is
not σ-embedded into any second-countable T0 space.

Theorem 60. There is an admissibly represented space X such that O(N) <T
σ X.

Let O∞(N) be a subspace of O(N) consisting of infinite subsets of N. The space Z< rep-
resents the set of integers equipped with lower topology. In this section, we develop the de-
gree spectrum of the function space C(O∞(N),Z<). We represent each continuous functional
H ∈ C(O∞(N),Z<) by an enumeration H̃ of pairs (C, n) of a finite set C ⊆ N and an integer
n ∈ Z indicating that H(Y ) ≥ n for any infinite set Y ⊇ C. This representation is automatically
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given as the usual category-theoretic exponential in the Cartesian closed category of admissibly
represented spaces.

Lemma 61. The Scott domainO(N) is computably embedded into the function space C(O∞(N),Z<).
In particular, the degree spectrum of C(O∞(N),Z<) contains all enumeration degrees.

Proof. For any sets X,A,B ⊆ N, define eA(X ⊕ B) = 1 if A ∩ B ̸= ∅, and eA(X ⊕ B) = 0
otherwise. Then, the function e : O(N) → C(O∞(N),Z<) defined by e(A) = eA is a computable
embedding. To see A ≤M eA, for any n ∈ N, we have n ∈ A if and only if eA(N⊕ {n}) = 1. To
see eA ≤M A, for any Y = Y0 ⊕ Y1 ⊆ N, eA(Y ) = 1 if and only if A ∩ Y1 ̸= ∅. Thus, to compute
eA from A, given a finite set D = D0 ⊕D1 ⊆ N, we enumerate (D, 1) into ẽA when A ∩D1 ̸= ∅
is witnessed.

Indeed, C(O(N),Z<) is computably embedded into C(O∞(N),Z<) by transforming each f
into f̂ defined by f̂(X ⊕ Y ) = f(Y ) for any X,Y ⊆ N.
Lemma 62. There is a point F in the function space C(O∞(N),Z<) such that F has no
enumeration degree.

Proof. We follow the argument by Hinman [27]. We construct a continuous functional F :
O∞(N) → Z< as the limit of an increasing sequence of partial continuous functionals Fn with
domain [An] ⊆ O∞(N), where An is a collection of finite sets such that

∪
An is coinfinite, and

[An] denote the set of all infinite sets X ⊇ L for L ∈ An.
At stage n, we look for G ∈ C(O∞(N),Z<) not exceeding Fn−1 on An−1 and A ∈ O(N) such

that G has the same degree with A via indices n = ⟨a, b⟩, i.e., G is computable in A via Φb and
A is computable in G via Φa. If such G and A exist, we choose any B ⊆ N \

∪
An−1.

Since Φb(A)(B) = G(B), we may find a finite set D ⊆ A such that (E,G(B)) for some finite
set E ⊆ B is enumerated into Φb(D), that is, there are finite sets D ⊆ A and E ⊆ B such that
for any X,Y ⊆ N,

X ⊇ D and Y ⊇ E −→ Φb(X)(Y ) ≥ Φb(A)(B) = G(B).

Here, we may assume that G(E) = G(B) since the value G(B) is determined by a sufficiently
large finite subset of B. Conversely, since Φa(G) = A ⊇ D, there is a finite sublist L̃ ⊆ G̃ such
that for any H ∈ C(O∞(N),Z<), if H(C) ≥ n for every (C, n) ∈ L̃, then Φa(H) ⊇ D.

By choosing a slow enumeration of G as a name, we may assume that |C| > |E| for any
(C, n) ∈ L̃. Since L̃0 = {C ⊆ N : (C, n) ∈ L̃} is a finite collection of finite sets, we can find
an infinite set In ⊆ ω \ (

∪
An−1 ∪

∪
F̃0) such that In ∪

∪
An−1 ∪

∪
L̃0 is coinfinite. Define

Kn = In ∪ E. Then, F̃n is defined as follows:

F̃n = F̃n−1 ∪ L̃ ∪ {({t}, G(E)− 1) : t ∈ In} ∪ Jn,

where Jn = {(n, z)} for a sufficiently small value z ∈ Z if n ̸∈
∪

m≤nKm, and Jn = ∅ otherwise.
Eventually, we get a function F ∈ C(O∞(N),Z<). Note that Fn ↾ An−1 = Fn−1 ↾ An−1 since G
does not exceed Fn−1 on An−1.

Now, suppose F ≡M S for some S ⊆ N via an index n = (a, b). So at stage n, the strategy
acts via G and A. First note that Φa(F ) = S ⊇ D since L̃ ⊂ F̃ . Therefore, by our choice of E,

F (E ∪Kn) = Φb(S)(E ∪Kn) ≥ Φb(A)(E ∪Kn) = G(E ∪Kn).

However, F (E ∪Kn) ≤ G(E)− 1 < G(E ∪Kn), a contradiction.
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Proof of Theorem 60. By Lemmata 61 and 62. Here, the relativization of Lemma 62 is obviously
true.
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