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1. 1Introduction

The decision-theoretic approach to point estimation involves
the choice of an estimate or decision to maximize the expected
utility,or equivalently to minimize the expected loss,associated with
the estimate. The expected utility or loss depends on both the pay-
off function and the risk preferences of the decision maker and even
though the payoff function associated with an estimate or a decision
may be invariant among decision makers, preferences for alter-
native payoffs are likely to differ. LaValle (4] has argued that it
is important to individually consider both the reward function and
the risk preference or utility function rather than to treat both
as a single composite function. The purpose of this paper is to
indicate the influence of risk aversion on point estimates for classes
of payoff functions including the piecewise linear and quadratic
payoff functions. For example, with a quadratic payoff function risk
aversion results in optimal point estimates that are between zero and
the mean of the population being estimated,while with a piecewise
linear utility function the optimal point estimate is less if the

utility function is concave than if the utility function is linear.
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The point of view adopted in this paper is that if a decision
is associated with a point estimate the proper approach is to assess
the consequences or payoffs associated with the estimate and to choose
the estimate so as to maximize the expected utility of the payoffs
or equivalently to minimize the expected loss. 1If the point esti-
mate is to be used solely for inferential purposes, such as judging
the scientific truth or falsity of a proposition, or is to be re-
ported for whatever purposes others may wish to use it, the statis-
tician should report the likelihood function associated with the
experiment. As suggested by Hildreth [3] the statistician may
also wish to report '"'solutions to representative decision problems"
as well as the estimates based on classical properties such as un-
biasedness, consistency, efficiency, etc. The results of this paper
are relevant in the former context in which a known decision problem
is at hand and in the latter context in which the statistician wishes
to report solutions to decision problems for the benefit of unknown
or remote clients.

A point estimation problem involves the choice of an estimate
(a) from a set A of possible estimates, where the consequences or
payoffs associated with the estimate depend on an element 8 of a
space 8. The element 8§ may be a parameter of the distribution of
a random variable or may be the random variable itself. The distri-
bution function of 9 is denoted by P(3) and may be thought of as
either 1) a subjective prior distribution based upon no sample data,
2) a distribution based solely on sample data, or 3) a posterior
distribution incorporating both prior and sample information. The payoff

is denoted by g(6,a) where g is defined on @ x A and takes on values
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on the real line. The risk preferences of the decision maker are
assumed to be represented by a strictly increasing, concave, twice
differentiable, utility function U defined over the set of possible
values for g(8,a). The statistician chooses the estimate (a) so
as to attain the
max j U(g(9,a))dP(8). (1.1)
acA "¢
This is equivalent to defining a nonnegative loss function1

L(6,a) = -U(g(8,a)) + max U(g(s,a)) (1.2)
acA

. . . 2
and choosing the estimate (a) so as to attain the

min | L(5,a)dP(5). (1.3)

acA " 6

In a more general setting LaValle (4] has considered the effects of
risk preferences on the certainty equivalent for decision problems
such as (1.1) (and hence (1.3)). The emphasis in this paper is on
the impact of risk preferences on the optimal point estimate.

Risk preferences will be measured by the Arrow-Pratt [1,6]
index of absolute risk aversion rU(y) defined by rU(y) = - U"(y)/U'(y),
where (') and (”) denote first andsecond derivatives, respectively.
Pratt has demonstrated that an increase in rU(y) for all y results
in an increase in the risk premium, where the risk premium m(a,P)

for a given estimate (a) is defined as

[ Ue(3,)dP(0) = U (] 8(5,a)dR(s) - 7(a,P)).

For U strictly concave m(a,P) > 0 indicating that the certainty equi-

valent (f g(v,a)dP(6) - m(a,P)) is less than the expected value of

[\
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the payoff. For a fixed (a) Pratt's result implies that the certainty

equivalent is decreasing in absolute risk aversion, and LaValle [4]

has shown that this rasult also holds when the optimal acA is chosen.
1f rU(y) is decreasing (increasing) (constant) in y, U is said

to exhibit decreasing (increasing) (constant) absolute risk aversion.

Thus, a positive translation in g(9,a) results in a decrease (increase)

(no change) in the risk premium of g(8,a) if the utility function

exhibits decreasing (increasing) (constant) absolute risk aversion.

A utility function U is said to exhibit increasing (decreasing) (con-

stant) proportional or relative risk aversion if
rif(y) = yru(y) = - (U(y)-y/U'(y))

is increasing (decreasing) (constant) in y. The interpretation of
relative risk aversion is that the decision maker is indifferent
between a risk yg(6,a) and E(yg(6,a)) - m(a,P) = E(yg(9,a)) - ym*(a,P)
for certain where E denotes expectation and #*(a,P) = %ﬂ(a,P) is the
relative risk premium.

To investigate the implications of risk aversion for optimal
point estimates, it is sufficient to work within the context of
expected utility maximization, but the loss function formulation will
be used in order to provide an interpretation of the results in the
context of classical estimation procedures. To illustrate the effects
of risk aversion, two common estimation problems developed from the
newsboy or piecewise-linear payoff function and the quadratic payoff
function will be considered. Theoretical results are presented in

the next two sections, and numerical results are given in Section 4.



2. Quadratic Payoff Function

The most commonly used loss function in point estimation is
. . 2 . ]
the squared-error or quadratic function k(6-a)” defined on ¢ < A =
R = (-o,+x), With a linear utility function, a quadratic loss func-

tion may be obtained from the payoff function

g(5,a) = 2k(oa - & a), k > 0. (2.1)

Such quadratic functions are frequently used as approximations of
other more complex functions and arise in economics when linear de-
mand and marginal cost functions are used. For example, consider a
price-taking firm in a competitive market in which the price p is
uncertain, and let the total cost function C(a) for a quantity (a)
be C(a) = ba + caz, c >0, b >0. The profit of the firm is
(p-b)a - ca2, which with a transformation of variables is of the
form of (2.1).°

The general loss function for the quadratic payoff function

in (2.1) is
— r2 1 2
L(6,a) = U(ks™) - U(2k(Ba - 3 a")). (2.2)
If the utility function is linear, the loss function is
L(s,a) = k(s-a)® , (2.3)

and the optimal point estimate 1is the mean of the distribution of 4.
The effect of risk aversion on the optimal point estimate is to move
it towards zero if the optimal estimator is nonzero. A more general
theorem first will be proved for a class of payoff functions that
includes (2.1), and then the result will be interpreted in terms of

the classical properties used to evaluate point estimators.



Theorem 1: Let Ul(y) and Uz(y) be two utility functions such that

rUl(y) > rUz(y) > 0 for all y and rUl(Y) > rUz(y) for some y =

g(e,éz) (or on some subinterval containing y) with positive pro-
bability, and let él be optimal for Uy and 52 (finite) be optimal

for U,. Let g(9,a) be concave and continuously differentiable in a.
A) 1If g(8,a) is monotone increasing (decreasing) in § and

é&éﬁ;&l = g’(9,a) is monotone increasing (decreasing)in § for the
optimal éz, then él < éz. B) 1If g(e,a) is monotone increasing
(decreasing) in 5 and g’(6,a) is monotone decreasing (increasing) in 6
for the optimal 52, then él > éz. c) 1If g(e,éz) is constant for all
6 € @, then él = éz. D) If g(s,a=0) = 0 for all § € ®, and

max j g(3,a)dP(8) = 0, then for all J concave 4 = 0 is optimal.
acA " @

Proof: A) The necessary optimality condition for the expected
loss in (2.2) with U2 is

[=~]

| 'Uz'(g(e,az)) g’ (5,4,)dP(8) = 0. (2.4)

For U, concave the estimator satisfying (2.4) is a unique global
optimum. For 52 finite, there exists a 6% satisfying g’(e*,éz) =0
or else (2.4) would not hold and éz would not be finite. Dividing

(2.4) by Ué(g(e*,éz)) and rewriting yields

-8% U, (g(6,4,)) = Uy(g(8,4,)) .
5 — 8'(8,3,)dP(8) - - g'(8,3,)dP(8) = 0.
Lo Uy(g(8%,3,)) T Uy (8(8%,38,)) (2.5)




Doing the same for Uy evaluated at 52 and subtracting from (2.5)

yields

r
6% 1 U, (g(8,d,)) U/(g(8,4,)) )
- - g (9,a,)dP(8)
‘ U (g(8%,4,))  U{(g(8%,4,))

how

e | Uy(g(8,8,))  U{(g(8,a,)) o
- , — - == — g (e,az)dP(e) (2.6)
67’; bUZ(g(exsaz)) Ul(g(U"‘,az))

Pratt [6,Eq.20] indicates that ry (y) > ry (y) for all y and
1 2

rul(y*) > rUZ(y*) is equivalent to
(Uf(Y*)/Ui(W)) > (Ué(Y*)/Ué(W)), y* < w. (2.7)

Under the assumptions of A) for 6§ < 8%, the term in brackets in the

first integral in (2.6) is negative (positive) from (2.7), since

g(e,éz) is monotone increasing (decreasing) in 8. Since g’(a,éz)

is monotone increasing (decreasing), g’(e,éz) <(>) 0 for 9 < &%, so

the first integral is positive. The second integral is also positive using
the inverse of (2.7) and noting that g’(@,éz) > (<) 0 for 5 > g%,

so the expression in (2.6) is negative. From (2.4) the expression

in (2.6) is

[as]

- | U{(a(8,4,)) g'(9,d,)dP(s) > O. (2.8)

The strict convexity of expected loss implies that the optimal point
estimate must be decreased from §2 for (2.8) to hold as an equality
$0 a; < a,.

B) Arguing as above under the assumptions of B) indicates that the

term on the left-hand side of (2.8) is negative, so él > §2.
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C) Under the assumptions of C) the expressions in brackets in (2.6)

A

equal zero, and consequently, éz = a;.

D) For U concave J U(g(6,a))dP(8) = U(J g\G a)dP(6)-7(a,P)) <
o o

U(: g(5,a)dP(s)). Then under the assumptions of D), since minimizing
e

the expected loss is equivalent to maximizing expected utility, the

optimal estimate is such that max U( g(0,a)dP(8) - m(a,P)) =
acA O

U(max ( g(8,a)dP(8)-m(a,P))) < U(max | g(e a)dP(8)) = U(0). Since
acA ‘g acA

U(0) may be attained for a = 0, 4 = 0 is optimal for U concave. /

The quadratic payoff function in (2.1) satisfies assumption A)

~

for 4¢(0,+=), B) for ac(-«,0),C)for a= 0and D) for ' 8dP(8) =
e,
The following corollary specializes Theorem 1 for the quasiratic payoff

function in (2.1).

Corollary 1: Let Ul(y) be at least as absolute risk averse as
Uz(y) for all y and more risk averse for some y = g(e,éz) (or on
some sub-interval) with positive probability, and let él be optimal
for U1 and a2 be optimal for U2 Then, a; < a, if agy > 0; a; > a,

if 52 < 0; él “2 = 0 if 4 = 0 is optimal for some concave utility func-

r n
tion, and ] 8§ dP(3) = 0 implies a = 0 for all concave utility functions.
®

The following corollary specializes Theorem 1 for utility
functions with decreasing (increasing) (constant) absolute risk

aversion.

Corollary 2: The optimal estimate for the loss function in (2.2)

is an increasing (decreasing) (constant) function of y for a > 0

(and vice versa for a < 0) if U(y+g(6,a)) exhibits decreasing
(increasing) (constant) absolute risk aversion. If a = 0, the optimal

point estimate is indegendent of vy.
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Corollary 2 follows from Theorem 1 by letting Ul(y) = U(y) and
Uz(y) = U(y+y), 2y > 0. If g(8,a) is measured in monetary units,

y may represent the wealth of the decision maker.

With the quadratic payoff function increased risk aversion moves the
optimal estimate away from the mean and towards zero. The latter occurs
because as the point estimate moves closer to zero the ''risk' involved
in the estimate decreases. To examine this ''risk,'" consider the follow-
ing example involving the payoff function in (2.1) and a constant abso-
lutely risk averse utility function U(y) = -exp(-ay), o >0. The parame-
ter § may be interpreted as, for example, a random variable such as an
uncertain price or as another example, may be interpreted as the unknown
mean of a population with a known variance 02. For the latter case ¢ 1is
considered to be a random variable, and P(8) is a posterior distribution
developed from an informationless prior. If a random sample of size n
(large) is taken from the population, P(8) is approximately normal with
mean x and variance %T .  Then the expected utility, upon completing

the square in the exponent and integrating, is

+ o .
I U(8(8,2))dP(8) = -exp(-a(2k(Ra-(1/2)a2) - 20k2a202/m)).

-

. . . 2
The risk premium is 2&k2a Gz/n, which is increasing in the index

of absolute risk aversion o and increases as the distance from (a)

to the origin increases. The optimal estimator is & = ———5——7——

1+2aks “/n
which for u > (<) 0 is decreasing (increasing) in o and is less

(greater) than the mean x. As the index of absolute risk aversion
increases, the decision maker reduces (increases) the estimate from

the mean for x > (<) 0 in order to increase expected utility by

increasing the certainty equivalent (2k(§§-(1/2)52)-2ak25262/n). The

"bias'" (in the classical sense) of the optimal point estimator is

X — 2a§k62/n .
X) = - . This "bias' results from risk

1+2aks “/n 1+2ake“/n
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aversion and is not to be thought of as undesirable in a decision

context, since optimality is defined in terms of the decision maker's
L1 . . 6 . ,

utility function. The expected loss in payoff  in (2.3) resulting

from the optimal decision & is

- ay 2 2, ,— X 2
E, L(s,a) = E_(k(8-8)7) = k(¢e"+(x - ——— ) "),
9 K 1+2ako “/n
where the term (X - ———5——7 )2 is the increase in the expected loss
1+2ako " /n

of payoff resulting from the 'bias' in the estimation caused by risk
aversion. If the estimate is to be used solely for inferential pur-
poses, risk preferences should be suppressed eliminating this ''bias."
This corresponds to using a linear utility function (o=0) yielding

an expected loss in payoff of kvz.

For a strictly concave utility function in the limit as n increases
the optimal point estimate approaches the sample mean, so the point
estimate obtained with a strictly concave utility function is
asymptotically unbiased. Both the ''bias' and the variance (Uz/n)
go to zero as n increases, so the risk averse point estimator is con-
sistent and is also asymptotically squared-error efficient., This
same asymptotic behavior will result in general provided that in the
limit the distribution P(8) places mass one on the true value of
the parameter.

The optimal point estimate for the above example is decreasing
(increasing) (constant) in k for u > (<)(=) 0 and o« > 0, and this re-

sult may be generalized using the notion of relative risk aversion.
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Theorem 2: Let U be concave and g(6,a) be as given in (2.1). A) If

a4 = 0, the optimal point estimate is constant in k. B) The optimal
point estimate is increasing (decreasing) (constant) in k if 1)

a < 0 and U exhibits increasing (decreasing) (constant) relative risk
aversion or if 2) a > 0 and U exhibits decreasing (increasing) (constant)

. . . 7,8
relative risk aversion.’?

Proof: Implicit differentiation of the necessary optimality condition
1 e

in (2.4) yields 92 = - ——— [-2 | U"(2k(84-(1/2)4%))(6-3) (04 -
aa -

(1/2)32)dP(8)], where EL_, is the (positive) second-derivative of

the expected loss evaluated at a.

A) If 4 = 0, then 53 -~ (1/2)a = 0 and %% = 0.

B) Let 0% = 4 and consider the case in which a > 0. For a > 0,

ré(y) increasing implies that

14 A A2
- D72k (8a=(1/2)87)) oy (pa-(1/2)4%) > 2kr#(2k(6%3-(1/2)4%)), (2.9)
U’ (2k (04~ (1/2)42)) v

since for 5 - 6% >0 and 4 > 0, 2k(aé-(1/2)éz) > 2k(97’<é‘1-(1/2)é)2.
Multiply both sides of the inequality in (2.9) by -U’(2k(8§—(1/2)é2))

(6-3a) to obtain for 8§ - 4 > 0
U” (2k (84-(1/2)4%)) 2k(04-(1/2)42) (8-a)
< - 2kr§(2k(8*§-(1/2)§2)) U’ (2k (8- (1/2)4%)) (6-3) . (2.10)

For 6 - a <0 and a > 0,

14 ~ 62
- UT(2(03-(1/2)3 D) 9y (54-(1/2)4%) < 2kr¥(2k(8%a-(1/2)2%)). (2.11)
U’ (2k (8- (1/2)4%)) v
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Multiplying both sides of the inequality in (2.11) by

[-U'(zk(eé-(l/Z)éz))(e-é)] indicates that (2.10) holds for all s.
Integrating and noting that the right-hand side of (2.10) is the

necessary optimality condition multiplied by a constant implies that

%% < 0. The opposite result obtains for rg(y) decreasing, and
similar analysis indicates that for constant relative risk aversion

%% = 0. Next consider 4 < 0. Then [eé-(l/z)ézl is increasing in 9

as (6-a) decreases. The inequality in (2.10) thus is reversed for
6 - 4 >0 and the inequality in (2.11) is reversed for # - 4 < 0,
and hence (2.10) holds for all §. This implies that %ﬁ > (<) (=) 0

for increasing (decreasing) (constant) relative risk aversion.”

The following table summarizes the results of Theorem 2.

A

Sign of 2
Relative Risk Ayersion a<0 4a=0 4&>0o0
increasing + 0 -
constant 0 0 0
decreasing - 0 +

The interpretation of the result of Theorem 2 is, for example, that
with increasing relative risk aversion an increase in k results in a
greater proportional risk (for 4 # 0) and to reduce the risk the
optimal estimate moves towards zero. The opposite effect occurs for

decreasing relative risk aversion.

3. Piecewise Linear Payoff Function

The effect of risk aversion on the optimal point estimate depends
importantly on the form of the payoff function. 1In this section the

frequently used piecewise linear payoff function will be considered,
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and the optimal point estimate will be shown to decrease as risk
aversion increases. A piecewise linear payoff function with

6§ <A cR = (-»,») is given by
(B(R +k ) - ak for 6 < a
u o o

g(8,a) =
t k,a for 5 > a. (3.1)

with ku > 0 and ko > 0. With a linear utility function U the

loss function L(6,a) is given by

ko(a—e) for 6 < a

L(b,a) =

ku(ﬁ-a) for > a (3.2)

a>

The interpretation of L(5,a) is that the per unit loss due to under-
estimation 1is ku and the loss due to overestimation is ko. The
optimal point estimate 3 is any ku/(ku+ko) fractile of the distribu-
tion function of 9 (see Raiffa and Schlaifer [7,pp.176-207] and
LaValle [5,pp.508-5351). For a nonlinear utility function the loss

function 1is
U(kue) - U(e(ku+ko)—ako) for 6 < a

L(8,a) =
U(kue) - U(kua) for 6 > a (3.3)

To demonstrate that the optimal point estimate for the piecewise
linear payoff function is decreasing in absolute risk aversion, a
result will be presented for a more general payoff function that
includes (3.1) as a special case, and then an interpretation of the

risk aversion affect will be given.
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Theorem 3: Let Ul(y) and Uz(y) be two utility functions such that

r. (y) >r, (y) >0 for all y and r; (y) > r,, (y) for some

y = g(e,él) (or on some interval of such y) with positive probability,
where él is optimal for U; and 52 is optimal for U,. For 6 > a, let
g(8,a) = g*¥(a) be constant in 6, concave in a, and right differentiable
with g*’(a) > 0. For 9 < a, assume that g(6,a) is decreasing in a,
concave in a, left differentiable with respect to a, and such that

g(a,a) = g*¥(a). Then a; < a,.

Proof: The necessary condition for the optimal estimate 51 for (3.3).
for U1 may be written as

é A ~

¥ 1 Ul’(g(e,al))g’(e,al)
—e Uy (g*(d;))

-g* (a1) (1-P(a;)) - dp(s) = 0. (3.4)

The estimate él satisfying (3.4) is a unique global optimum for a
strictly concave utility function, since g(8,a) is concave, Ul(g(a,a))
is strictly concave in a, and consequently, EL(6,a) is strictly con-
vex in (a). For 96(—m,§1), g*(él) > g(e,él) so letting y* = g(e,él),
substituting Ué(g(e,ﬁl))/Ué(g*(él)) for the similar term for Uy in
(3.4), and using (2.7) implies that

o A A1 U7, (8(5,4)))8(6,4))

-g+’(4;) (1-P(4)) - 1
U (g% (4,))

-

dP(8) < 0.

Since EL(§,a) is strictly convex, 4, > 51. //

The following Corollary extends Theorem 3 to a parameterization

of U.
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Corollary: The optimal point estimate is an increasing (decreasing)
(constant) function of y, where utility is U(y+g(s,a)), for U

exhibiting decreasing (increasing) {constant) absolute risk aversion.

The piecewise linear payoff function in (3.1) satisfies the
hypotheses of Theorem 3 and its Corollary, so the optimal point
estimate is decreasing in absolute risk aversion. The interpre-
tation of Theorem 3 is that greater risk aversion implies that losses
incurred when 6 < a are given more weight than losses incurred when
8 > a, since for U; strictly concave marginal utility U{(g(e,él))
in (3.4) increases as g(e,él) decreases while for 6 > a marginal
utility is constant and is less than Ui(g(e,él)). For example, if
U2 is a linear utility function the necessary condition for the

optimal estimate 52 is

2y

-g*’(4,) (1-P(4,)) - | &'(8,4,)dP(9) = 0.
-

With a strictly concave utility function g’(8,3d,) is
given greater weight for § E(-m,éz) than is g*’(éz), so evaluated
at 32 the expression on the left-hand side of (3.4) is positive for
U1 strictly concave. The optimal point estimate for Uq is thus
less than the optimal point estimate for a linear utility function.
In terms of the piecewise 1linear loss function derived from (3.1)
greater risk aversion results in an optimal point estimate with a
greater probability of underestimation. The decision maker prefers
to accept the greater probability of a loss due to underestimation
in order to reduce the risk of a loss due to overestimation,.

The effect of risk aversion on the optimal point estimate for

the piecewise linear payoff function may also be illustrated by
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examining the form of the loss function in (3.3). The loss function,
for a strictly concave utility function with convex marginal utility

may be shown to be convex in & for ¢ < a and concave for § > a. For

8 > a the loss function is concave in 8 for a fixed a, since

2 2
d " L(8,a _ " - d"L(8,a _ 2 " - 2
—(éf_l = k,U" (k9 < 0. For 8 < a, ——é?—l = KU (k,0) = (ke +k)

U”(e(ku+ko)-ako). Since kue > S(ku+k0)- ako for 6 < a, and for U’

convex U”(kue) > U”(e(ku+ko)-ako). Then since (ku+k0)2 > ki and U
2

is concave, §_§£§4§l > 0, and the loss function is convex for 8 < a.
5]

Pratt indicates that for U nonincreasingly absolute risk averse,
v’ > (U”)Z, and hence U”' >0 for U’ >0, so U’ is convex. For U
exhibiting increasing absolute risk aversion U’ may or may not be
convex. Risk aversion thus results in an asymmetric loss function
even if the loss function for a linear utility function in (3.2) is
symmetric. Furthermore, it is inappropriate to attempt to represent
greater risk aversion by changing, for example, from a piecewise linear

to a squared-error loss function. One possible rationale for this

might be that losses are more serious the farther 6 is from a. How-

ever, risk aversion implies that differences & = |g-al| are weighted

more heavily (by the appropriate marginal utility) for 8 < a than for 8§ > a.
For a linear utility function the optimal point estimate for

the piecewise linear payoff function is a constant function of the ratio

k

u . . . . . . . . .
ik o 1s decreasing in ko’ and is increasing in ku. With a strictly

u o
concave utility function the following results obtain.

Theorem 4: A) For the piecewise linear payoff function in (3.1),

%% <0..B) For the payoff function kg(§,a) with k > 0 and g(8,a) as

(¢}
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= 0 if U exhibits constant relative risk aversion.

Q..|O..
s

in Theorem 2,

Proof: A) 1Implicit differentiation of the necessary optimality

)

A

.. . . . da _
condition in (3.4) with respect to ko yields EEQ = - (1/ELaa

A

4
! ' " A ‘ - - A .
[ (U (v)+kOU (v) (6-4))dP(8) ], where v = e(ku+ko) ako and EL_, 1is

- 00

the (positive) second derivative of the expected loss function

evaluated at 4. For 8e(-=,3a), (5-3a) < 0, so %% < 0.
o

B) Implicit differentiation of the necessary optimality condition

with respect to k yields

A

~a
= (1/EL, ) (1/k) [, U"(kg(8,4))kg’(8,4) g(8,a)dP(s)

- D

o1a
pog IR

+ g* ’(3)U" (kg*(8))kg*(8) (1-P(4))]. (3.5)

Add the first-order condition from (3.5) inside the [ ] to obtain

A

~a
)(1/k) [ U'(kg(8,8)) {1-r§(kg(6,§))} g '(8,4)dP(6)

- D

da _
7+ = (L/EL_,

+ U’ (kg*(2))g* (a) {l-r¥(kg*(a))} (1-p(a)) J.

For U(y) constant relative risk averse ré(kg*(é)) = ré(kg(@,é)) =

8 > 0, and %% = - (1/ELaa)((1-B)/k) %%L _ =0, where ggL? is the

A

a=a a=a

necessary optimality condition evaluated at é.”

There is no counterpart of Theorem 4A) for the effect of increases

in ku’ because ku is involved in the payoff function for both 8§ < a

and ¢ > a, and hence the sign of %% given below is unclear. Letting
u

z = kué, the derivative is



—18 -—

A A
di = - a/EL) [k | U"()8dP(8) - (1-P(8))U’(2) (1-k dr (2))].

-0

For © = A <(0,=) and U constant relative risk averse,kuérU(z) =

B. If B <1, %% > 0, but for g8 > 1, %ﬁ may be negative.
u u

A

=
r.

b
~~

N
N’

I

Consequently, while an increase in the loss (in payoff) due to
overestimation decreases the optimal point estimate, an increase in
the loss (in payoff) due to underestimation may increase, decrease,
or leave unchanged the optimal estimate. A proportional increase
in both ko and ku will have no affect on the optimal point estimate

if the utility function exhibits constant relative risk aversion.

4. Numerical Examples

This section presents numerical results that indicate the magni-
tude of the risk aversion effects for the quadratic payoff function.
Table 1 presents numerical results for the quadratic payoff
function, normal distribution, and exponential utility function
U(y) = -exp(~-ay), o > 0, example of Section 2. The optimal estimate
for U linear is a = u = 5, and the optimal point estimates are
decreasing in risk aversion (rU(y) = «), since a > 0. The point
estimate also is decreasing in the standard deviation, since the
risk premium is increasing in o. Table 2 presents numerical results
for the quadratic payoff function, constant relative risk averse
utility function U(y) = yc = (1504—g(6,a))c, and normal, uniform,
and exponential distributions. To indicate the '"degree of risk
aversion" of the utility functions, Table 3 presents the certainty
equivalent for a lottery that pays $100 or $O each with probability

one-half. For example, with o« = .0l the decision maker is
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indifferent between $39.99 with probability one and the lottery.

The values of o used in Table 1 reflect very risk averse preferences.

5. Conclusions

Whenever payoffs to the decision maker are involved, estimation
must take into account not only the payoffs but also the risk prefer-
ences of the decision maker. Considerable evidence has been accumu-
lated indicating that many decision makers are risk averse, and this
paper has investigated the effects of risk aversion on optimal point
estimates. For the piecewise linear payoff function the optimal
point estimate is decreasing in absolute risk aversion, while increased
absolute risk aversion moves the optimal point estimate towards the
origin for a quadratic payoff function. The magnitude of the risk
aversion effect clearly depends on the ''degree of risk aversion,"
and the numerical results of Section 4 indicate that the risk aversion

effect can be significant.
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Table 1

Optimal Estimate.s forQuadratic Payvoff Function

rU(y) = o ; Normal Distribution, u=5; k= .5
o=.01 o=.05 a=.1 o=.3
4.975 4,878 4.762 4.348
4,951 4.762 4.545 3.846
4.926 4.651 4.348 3.448
4.902 4.545 4.167 3.125
4.854 4.348 3.846 2.632
4.808 4.167 3.571 2.273
4.762 4.000 3.333 2.000
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Table 2

Optimal Estimates for Quadratic Payoff Function

ry(y) =

l-¢ | K

3

Yy

= .5

Normal Distribution, u = 5

c=.,05 c=.1 c=.15 c=.20 c=.4 c=.6 c=.8
4.957 4.960 4.962 4.965 4.973 4.982 4.991
4.746 4.759 4.772 4.785 4.837 4.890 4.945
4.397 4.425 4.454 4.483 4,603 4.728 4.861
Uniform Distribution on [0,10]
4.766 4.778 4.790 4,802 4.850 4.899 4.949
Exponential Distribution, mean 5
4.551 4.572 4.594 4.616 4.708 4.807 4.912
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Table 3

Certainty Equivalents for Lottery

0 with probability .5

100 with probability .5

Utility Function «=.01 a=.05 o=.1 a=,3
U(y)=-exp(-ay) 39.99 13.73 6.93 2.31
=-exp (-2 (100+x))
c=.05 c=.10 c=.15 c=.2 c.=4 c=.6 c=,8
U(y)=yc=(100+x)C 41.85 42.27 42.70 43.13 44.85 46.57 48.29
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Footnotes

Corresponding to every U(g(8,a)) is a loss function as in
(1.2), but a given loss function may correspond to more than

one U(g(5,a)).

For acA L(-,a), and hence U(g(-,a)),is assumed to be P-integrable.
For example, if U(y) = log(y), the probability that y is non-
positive is assumed to be zero. If g(a,8) may take on negative
values, the utility function U(g(a,8)) is considered to be
log(y+g(a,8)) where y > - min g(a,8).

acA
5€9

Arrow [1] has argued that decreasing absolute risk aversion is
a reasonable property of utility functions, since that property
implies that increased wealth will cause an individual to pay

less for insurance against a given risk.

The relative risk aversion index is the elasticity of marginal

utility.

A more general study of price taking firms is provided by

Baron [2].

In a decision context the expected utility and not the expected
loss in payoff is of interest. The latter is considered here in

order to relate the results to the usual inference procedures.

1f U(z) = - = for z < 0, the result holds for k(y+g(8,a))

where y+g(6,a) > 0 for all 8 € @ and a € A.

The proof follows that given by Arrow [l,pp.119-120].



